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Symmetrization of starlike domains in Riemannian manifolds
and a qualitative generalization of Bishop’s volume

comparison theorem
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Abstract. We introduce a new type of symmetrization in starlike domains in Riemannian mani-
folds that maintains the Ricci curvature in the radial direction. We prove that this symmetriza-
tion is volume increasing. We get, as its direct consequence, a generalization of Bishop’s volume
comparison theorem. Moreover, this generalization shows that this kind volume comparison
theorem is qualitative in nature, instead of being quantitative. Using this symmetrization, we get
some volume upper bounds in terms of some integrals of the Ricci curvature. Finally, we intro-
duce a new type of symmetrization in geodesic balls within the injectivity radius, which is vol-
ume decreasing.
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1 Introduction

Symmetrization is a very useful tool in mathematics. In particular, symmetrization of
Riemannian manifolds is a powerful tool in geometrical analysis. Frequently when we
consider a class of objects that shares some features, the maximum or the minimum
of a given property is attained at the most symmetrical object in this class. In addi-
tion a symmetric object is usually simpler to study, what makes the symmetrization a
very interesting tool to consider.

For instance let Mn
k be the n-dimensional space form with constant sectional cur-

vature k A R. Let Mn
V be the set of compact n-dimensional manifolds with smooth

boundary in Mn
k , with fixed volume V. Consider the isoperimetric quotient

=n;VðWÞ ¼ AreaðqWÞ
VolðWÞðn�1Þ=n
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in Mn
V, where Areað�Þ denotes the ðn � 1Þ-dimensional volume and Volð�Þ denotes the

n-dimensional volume. It is a well known fact that the minimum of =n;V is attained
at the geodesic disc with volume V (see [5] and references therein).

Another well known example is given by the Faber–Krahn inequality. It says that
the lowest fundamental tone of a Riemannian manifold in Mn

V is given by the geo-
desic disc with volume V (see also [5] and references therein).

There are several other examples that illustrate this kind of situation: The maxi-
mum or the minimum of ‘‘interesting’’ functionals is either attained at the most
symmetrical object, or it is not attained (for instance, substitute ‘‘minimum’’ in the
examples given above by ‘‘maximum’’).

Let us begin to present this work. Let M n be an n-dimensional Riemannian mani-
fold. Denote the tangent space at p A M by TpM and its unit vectors by SpM. We can
define a polar coordinate system with the origin at p in a neighborhood of p. Denote
it by ðt; yÞ, where y A SpM and t is the radial component. The canonical metric on
Sn�1 is denoted by dy2 and its volume element by dA. The curve parametrized by
arclength gð� ; yÞ represents the geodesic such that gð0; yÞ ¼ p and g 0ð0; yÞ ¼ y, where
the superscript 0 stands for the derivative in the radial variable. Denote by ~ccðyÞ the
cut point of p along gð� ; yÞ.

We say that a domain DHM n is starlike with respect to p A D if given x A D then
there exists a unique minimizing geodesic g : ½0; cx� ! M connecting p and x such that
gð½0; cx�ÞHD. It is not di‰cult to see that we can define a global polar coordinate
system in starlike domains. Moreover, it can be defined as fexppðt; yÞ A D; y A SpM;
0c t < cðyÞg, where cðyÞc ~ccðyÞ. In order to be more explicit, we denote a starlike
domain by Dðp; cÞ. Notice that geodesic balls, not necessarily within the injectivity
radius, are starlike domains or the union of starlike domains with some of its closure
points. We denote the geodesic ball with center p and radius r by Bðp; rÞ.

Remark 1.1. Whenever we mention Bishop’s volume comparison theorem, we are
referring to the version where the Ricci curvature is bounded from below (see Theo-
rem 2.1).

The main purpose of this paper is to introduce two new types of symmetrizations
in starlike domains and to study their influence on the volume element in a polar
coordinate system. One of these symmetrization is volume increasing and one of its
consequences is a generalization of Bishop’s volume comparison theorem. Further-
more this generalization shows that this kind of volume comparison theorem is quali-
tative in essence instead of being quantitative. We also get some volume upper bounds
in terms of some integrals of the Ricci curvature thanks to this symmetrization. The
other symmetrization that we introduce in this work is volume decreasing, and fur-
ther details about it will be given afterwards.

This paper is divided as follows: In Section 2, we introduce some notation and basic
facts. In Section 3, we summarize our work defining the symmetrizations and present-
ing the main theorems without proofs. In addition we justify their importance in Rie-
mannian geometry. In Section 4, we complete all the details about symmetrizations
and we prove the qualitative generalization of Bishop’s volume comparison theorem.
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Finally, in Section 5, we prove another volume comparison theorem and some vol-
ume upper bounds.

2 Notation and basic facts

Let us introduce some notation and present some basic facts. Calligraphic mathe-
matical letters will indicate an object related to the tangent space.

Let ðM n; gÞ be an n-dimensional Riemannian manifold with metric g, ‘ the
Levi–Civita connection, RðX ;YÞ ¼ ‘X‘Y � ‘Y‘X � ‘½X ;Y � the curvature tensor and
RicðX ;YÞ ¼

Pn
i¼1 hRðei;X ÞY ; eii the Ricci tensor, where fe1; . . . ; eng is an ortho-

normal frame and h� ; �i denotes the metric g. If jZj ¼ 1, then RicðZ;ZÞ is the Ricci
curvature in the direction Z. An important object for the study of the geometry along
geodesics in polar coordinates is the Ricci curvature in the radial direction q

qt
. It will

be called radial Ricci curvature and it will be denoted by Ricrðt; yÞ.
The exponential map expp restricted to Dð0; cÞ ¼ fX A TpM : y A Sn�1; 0c kXk

< cðyÞg induces spherical coordinates ðt; x1; x2; . . . ; xn�1Þ on Dðp; cÞ, where t is the ra-
dial coordinate and xi, for i ¼ 1; . . . ; n � 1, denotes the angular coordinates. Its rela-
tionship with Cartesian coordinates ðx1; . . . ; xnÞ is given by

x1 ¼ r sin x1;

x2 ¼ r cos x1 sin x2;

x3 ¼ r cos x1 cos x2 sin x3;

..

.

xn�1 ¼ r cos x1 . . . cos xn�2 sin xn�1;

xn ¼ r cos x1 . . . cos xn�2 cos xn�1:

The spherical coordinates will be useful in some calculations.
Let Dðp; cÞ be a starlike domain. For each t A ½0; cðyÞÞ, let T?

gðt;yÞM be the orthog-

onal complement of g 0ðt; yÞ in the tangent space Tgðt;yÞM. Define the radial curvature

operator Rðt; yÞ : T?
gðt;yÞM ! T?

gðt;yÞM by Rðt; yÞX :¼ RðX ; g 0ðt; yÞÞg 0ðt; yÞ. Observe

that Ricrðt; yÞ is the trace of Rðt; yÞ.
Fix y. Define the path of linear operators Aðt; yÞ : T?

gð0;yÞM ! T?
gð0;yÞM by

Aðt; yÞX ¼ ðttÞ�1
JðtÞ, where JðtÞ is the Jacobi field along gð� ; yÞ satisfying Jð0Þ ¼ 0

and ‘g 0ð0;yÞJð0Þ ¼ X , and tt is the parallel transport from T?
gð0;yÞM to T?

gðt;yÞM along

gð� ; yÞ. Define also the path of linear operators Rðt; yÞ : T?
gð0;yÞM ! T?

gð0;yÞM by

Rðt; yÞX ¼ ðttÞ�1Rðt; yÞðttXÞ. It is well known that Aðt; yÞ is the solution of the equa-
tion A 00ðt; yÞþRðt; yÞAðt; yÞ ¼ 0 with initial conditions Að0; yÞ ¼ 0 and A 0ð0; yÞ ¼ I ,
where I denotes the identity operator. Moreover, the volume element in polar coor-

dinate system is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðt; yÞ

p
:dt:dA ¼ detAðt; yÞ:dt:dA.

