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Extended near hexagons and line systems
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Abstract. In this paper we study extended near hexagons, and classify a class of line systems in
which two lines are either perpendicular, or make an angle a with cos a ¼G1=3. Among the
examples we encounter a set of 2300 lines in R23 related to the second Conway group Co2 and
a set of 2048 lines in R24 related to the group 21þ11 : M24. These line systems carry the struc-
ture of an extended near hexagon. The other line systems and extensions of near hexagons
under consideration in this paper are all subsystems of these.
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1 Introduction

In [32], Shult and Yanushka studied a class of line systems in Rn, equipped with the
standard inner product ð� j �Þ, in which any pair of distinct lines is either perpendicular
or makes an angle a with cos a ¼G1=3. A nice and simple example of such a line
system is the set of 4 lines in R3 passing through the vertices of a regular tetrahedron
centered at the origin. Other examples considered by Shult and Yanushka include a
system of 2300 lines in R23 related to the Leech lattice and the second Conway group
Co2 and a system of 2048 lines in R24 related to the binary Golay code and the group
21þ11 : M24. These line systems are all tetrahedrally closed, i.e., given three lines of the
system passing through three of the four vertices of a regular tetrahedron centered at
the origin, then also the line passing through the fourth vertex of the tetrahedron is
present in the line system.

The study of tetrahedrally closed line systems led Shult and Yanushka to the no-
tion of a near polygon. Consider a tetrahedrally closed line system L, and denote by
S the set of norm 3 vectors on the lines in L. (Here the norm of a vector v equals
ðvjvÞ.) Let v A S. Then by SiðvÞ we denote the set of vectors in S having inner product
i with v. Here the relevant values of i are of course G3;G1 and 0. For each pair of
vectors u and w in S�1ðvÞ that have inner product �1, there is a unique tetrahedron
with the three vectors v; u and w as vertices. The fourth vertex �ðvþ uþ wÞ of this
tetrahedron is then also a vector in S�1ðvÞ. If one takes the vectors in S�1ðvÞ as
points, and the triples of vectors in S�1ðvÞ that together with v are the four vertices of



a regular tetrahedron on v as lines, then under some additional conditions on con-
nectedness this point-line geometry satisfies the following axiom:

(NP) given a line l and point p, there is a unique point on l closest to p;

which is the defining axiom of a near polygon.
The additional connectedness conditions forcing NP are:

(C) Every pair of vertices v and w with inner product �1 is contained in a tetrahe-
dron.

Suppose T is a tetrahedron on v, whose vertices are in S, and x is an element
of S�1ðvÞ, having inner product 0 or 1 with the three vertices of T distinct from v.
Then there is a vector y A S�1ðvÞVS�1ðxÞ having inner product �1 with at least
1 of the three vertices of T distinct from v.

This is the revised version by Neumaier (see [27]) of Shult and Yanushka’s condi-
tion to force connectedness of the local point-line geometry.

Indeed, if T is a tetrahedron on v whose three other vertices are in S�1ðvÞ, then for
every vertex x A S�1ðvÞ we have one of the following possibilities. The vector x is a
vertex of T , or it has inner product �1 with exactly one vertex w of T distinct from v

and 1 with the remaining two vertices, or it is perpendicular to two vertices in T and
has inner product 1 with the third vertex in T distinct from v. In the second case, the
vertices v; x and w are again in a tetrahedron.

Notice that two vertices x; y A S�1ðvÞ are at distance 1; 2 or 3 inside the geometry
induced on S�1ðvÞ if and only if their inner product equals �1; 1 or 0, respectively.

So, if the line system is tetrahedrally closed and satisfies condition (C), then the
vectors in S together with the set of tetrahedra with vertices in S form an extended

near hexagon in the terminology of Cameron et al. [13]. This extended near hexagon
is a 2-fold cover of the extended near hexagon that we can define on the line system
L, where the blocks or circles correspond to the sets of 4 lines in L through the
vertices of the tetrahedra. The point graph of the extended near hexagon on S is a
graph which is locally the near hexagon; the point graph of the extended near hexa-
gon defined on L, however, is locally the distance 1-or-2 graph of the near hexagon.
So the extended near hexagon on the lines in L satisfies the following condition:

(*) fx; y; zg is a triangle in the point graph not contained in a circle, if and only if the
distance between y and z in the local near hexagon at x is 2.

To ensure connectivity of the extended near hexagons, one can restrict attention to
line systems that are indecomposable. That means, there is no non-trivial partition
of the set L in which any two lines from distinct parts of the partition are perpen-
dicular.

The theory of near polygons has been developed by the work of several authors,
see for example [7, 6, 12], and even led to the full classification of all near hexagons
with 3 points per line in which any two points at distancec 2 are in some quad, a
near hexagon in which a point is always collinear to some point of a line, see [6].

The study of extended near polygons started with the work of Buekenhout and
Hubaut [11]. Considerable work has been done on extensions of near polygons, in
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particular of generalized polygons, see [12, 26, 34, 35, 36]. For an overview of some
of these results, the reader is referred to the chapter by Buekenhout and Pasini in the
Handbook of Incidence Geometry [10]. However, since the pioneering work of Shult
and Yanushka [32], and the article of Neumaier [27], as far as we know, no progress
has been made on the study of the indecomposable tetrahedrally closed line systems.

In this paper we study both extensions of near hexagons and their connections with
tetrahedrally closed line systems. We call a line system in which two lines either are
perpendicular or make an angle a with cos a ¼G1=3 regular, if and only if it is in-
decomposable, tetrahedrally closed, for each vector v of norm 3 on one of the lines in
L condition (C) is satisfied, and the near hexagon on S�1ðvÞ is regular. Our main
result on line systems reads as follows.

Theorem 1.1. Let L be a line system in Rn, such that any pair of lines is either per-

pendicular or makes an angle a with cos a ¼G1=3. If L is regular, then it is isomorphic

to one of the following systems:

i. the system of 10 lines in R5 related to 2 � PSp4ð2Þ;

ii. the system of 16 lines in R6 related to 21þ4 : Sp4ð2Þ;

iii. the system of 28 lines in R7 related to 2 � PSp6ð2Þ;

iv. the system of 40 lines in R10 related to 2 � PSU4ð2Þ;

v. the system of 120 lines in R15 related to 2 � PSp6ð2Þ;

vi. the system of 128 lines in R16 related to 21þ7 : G2ð2Þ;

vii. the system of 256 lines in R16 related to 21þ8 : Sp6ð2Þ;

viii. the system of 2048 lines in R24 related to 21þ11 