Now we recall Bishop’s celebrated volume comparison theorem (see [3] and com-
pare with [5]). Denote by Sk the function
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SkðtÞ ¼

1ffiffi
k

p sinð
ffiffiffi
k

p
tÞ k > 0

t k ¼ 0
1ffiffiffiffiffi
�k

p sinhð
ffiffiffiffiffiffiffi
�k

p
tÞ k < 0:

8>><
>>:

Theorem 2.1 (Bishop). Let M be a Riemannian manifold and fix p A M. Consider a

geodesic gð� ; yÞ parametrized by arclength in M such that gð0; yÞ ¼ p. Suppose that

the radial Ricci curvature along gð� ; yÞ is greater than or equal to ðn � 1Þk for every

t A ð0; cðyÞ�. Then

detAðt; yÞ
Sn�1
k ðtÞ

 !0
c 0 ð1Þ

on ð0; cðyÞÞ and

detAðt; yÞcSn�1
k ðtÞ

on ½0; cðyÞ�. We have equality in (1) at t ¼ t0 A ð0; cðyÞÞ if and only if

Aðt; yÞ ¼ SkðtÞI ; Rðt; yÞ ¼ kI

for every t A ð0; t0�.

Denote the geodesic ball of radius r in the space form of constant curvature k by
BkðrÞ. A global version of Theorem 2.1 is given below.

Theorem 2.2 (Bishop). Let M be a Riemannian manifold and fix p A M. Suppose that

the radial Ricci curvature is greater than or equal to ðn � 1Þk in Bðp; rÞ. Then

VolðBðp; rÞÞcVolðBkðrÞÞ ð2Þ

with equality if and only if Bðp; rÞ is isometric to BkðrÞ.

We end this section remarking that we will usually simplify the notation if there is
no possibility of misunderstandings (for example, AðtÞ instead of Aðt; yÞ).

3 Symmetrizations and the main theorems: a summary

In order to define the symmetrizations, we present some types of starlike domains.

Definition 3.1. We have the following types of metrics on starlike domains, from the
more general to the more specific (All metrics are written in a polar coordinate sys-
tem).

1. General starlike domains: Metrics of type ds2
g ¼ dt2 þ gijðt; yÞ dy i dy j.
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2. Starlike domains with scalar radial curvature operator: Metrics of type ds2
f ¼ dt2 þ

f 2ðt; yÞ dy2.

3. Radially symmetric starlike domains: Metrics of type ds2
h ¼ dt2 þ h2ðtÞ dy2.

4. Starlike domains with constant curvature k: Metrics of type ds2
k ¼ dt2 þ S2

kðtÞ dy2.

For the sake of brevity, we call them starlike domains of type i ði ¼ 1; 2; 3; 4Þ. The
definition of radially symmetric starlike domain may seem a little bit artificial. In fact,
it is more suitable to geodesic balls within the injectivity radius. But we conserve Def-
inition 3.1 as it is, in order to emphasize the hierarchy that exists on the metrics in
starlike domains.

The reason why the second type of starlike domains is called starlike domains with

scalar radial curvature operator will be explained in Proposition 4.1.
It is a natural idea to create a symmetrization process such that the first step is to

transform a general starlike domain into a starlike domain with scalar radial curva-
ture operator, the second step is to transform a starlike domain with scalar radial cur-
vature operator into a radially symmetric starlike domain and so on. In order to de-
fine these symmetrizations, we have to determine what properties we want to keep.

Let us define these symmetrizations. One of them transforms a starlike domain of
type 1 into a starlike domain of type 2, and it is called symmetrization (of a starlike

domain) along the radial geodesics. For the sake of brevity, we call it 1-2 symmetri-

zation. It is characterized by transforming a general starlike domain Dgðp; cÞ into a
starlike domain with scalar radial curvature operator Df ðp; cÞ with the same radial
Ricci curvature. The other symmetrization transforms a geodesic ball Bf ðp; rÞ of type
2 within the injectivity radius into a geodesic ball Bhðp; rhÞ of type 3, with rh c r. It is
called symmetrization (of a geodesic ball of type 2 within the injectivity radius) along

spheres that are equidistant to the origin, and for the sake of brevity we call it 2-3
symmetrization. The 2-3 symmetrization is characterized by the property that the
average of the radial Ricci curvature on qBf ðp; tÞ, t A ð0; rhÞ, is equal to the corre-
spondent average on qBhðp; tÞ. We could create a ‘‘3-4 symmetrization’’, but these
two symmetrizations are enough for our purposes. The formalization and all details
about these symmetrizations will be done in Section 4.

A remark must be made: The metric of these symmetrizations can loose its smooth-
ness at ðt ¼ 0Þ and become only continuous at this point. But this loss of regularity
will not harm the volume calculations.

The following theorem generalizes Bishop’s volume comparison theorem.

Theorem 3.2. Let ðM n; gÞ be a Riemannian manifold, Dgðp; cÞHM a starlike domain,
and let Df ðp; cÞ be the 1-2 symmetrization of Dgðp; cÞ. Fix y. If

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðt; yÞ

p
:dt:dA andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det fðt; yÞ
p

:dt:dA are respectively the volume element of Dgðp; cÞ and Df ðp; cÞ in a

polar coordinate system, then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðt; yÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det fðt; yÞ

p
 !0

c 0 ð3Þ
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on ð0; cðyÞÞ and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðt; yÞ

p
:dt:dAc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det fðt; yÞ

p
:dt:dA: ð4Þ

on ½0; cðyÞÞ. In particular, VolðDgðp; cÞÞcVolðDf ðp; cÞÞ.
Equality is achieved in (3) (as well as in (4)) at t0 A ð0; cðyÞÞ, if and only if

Rgðt; yÞ ¼ Rf ðt; yÞ

for every t A ½0; t0�, where Rg and Rf are identified in the natural way.

The radial curvature operator has a leading rule to determine the volume element
behavior through the equation

A 00ðt; yÞ þRðt; yÞ:Aðt; yÞ ¼ 0

Að0; yÞ ¼ 0

A 0ð0; yÞ ¼ I :

8<
: ð5Þ

The di¤erence between Theorem 2.1 and Theorem 3.2 is that in the former, the
solution of (5) is compared to the solution of the equation

A 00ðt; yÞ þ inf s A ½0; cðyÞÞ Ricrðs;yÞ
ðn�1Þ :I

h i
:Aðt; yÞ ¼ 0

Að0; yÞ ¼ 0

A 0ð0; yÞ ¼ I ;

8><
>: ð6Þ

and in Theorem 3.2, the solution of (5) is compared to the solution of the equation

A 00ðt; yÞ þ Ricrðt;yÞ
ðn�1Þ :I

h i
:Aðt; yÞ ¼ 0

Að0; yÞ ¼ 0

A 0ð0; yÞ ¼ I :

8><
>: ð7Þ

Therefore Theorem 3.2 is a qualitative generalization of Theorem 2.1.
The symmetrization along radial geodesics allow us to get some upper bounds for

the volume element in a polar coordinate system. These estimates are given in terms
of some integrals of Ricrðt; yÞ. This is possible for three reasons: First of all, the sym-
metrization along radial geodesics is volume increasing. Secondly, we do not loose any
information about the radial Ricci curvature along gð� ; yÞ, as it happens in Equation
(6). Finally, Equation (7) is simple enough to get the desired upper bounds.

Let us be more explicit. Consider Dðp; cÞ a starlike domain. Fix y. Set Ricr�ðt; yÞ
:¼ maxð0;�Ricrðt; yÞÞ. Bishop’s volume comparison theorem implies that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðs; yÞ

p
c

sinhð
ffiffiffi
k

p
:sÞffiffiffi

k
p

� �n�1

ð8Þ

where k¼ supt A ½0; cðyÞÞðRicr�ðt; yÞÞ (If k ¼ 0, then the inequality above has the obvious
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meaning). Therefore we can estimate the volume element in polar coordinate system
in terms of a Ly norm of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRicr�Þ

p
along gð� ; yÞ. In Theorem 3.3, we use Theorem

3.2 in order to get an ðL2Þ2 version of (8).

Theorem 3.3. Let ðM n; gÞ be a Riemannian manifold, Dgðp; cÞHM a starlike domain,

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðt; yÞ

p
:dt:dA its volume element in a polar coordinate system. Fix y A Sn�1

and define kRicr�ðs; yÞkL1 :¼
Ð s

0 Ricr�ðt; yÞ dt. Then there exist constants A1;A2;B1

and B2 such that the following (equivalent) estimates hold:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðs; yÞ

p
c

2
64A1:s:

sinh
B1:kRicr�ðs;yÞk

L1 :s

ðn�1Þ

� �
B1:kRicr�ðs;yÞk

L1 :s

ðn�1Þ

� �
3
75

n�1

ð9Þ

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðs; yÞ

p
cAn�1

2 sn�1ekRicr�ðs;yÞk
L1 :B2:s: ð10Þ

If kRicr�ðs; yÞkL1 ¼ 0, then (9) has the obvious meaning.

We have the following estimate for geodesic balls as a consequence of Theorem
3.3. The geodesic ball is not necessarily within the injectivity radius.

Corollary 3.4. Let M n be a complete Riemannian manifold and Bðp; rÞHM a geodesic

ball. Then there exist constants A3;B3 > 0 such that

Vol½Bðp; rÞ�cAn�1
3 rn�1

ð
Sn�1

ð r

0

eB3:r
2:Ricr�ðt;yÞ dt:dA: ð11Þ

Finally we have the volume comparison theorem that is related to the 2-3 sym-
metrization.

Theorem 3.5. Let ðBf ðrÞ; dt2 þ f 2ðt; yÞ dy2ÞHM be a geodesic ball within the injectivity

radius. If BhðrhÞ is the 2-3 symmetrization of Bf ðrÞ, then we have that Vol½qBhðtÞ�c
Vol½qBf ðtÞ� for every t A ½0; rhÞ. In particular, Vol½BhðrhÞ�cVol½Bf ðrhÞ�. If n ¼ 2, then

we have that rh ¼ r, Vol½qBhðtÞ� ¼ Vol½qBf ðtÞ� for every t A ½0; rÞ, and Vol½BhðrÞ� ¼
Vol½Bf ðrÞ�. This theorem is still valid if Bf ðrÞ is the 1-2 symmetrization of another geo-
desic ball.

Let us make some remarks about these results. Theorems 3.2 and 3.3 deal with the
geometry along geodesics that emanate from some point. We control the curvature in
order to get upper bounds for the volume element in polar coordinates. Notice that
the radial curvature operator and the radial Ricci curvature are very important to this
kind of theory.

Myers’ classical theorem says that if Ricð�Þd ðn � 1Þ along a geodesic g with arc-
length greater than p, then g is not minimizing (See [10]). In particular, if the Rie-
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mannian manifold M is complete, then M is compact and its diameter is less than or
equal to p. Afterwards Ambrose, Avez, Calabi, Galloway and Markvorsen among
others generalized Myers’ theorem imposing weaker conditions on the Ricci curvature
(See [1], [2], [4], [8], [9]). These works show that if we have some ‘‘positiveness’’ on the
Ricci curvature along a geodesic, then the solution of Equation (5) becomes singular
after some time, and the geodesic is no longer minimizing after that. Theorem 3.3 is
similar to these works because we can get a upper bound for the volume element in
terms of some lower bounds of the Ricci curvature. The di¤erence is that the upper
bound for the volume element does not go to zero as in these former works.

In order to generalize Myers’ theorem, Ambrose, Calabi and Markvorsen (see [1],
[4], [9]) use conditions on the integral of the Ricci curvature along geodesics. Notice
that Theorem 3.3 is an integral version of Equation (8), although it is not a full gen-
eralization. We will make some comments about the lack of sharpness of Theorem
3.3 in Remark 5.4.

Controlling several geometric properties of Riemannian manifolds through some
integrals of the curvature has been an important issue nowadays. For instance, many
works have used some local-global integral of the lowest eigenvalue of the Ricci tensor
to study geometrical and topological properties of Riemannian manifolds (See [6], [7],
[11], [12], [13] among others). In particular, we can get bounds for the diameter and a
generalization of Bishop’s volume comparison theorem using these integral invariants
(See [11], [12], [13]).

4 Symmetrization of starlike domains and a generalization of
Bishop’s volume comparison theorem

In this section, we describe the symmetrization process on starlike domains. In Sub-
section 4.1, we define the 1-2 symmetrization and we get a qualitative generalization
of Bishop’s volume comparison theorem. In Subsection 4.2, we define the 2-3 sym-
metrization.

4.1 Symmetrization along radial geodesics and a qualitative generalization of Bishop’s

volume comparison theorem. We begin justifying the name starlike domain with scalar

radial curvature operator.

Proposition 4.1. Let ðDf ðp; cÞ; dt2 þ f 2ðt; yÞ:dy2Þ be a starlike domain with radial

scalar curvature operator. Then, for every ðt; yÞ A Df ðp; cÞ � fpg, its radial curvature

operator is given by

Rðt; yÞ ¼ � f 00ðt; yÞ
f ðt; yÞ I ; ð12Þ

where I denotes the identity operator.

Proof. Fix ðt; yÞ A ðDf ðp; cÞ � fpgÞ. In spherical coordinates ðr; x1; . . . ; xn�1Þ, we have
that
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ds2
f ¼ dt2 þ f 2ðt; yÞ:dx2

1 þ f 2ðt; yÞ: cos2 x1:dx
2
2

þ f 2ðt; yÞ: cos2 x1: cos2 x2:dx
2
3 þ � � � þ f 2ðt; yÞ: cos2 x1 . . . cos2 xn�2:dx

2
n�1:

Observe that we can always choose spherical coordinates without singularities at
ðt; yÞ. Now we can calculate the Christo¤el symbols and the components of the cur-
vature operator at ðt; yÞ explicitly, and the result follows. r

Now we describe the 1-2 symmetrization. Denote the space of symmetric ðn � 1Þ�
ðn � 1Þ matrices over R by Mn�1 and the starshaped Euclidean domain with respect
to the origin fðt; yÞ A En; y A Sn�1; 0c t < cðyÞg by Dð0; cÞ.

Theorem 4.2. Let Dgðp; cÞ be a general starlike domain. For each y fixed, let f ðt; yÞ be

the solution of the equation f 00ðt; yÞ þ Ricrðt;yÞ
ðn�1Þ f ðt; yÞ ¼ 0 satisfying the initial conditions

f ð0; yÞ ¼ 0 and f 0ð0; yÞ ¼ 1. Consider the punctured starshaped Euclidean domain

Dð0; cÞ � f0g endowed with the symmetric 2-form

ds2
f ¼ dt2 þ f 2ðt; yÞ dy2; ð13Þ

and denote it by Df ðp; cÞ � ft ¼ 0g. Then ds2
f is a smooth metric in ½Df ðp; cÞ � ft ¼ 0g�

extendable to a continuous metric at ðt ¼ 0Þ A Df ðp; cÞ. Moreover, Df ðp; cÞ has the

same radial Ricci curvature as Dgðp; cÞ.

Proof. We will divide the proof in three parts:

First part: The 2-form ds2
f is a positive definite symmetric 2-form on D(0, c)C {0}. It is

a consequence of Lemma 4.3 below. Notice that its proof is similar to the proof of
Bishop’s volume comparison theorem (compare [5]).

Lemma 4.3. Let R : ½0; rÞ ! Mn�1 be a continuous map and A : ½0; rÞ ! Mn�1 the so-

lution of the matricial ordinary di¤erential equation A 00ðtÞ þRðtÞ:AðtÞ ¼ 0 with initial

conditions Að0Þ ¼ 0 and A 0ð0Þ ¼ I . Consider the symmetrization of this problem, that

is, A 00
f ðtÞ þRf ðtÞ:Af ðtÞ ¼ 0 with initial conditions Af ð0Þ ¼ 0 and A 0

f ð0Þ ¼ I , where

Rf ðtÞ :¼ trace½RðtÞ=ðn � 1Þ�:I . If detAðtÞ is non-singular for every t A ð0; rÞ, then

detAðtÞ
detAf ðtÞ

� �0
c 0 ð14Þ

on ð0; rÞ and

detAðtÞc detAf ðtÞ: ð15Þ

on ½0; rÞ. In particular, detAf ðtÞ is also non-singular on ð0; rÞ.
Equality is achieved in (14) (as well as in (15)) at t0 A ð0; rÞ if and only if R ¼ Rf on

½0; t0�.
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Proof of Lemma 4.3. Consider T A Mn�1. The Cauchy–Schwarz inequality implies
that

traceðT 2Þd ðtraceðTÞÞ2

n � 1
ð16Þ

with equality if and only if T is a scalar multiple of the identity.
Define U :¼ A 0A�1. Then U is self-adjoint and satisfies the matricial Riccati

equation

U 0 þ U 2 þR ¼ 0: ð17Þ

By (16) we have that

0 ¼ ðtraceðUÞÞ0 þ traceðU 2Þ þ traceRd ðtraceðUÞÞ0 þ ðtraceðUÞÞ2

n � 1
þ traceðRf Þ

and f :¼ traceðUÞ ¼ ðdetAÞ0=detA satisfies the di¤erential inequality

f 0 þ f2

n � 1
þ traceðRf Þc 0: ð18Þ

Let us study Af . If j is the solution of

j 00ðtÞ þ traceðRf ðtÞÞ
n � 1

jðtÞ ¼ 0 ð19Þ

with initial conditions jð0Þ ¼ 0 and j 0ð0Þ ¼ 1, then jn�1ðtÞ ¼ detAf ðtÞ. Set

c :¼ ðdetAf Þ0

ðdetAf Þ
¼ ðn � 1Þ j

0

j
: ð20Þ

Using (19) and (20) we have that

c 0 þ c2

n � 1
þ traceðRf Þ ¼ 0: ð21Þ

Let ð0; bÞH ð0; rÞ be the maximal interval such that det Af ðtÞ > 0 for every
t A ð0; bÞ. We will compare f and c in ð0; bÞ. They satisfy (18) and (21) respectively
and limt!0þ fðtÞ ¼ limt!0þ cðtÞ ¼ þy. In order to compare them near t ¼ 0 (let us
say, in the interval ð0; e�), consider its inverses ~ff¼ 1=f and ~cc¼ 1=c. They satisfy re-
spectively

~ff 0ðtÞd 1

n � 1
þ traceðRf ðtÞÞ: ~ff2ðtÞ ð22Þ
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and

~cc 0ðtÞ ¼ 1

n � 1
þ traceðRf ðtÞÞ: ~cc2ðtÞ ð23Þ

with fð0Þ ¼ cð0Þ ¼ 0. Subtracting (22) from (23) we have that:

ð ~ccðtÞ � ~ffðtÞÞ0 c traceðRf ðtÞÞð ~ccðtÞ þ ~ffðtÞÞð ~ccðtÞ � ~ffðtÞÞ:

Set a1ðtÞ :¼ ð ~ccðtÞ � ~ffðtÞÞ and b1ðtÞ :¼ traceðRf ðtÞÞð ~ccðtÞ þ ~ffðtÞÞ. Then

d

dt
ða1ðtÞe�

Ð t

0
b1ðzÞ dzÞ ¼ e

�
Ð t

0
b1ðzÞ dzða 0

1ðtÞ � b1ðtÞa1ðtÞÞc 0

and it follows that

a1ðtÞe�
Ð t

0
b1ðzÞ dz

c 0 ) a1ðtÞc 0

with equality if and only if RðzÞ ¼ Rf ðzÞ for every z A ½0; t�. Therefore fðtÞccðtÞ in
ð0; e�, with fðt0Þ ¼ cðt0Þ if and only if RðtÞ ¼ Rf ðtÞ for every t A ½0; t0�.

The comparison between f and c in ½e; bÞ follows in a similar fashion. Subtracting
(21) from (18), we have that

ðf� cÞ0 c � ðcþ fÞ
n � 1

ðf� cÞ:

Set a2ðtÞ :¼ ðfðtÞ � cðtÞÞ and b2ðtÞ :¼ �ðcðtÞ þ fðtÞÞ=ðn � 1Þ. Then

d

dt
ða2ðtÞ:e�

Ð t

e
b2ðzÞ dzÞ ¼ e

�
Ð t

e
b2ðzÞ dzða 0

2ðtÞ � a2ðtÞb2ðtÞÞc 0

hence

a2ðtÞc a2ðeÞe
Ð t

e
b2ðzÞ dz

with equality if and only if RðzÞ ¼ Rf ðzÞ for every z A ½e; t�. Therefore fðtÞccðtÞþ
a2ðeÞe

Ð t

e
b2ðzÞ dz

in ½e; rÞ, with fðt0Þ ¼ cðt0Þ if and only if fðeÞ ¼ cðeÞ, and RðtÞ ¼ Rf ðtÞ
for every t A ½0; t0�.

Joining the estimates in ð0; e� and ½e; bÞ, we have that fðtÞccðtÞ in ð0; bÞ, with
fðt0Þ ¼ cðt0Þ if and only if RðtÞ ¼ Rf ðtÞ for every t A ½0; t0�.

Thus

detðAf ðtÞÞ
detðAðtÞÞ

detAðtÞ
detAf ðtÞ

� �0
¼ ðdetAðtÞÞ0

detAðtÞ � ðdetAf ðtÞÞ0

detAf ðtÞ
c 0
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what implies that

detAðtÞ
detAf ðtÞ

� �0
c 0:

Therefore detAðtÞc detAf ðtÞ in ð0; bÞ due to

lim
t!0þ

detAðtÞ
detAf ðtÞ

¼ 1;

and consequently we have that b ¼ r, which settles Lemma 4.3. r

Equation (15) implies that (13) is positive definite in Dð0; cÞ � f0g, which settles
the first part of the proof of Theorem 4.2.

Second part: The 2-form ds2
f is a smooth metric defined in Df ( p, c)C {tF 0}, con-

tinuously extendable at (tF 0) A Df ( p, c). The smoothness of ds2
f ¼ dt2 þ f 2ðt; yÞ:dy2

in Df ðp; cÞ � ft ¼ 0g follows from a classical result on ordinary di¤erential equations
(smooth dependence of f in terms of the parameter y).

We prove now that ds2
f can be continuously extended to ðt ¼ 0Þ. Let X and Y be

two continuous vector fields in the ball Bð0; rÞHDð0; cÞ, where r > 0 is a su‰ciently
small positive number. Consider the Euclidean metric ds2

E ¼ dt2 þ t2:dy2 in Bð0; rÞ.
Decomposing X and Y in its radial and angular components in Bð0; rÞ � ft ¼ 0g, we
have that

X ¼ Xt þ Xy and Y ¼ Yt þ Yy: ð24Þ

The Euclidean scalar product hX ;YiE can be written as

hX ;YiE ¼ hXt;YtiE þ hXy;YyiE : ð25Þ

Now consider the 2-form ds2
f ¼ dt2 þ f 2ðt; yÞ dy2 in Bð0; rÞ � ft ¼ 0g. Denote ds2

f

by h� ; �if . We will prove that hX ;Yif is continuously extendable at ðt ¼ 0Þ, with

limt!0hX ðt; yÞ;Y ðt; yÞif ¼ hXð0Þ;Yð0ÞiE .
The decomposition of X and Y in its radial and angular part with respect to ds2

f

is also given by X ¼ Xt þ Xy and Y ¼ Yt þ Yy. Indeed the radial-angular decompo-
sition of the tangent spaces coincide for ds2

f and ds2
E . Thus the scalar product of X

and Y in ds2
f is given by

hX ;Yif ¼ hXt;Ytif þ hXy;Yyif : ð26Þ

Now observe that

hXt;XtiE ¼ hXt;Xtif
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and

hXy;Xyif ¼ f 2ðt; yÞ
t2

hXy;XyiE :

Hence

hX ;Yif ¼ hXt;YtiE þ f 2ðt; yÞ
t2

hXy;YyiE : ð27Þ

For fixed y, the Taylor series of f ðt; yÞ is given by f ðt; yÞ ¼ t þ f 00ðty; yÞt2=2 for
some ty A ð0; tÞ. We know that f 00ðt; yÞ ¼ �Ricrðt; yÞ f ðt; yÞ=ðn � 1Þ is bounded in
Bð0; rÞ � ft ¼ 0g. Hence limt!0 f 2ðt; yÞ=t2 ¼ 1 uniformly with respect to y, what im-
plies that limt!0hXðt; yÞ;Yðt; yÞif ¼ hX ð0Þ;Y ð0ÞiE . Therefore ds2

f can be extended
continuously to ðt ¼ 0Þ.

Third part: The starlike domain Df ( p, c) has the same radial Ricci curvature as
Dg( p, c). It follows from the definition of f and Proposition 4.1. This settles Theorem
4.2. r

Therefore the symmetrization along radial geodesics is a well defined operation.
The only problem, as observed in the introduction, is that the metric is not necessarily
smooth at the origin, but this is a minor problem because it does not harm the vol-
ume calculations.

Definition 4.4. The starlike domain ðDf ðp; cÞ; dt2 þ f 2ðt; yÞ dy2Þ constructed in The-
orem 4.2 is called the 1-2 symmetrization of Dgðp; cÞ.

We have the following qualitative generalization of Bishop’s volume comparison
theorem as a direct consequence of Proposition 4.1, Theorem 4.2 and Lemma 4.3.

Theorem 4.5. Let ðM n; gÞ be a Riemannian manifold, Dgðp; cÞHM a starlike domain,
and let Df ðp; cÞ be the 1-2 symmetrization of Dgðp; cÞ. Fix y. If

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðt; yÞ

p
:dt:dA andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det fðt; yÞ
p

:dt:dA are respectively the volume element of Dgðp; cÞ and Df ðp; cÞ in a polar

coordinate system, then

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðt; yÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det fðt; yÞ

p
 !0

c 0 ð28Þ

on ð0; cðyÞÞ and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðt; yÞ

p
:dt:dAc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det fðt; yÞ

p
:dt:dA: ð29Þ

on ½0; cðyÞÞ.
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In particular, VolðDgðp; cÞÞcVolðDf ðp; cÞÞ.
Equality is achieved in (28) (as well as in (29)) at t0 A ð0; rÞ, if and only if

Rgðt; yÞ ¼ Rf ðt; yÞ

for every t A ½0; t0�, where Rg and Rf are identified in the natural way.

Remark 4.6. A geodesic ball Bðp; rÞHM is a starlike domain Dgðp; cÞ with some of
its closure points included. Therefore we can generalize Theorem 2.2 replacing (2) by

VolðBðp; rÞÞcVolðDf ðp; cÞÞ;

where Df ðp; cÞ is the 1-2 symmetrization of Dgðp; cÞ.

4.2 Symmetrization along spheres that are equidistant to the origin. Let ðBf ðrÞ;
dt2 þ f 2ðr; yÞ dy2Þ be a geodesic ball within the injectivity radius. Define Ricrf ðtÞ as
the average of the radial Ricci curvature in qBf ðtÞ. Observe that Ricrf ðtÞ can be ex-
tended continuously to ðt ¼ 0Þ as the scalar curvature of Bf ðrÞ at the origin, even if
Bf ðrÞ is a 1-2 symmetrization of another geodesic ball. We will create a radially sym-
metric geodesic ball ðBhðrhÞ; dt2 þ h2ðtÞ dy2Þ, rh c r, such that the average of the ra-

dial Ricci curvature on qBhðtÞ is equal to Ricrf ðtÞ for every t A ½0; rhÞ.
Using Proposition 4.1, the radial Ricci curvature of a radially symmetric geodesic

ball with metric ds2
h ¼ dt2 þ h2ðtÞ dy2 is given by

RicrhðtÞ ¼ �ðn � 1Þ h 00ðtÞ
hðtÞ ;

which does not depend on y. Thus the expression above is also the average of the
radial Ricci curvature on qBhðtÞ. Therefore h must satisfy

h 00ðtÞ þ Ricrf ðtÞ
n � 1

hðtÞ ¼ 0; hð0Þ ¼ 0; h 0ð0Þ ¼ 1: ð30Þ

The existence and uniqueness of h is assured by the theory of ordinary di¤erential
equations. The 2-form ds2

h ¼ dt2 þ h2ðtÞ dy2 is obviously smooth in BhðrÞ � ft ¼ 0g
and it can be extended continuously to ðt ¼ 0Þ, because we can prove that limt!0 ds2

h

¼ ds2
E in the same fashion as in the second part of the proof of Theorem 4.2. Finally,

restrict the domain of h to the maximal interval ½0; rhÞJ ½0; rÞ such that hðtÞ > 0 for
every t A ð0; rhÞ, and we have the following definition:

Definition 4.7. The geodesic ball ðBhðrhÞ; dt2 þ h2ðtÞ dy2Þ is called the 2-3 symmetri-

zation of Bf ðrÞ.

Remark 4.8. The 2-3 symmetrization can be extended to starlike domains such that
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VolðqDf ðp; tÞÞ is a smooth function of t. But we will restrict this symmetrization to
geodesic balls within the injectivity radius due to the artificiality of the general situa-
tion.

5 Volume estimates

In Subsection 5.1, we get some upper bounds for the volume using the 1-2 symmet-
rization. Afterwards, in Subsection 5.2, we prove a volume comparison theorem re-
lated to the 2-3 symmetrization.

5.1 Upper bounds for the volume related to the 1-2 symmetrization.

Theorem 5.1. Let ðM n; gÞ be a Riemannian manifold, Dgðp; cÞHM a starlike domain,
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðt; yÞ

p
:dt:dA its volume element in a polar coordinate system. Fix y A Sn�1

and define kRicr�ðs; yÞkL1 :¼
Ð s

0 Ricr�ðt; yÞ dt. Then there exist constants A1;A2;B1

and B2 such that the following (equivalent) estimates hold:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðs; yÞ

p
c

2
64A1:s:

sinh
B1:kRicr�ðs;yÞk

L1 :s

ðn�1Þ

� �
B1:kRicr�ðs;yÞk

L1 :s

ðn�1Þ

� �
3
75

n�1

ð31Þ

and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðs; yÞ

p
cAn�1

2 sn�1ekRicr�ðs;yÞk
L1 :B2:s: ð32Þ

If kRicr�ðs; yÞkL1 ¼ 0, then (31) has the obvious meaning.

Proof. We begin with some estimates on the solution of the equation

f 00ðtÞ þ KðtÞ: f ðtÞ ¼ 0

f ð0Þ ¼ 0

f 0ð0Þ ¼ 1

8><
>: ð33Þ

defined on the interval ½0; s�, where K is a continuous function on ½0; s� and f ðtÞ > 0
in ð0; s�. Set K�ðtÞ ¼ maxð�KðtÞ; 0Þ. We are looking for an upper bound of f ðsÞ in
terms of kK�kL1 . Thus we can consider

~ff 00ðtÞ � K�ðtÞ: ~ff ðtÞ ¼ 0
~ff ð0Þ ¼ 0
~ff 0ð0Þ ¼ 1

8><
>:

instead of (33) because f c ~ff . Observe that ~ff is increasing and convex on ½0; s�.
Assume that kK�kL1 0 0 (otherwise there is nothing to prove). Take s0 ¼ 0 <

s1 < � � � < sN�1 < sN AR such that Ds :¼ siþ1 � si ¼ 1=ð4kK�kL1Þ and sN�1 < sc sN .
Suppose that Ds < s, which is equivalent to supposing that N d 2 (The other case will
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be considered afterwards). Fix ½si; siþ1� for some i ¼ 0; . . . ;N � 2. We intend to esti-

mate ~ff ðsiþ1Þ and ~ff 0ðsiþ1Þ in terms of ~ff ðsiÞ and ~ff 0ðsiÞ.
We have that

1

2
ð ~ff 0ðsiþ1ÞÞ2 � 1

2
ð ~ff 0ðsiÞÞ2 ¼ 1

2
ð ~ff 0ðtÞÞ2jsiþ1

si
¼ 1

2

ð siþ1

si

ðð ~ff 0ðtÞÞ2Þ0:dt

¼
ð siþ1

si

~ff 00ðtÞ: ~ff 0ðtÞ:dt ¼
ð siþ1

si

K�ðtÞ: ~ff ðtÞ: ~ff 0ðtÞ:dtc ~ff ðsiþ1Þ ~ff 0ðsiþ1ÞkK�kL1 ;

which gives the following quadratic inequality in terms of ~ff 0ðsiþ1Þ:

ð ~ff 0ðsiþ1ÞÞ2 � 2~ff ðsiþ1ÞkK�kL1

~ff 0ðsiþ1Þ � ð ~ff 0ðsiÞÞ2
c 0: ð34Þ

Solving (34), we have the estimate

~ff 0ðsiþ1Þc 2~ff ðsiþ1ÞkK�kL1 þ ~ff 0ðsiÞ: ð35Þ

We know that ~ff is convex, what gives

~ff ðsiþ1Þ � ~ff ðsiÞ
Ds

c ~ff 0ðsiþ1Þ: ð36Þ

Joining (35), (36) and Ds ¼ 1=ð4kK�kL1Þ, we have after some calculations that

~ff ðsiþ1Þc
1

2kK�kL1

~ff 0ðsiÞ þ 2~ff ðsiÞ: ð37Þ

Combining (35) and (37), we can finally estimate ~ff ðsiþ1Þ and ~ff 0ðsiþ1Þ in terms of
~ff ðsiÞ and ~ff 0ðsiÞ:

~ff ðsiþ1Þc 2~ff ðsiÞ þ
1

kK�kL1

~ff 0ðsiÞ ð38Þ

~ff 0ðsiþ1Þc 4kK�kL1
~ff ðsiÞ þ 2~ff 0ðsiÞ: ð39Þ

A priori, the estimates (38) and (39) are valid only for i ¼ 0; . . . ;N � 2. We claim
that we can estimate ~ff ðsÞ and ~ff 0ðsÞ from ~ff ðsN�1Þ and ~ff 0ðsN�1Þ using (38) and (39).
Indeed, we only have to repeat all the calculations replacing Ds ¼ 1=ð4kK�kL1Þ by
Dsc 1=ð4kK�kL1Þ.

Now we use (38) and (39) N times in order to estimate ~ff ðsÞ from ~ff ð0Þ ¼ 0 and
~ff 0ð0Þ ¼ 1. This is a Linear Algebra problem: The matrix

M ¼
2 1

kK�k
L1

4kK�kL1 2

" #
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has eigenvalues 0 and 4, and their respective eigenvectors are

v0 ¼
� 1

2kK�k
L1

1

" #
and v4 ¼

1
2kK�k

L1

1

" #
:

The vector "
~ff ð0Þ
~ff 0ð0Þ

#
¼ 0

1

� �

is written as 1
2 v0 þ 1

2 v4. After N iterations, we get

f ðsÞc ~ff ðsÞc M N :
1

2
v0 þ

1

2
v4

� �� �
1

¼ 4N�1

kK�kL1

c 4ð4kK�k
L1 sÞ4s; ð40Þ

where ½��1 represents the first line of the vector. Thus (40) is the desired estimate of
(33) if Ds < s.

If Dsd s, then we make the same estimates directly on the interval ½0; s� instead of
making on each interval ½si; siþ1�. As a result, Inequality (37) gives ~ff ðsÞc 2s, which is
included in (40). Hence (40) is the desired estimate of (33).

Let us return to the theorem. In order to get an upper bound for the volume ele-
ment of Dgðp; cÞ, we can consider its 1-2 symmetrization Df ðp; cÞ instead of the origi-
nal domain (due to Theorem 4.5). If we write the metric of Df ðp; cÞ as ds2

f ¼ dt2 þ
f 2ðt; yÞ dy, then f is exactly the solution of (33) when KðtÞ is replaced by RicrðtÞ=
ðn � 1Þ. But the volume element can be written as f n�1ðt; yÞ:dt:dA, and (32) follows.

In order to get (31), apply (32) in the formula x:ex c sinh 2x. Finally, estimates (31)
and (32) are equivalent because sinh xc x:ex. r

Let us make some remarks about Theorem 5.1.

Remark 5.2. We can get the explicit estimates A1 ¼ 8, A2 ¼ 4, B1 ¼ 8 ln 4 and B2 ¼
4 ln 4 using the proof above, but they certainly are not close to the sharpest ones.

Remark 5.3. Let us point out the importance of the term ðs:kRicr�ðs; yÞkL1Þ in this
kind of estimates.

Consider a starlike domain ðDf ðp; cÞ; dt2 þ f 2ðt; yÞ dy2Þ. Its volume element in a
polar coordinate system is given by f n�1ðt; yÞ:dt:dA, where f ð� ; yÞ : ½0; t� ! R is the
solution of the equation

f 00ðt; yÞ þ Ricrðt; yÞ
n � 1

: f ðt; yÞ ¼ 0

satisfying the initial conditions f ð0; yÞ ¼ 0 and f 0ð0; yÞ ¼ 1.
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We want to compare Df ðp; cÞ and ðDflðp; l:cÞ; dt2 þ f 2
l ðt; yÞ dy2Þ, where l > 0 and

flðt; yÞ :¼ l: f ðt=l; yÞ. We have that

f 00
l ðt; yÞ þ

1

l2

Ricrðt=l; yÞ
ðn � 1Þ flðt; yÞ ¼ 0:

If we identify Df ðp; cÞ and Dflðp; l:cÞ via dilation by l, then we can see that every
pair of identified points has the same value of ðs:kRicr�ðs; yÞkL1Þ. Moreover the vol-

ume element of Dflðp; l:cÞ in polar coordinate system is ln�1 times the correspondent
volume element of Df ðp; cÞ. Therefore the estimate (31) is good because it considers
this kind of symmetries.

Remark 5.4. Unfortunately, estimates (31) and (32) are not sharp because their growth
rate when s goes to infinity are larger than the growth rate of the volume element of
geodesic balls in space forms with constant negative curvature. We could try to im-
prove (31) considering estimates like

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðs; yÞ

p
c

2
64A1:

sinh
B1:kRicr�ðs;yÞk

L1 :s

ðn�1Þ

� �
B1:kRicr�ðs;yÞk

L1 :s

ðn�1Þ

� �
3
75

n�1

; ð*Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðs; yÞ

p
c

2
64A1:

sinh
B1:kRicr�ðs;yÞk

L1

ðn�1Þ

� �
B1:kRicr�ðs;yÞk

L1

ðn�1Þ

� �
3
75

n�1

ð**Þ

or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðs; yÞ

p
c

2
64A1:s:

sinh
B1:kRicr�ðs;yÞk

L1

ðn�1Þ

� �
B1:kRicr�ðs;yÞk

L1

ðn�1Þ

� �
3
75

n�1

; ð***Þ

but they do not work: Estimates (*) and (**) do not work because we can take a
suitable sequence of starlike domains with negative curvature Dflðp; l:cÞ, l ! y (see
Remark 5.3), and see that (*) and (**) fail. Estimate (***) fails because for every A1

and B1, we can choose a space form with small negative curvature (in absolute value)
such that (***) does not hold for a su‰ciently large geodesic ball in it. These exam-
ples show that it is not easy to improve (31) using similar estimates that depend on
kRicr�ðs; yÞkL1 .

A natural candidate for a sharp estimate is an inequality of the form

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det gðt; yÞ

p
cA1:s:

sinh B1:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ricr�ðs;yÞ

p
n�1

����
����

L1

� �

B1:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ricr�ðs;yÞ

p
n�1

����
����

L1

� � :
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As a consequence of Theorem 5.1, now we prove the following upper bound for
the volume of a geodesic ball, which is not necessarily within the injectivity radius.

Corollary 5.5. Let M n be a complete Riemannian manifold and Bðp; rÞHM a geodesic

ball. Then there exist constants A3;B3 > 0 such that

Vol½Bðp; rÞ�cAn�1
3 rn�1

ð
Sn�1

ð r

0

eB3:r
2:Ricr�ðt;yÞ dt:dA: ð41Þ

Proof. Using Formula (32), we have the following estimate:

Vol½Bðp; rÞ�c
ð
S n�1

ð ~ccðyÞ
0

An�1
2 sn�1e

B2:s:
Ð s

0
Ricr�ðt;yÞ dt

:ds:dA:

Substituting s in
Ð s

0 Ricr�ðt; yÞ dt and ~ccðyÞ by r, and using the Hölder inequality, we
have that

Vol½Bðp; rÞ�cAn�1
2

ð
S n�1

�ð r

0

s2n�2 ds

�1=2�ð r

0

e
2:B2:s

Ð r

0
Ricr�ðt;yÞ dt

ds

�1=2

dA:

Using the inequality
Ð r

0 eas dsc rear, we have that

Vol½Bðp; rÞ�cAn�1
3 rn

ð
S n�1

ðe
Ð r

0
Ricr�ðt;yÞ:B3:r:dtÞ dA;

which can be written as

Vol½Bðp; rÞ�cAn�1
3 rn

ð
Sn�1

e
ð
Ð r

0
B3:r

2:Ricr�ðt;yÞ dt=rÞ
dA:

Finally use the Jensen inequality to get

Vol½Bðp; rÞ�cAn�1
3 rn�1

ð
S n�1

ð r

0

eB3:r
2:Ricr�ðt;yÞ dt:dA

and the result follows. r

5.2 Volume comparison theorem related to the 2-3 symmetrization.

Theorem 5.6. Let ðBf ðrÞ; dt2 þ f 2ðt; yÞ dy2ÞHM be a geodesic ball within the injec-
tivity radius. If BhðrhÞ is the 2-3 symmetrization of Bf ðrÞ, then we have that Vol½qBhðtÞ�
cVol½qBf ðtÞ� for every t A ½0; rhÞ. In particular, Vol½BhðrhÞ�cVol½Bf ðrhÞ�. If n ¼ 2,
then we have that rh ¼ r, Vol½qBhðtÞ� ¼ Vol½qBf ðtÞ� for every t A ½0; rÞ, and Vol½BhðrÞ�
¼ Vol½Bf ðrÞ�. This theorem is still valid if Bf ðrÞ is the 1-2 symmetrization of another

geodesic ball.
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Proof. Assume nd 3 (The case n ¼ 2 is simpler and it can be proved in the same
fashion as in the case nd 3).

The proof will follow an indirect approach. We construct a radially symmetric geo-
desic ball ðBuðrÞ; dt2þu2ðtÞ dy2Þ such that Vol½qBuðtÞ� ¼Vol½qBf ðtÞ� for every t A ½0; rÞ.
Then we compare Bu with Bh.

Let us see that ðBuðrÞ; dt2 þ u2ðtÞ dy2Þ is a well defined object. The explicit expres-
sion of u is

un�1ðtÞ ¼
Ð
S n�1 f n�1ðt; yÞ dAÐ

Sn�1 dA
: ð42Þ

We will show that dt2 þ u2ðtÞ dy2 is a smooth metric in ðBuðrÞ � ft ¼ 0gÞ that ad-
mits a continuous extension at ðt ¼ 0Þ in the same fashion as in the second part of the
proof of Theorem 4.2.

The smoothness in ðBuðrÞ � ft ¼ 0gÞ is straightforward. Let us see the continuity
at ðt ¼ 0Þ. By (42) we have that

uðtÞ ¼
Ð
S n�1 f n�1ðt; yÞ dAÐ

S n�1 dA

� �1=ðn�1Þ

:

Take the Taylor series of f . We get

uðtÞ ¼
Ð
S n�1ðt þ f 00ðty; yÞ:t2=2Þn�1ðt; yÞ dAÐ

S n�1 dA

 !1=ðn�1Þ

¼ t

Ð
S n�1ð1 þ f 00ðty; yÞ:t=2Þn�1ðt; yÞ dAÐ

Sn�1 dA

 !1=ðn�1Þ

where ty A ð0; tÞ.
Now take two continuous vector fields X and Y and make exactly the same cal-

culations as in the second part of Theorem 4. Instead of (27), we have that

hX ;Yiu ¼ hXt;YtiE þ u2ðtÞ
t2

hXy;YyiE : ð43Þ

and now is clear that dt2 þ u2ðtÞ dy2 converges to ds2
E when t goes to 0. Thus

dt2 þ u2ðtÞ dy2 is continuous at ðt ¼ 0Þ.
The next step is to compare the average of the radial Ricci curvature on qBf ðtÞ

with its correspondent on qBuðtÞ. Taking derivatives with respect to t in (42), we have
that

un�2ðtÞ:u 0ðtÞ ¼
Ð
Sn�1 f n�2ðt; yÞ: f 0ðt; yÞ dAÐ

S n�1 dA
: ð44Þ
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Taking another derivative in t, we get

ðn � 2Þ:un�3ðtÞðu 0ðtÞÞ2 þ un�2ðtÞu 00ðtÞ

¼
Ð
S n�1 ½ðn � 2Þ f n�3ðt; yÞð f 0ðt; yÞÞ2 þ f n�2ðt; yÞf 00ðt; yÞ� dAÐ

S n�1 dA
: ð45Þ

Using (42), (44) and (45) we can isolate u 00 from the rest:

u 00ðtÞ ¼
ð2 � nÞð

Ð
S n�1 f n�2ðt; yÞ f 0ðt; yÞ dAÞ2

ð
Ð
S n�1 f n�1ðt; yÞ dAÞð2n�3Þ=ðn�1Þð

Ð
S n�1 dAÞ1=ðn�1Þ

þ
ð
Ð
S n�1 f n�3ðt; yÞ½ f 0ðt; yÞ�2:dAÞð

Ð
S n�1 f n�1ðt; yÞ dAÞ

ð
Ð
S n�1 f n�1ðt; yÞ dAÞð2n�3Þ=ðn�1Þð

Ð
Sn�1 dAÞ1=ðn�1Þ

þ
ð
Ð
S n�1 f n�2ðt; yÞ f 00ðt; yÞ dAÞð

Ð
S n�1 f n�1ðt; yÞ dAÞ

ð
Ð
Sn�1 f n�1ðt; yÞ dAÞð2n�3Þ=ðn�1Þð

Ð
S n�1 dAÞ1=ðn�1Þ : ð46Þ

Now we can calculate the radial Ricci curvature RicruðtÞ of BuðrÞ:

RicruðtÞ ¼ �ðn � 1Þ u 00ðtÞ
uðtÞ

¼
ðn � 1Þðn � 2Þð

Ð
Sn�1 f n�2ðt; yÞ f 0ðt; yÞ dAÞ2

ð
Ð
Sn�1 f n�1ðt; yÞ dAÞ2

ð47Þ

�
ðn � 1Þðn � 2Þð

Ð
S n�1 f n�3ðt; yÞð f 0ðt; yÞÞ2

dAÞÐ
Sn�1 f n�1ðt; yÞ dA

ð48Þ

�
ðn � 1Þð

Ð
S n�1 f n�2ðt; yÞ f 00ðt; yÞ dAÞÐ
Sn�1 f n�1ðt; yÞ dA

: ð49Þ

Observe that (49) is the average of the radial Ricci curvature of Bf ðrÞ on the geo-
desic sphere of radius t. We claim that the sum of the terms (47) and (48) is non-
positive. In fact, the Hölder inequality gives

�ð
Sn�1

f n�2ðt; yÞ f 0ðt; yÞ dA

�2

c

ð
S n�1

f n�3ðt; yÞð f 0ðt; yÞÞ2
dA

ð
S n�1

f n�1ðt; yÞ dA:

Therefore the average of the radial Ricci curvature on qBuðtÞ is less or equal than the
correspondent average on qBf ðtÞ for every t A ½0; rÞ.

Finally we compare Vol½qBhðtÞ� and Vol½qBf ðtÞ�.
Let ðBhðrhÞ; dt2 þ h2ðtÞ dy2Þ be the 2-3 symmetrization of Bf ðr; yÞ. The calculations

made just before and the definition of the 2-3 symmetrization implies that the geo-
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desic ball Bu is a radially symmetric geodesic ball, with radial Ricci curvature less or
equal than the radial Ricci curvature of Bh. Thus

u 00ðtÞ þ RicruðtÞ
n � 1

uðtÞ ¼ 0; uð0Þ ¼ 0; utð0Þ ¼ 1

h 00ðtÞ þ Ricrf ðtÞ
n � 1

hðtÞ ¼ 0; hð0Þ ¼ 0; htð0Þ ¼ 1

with RicruðtÞcRicrf ðtÞ. Therefore hðtÞc uðtÞ for every t A ½0; rh�, which implies

Vol½qBhðtÞ� ¼
ð
Sn�1

hn�1ðtÞ dAc

ð
S n�1

un�1ðtÞ dA

¼ Vol½qBuðtÞ� ¼ Vol½qBf ðtÞ�;

and this is the desired result. Observe that the proof works even if Bf is the 1-2 sym-
metrization of another geodesic ball, which settles the theorem. r
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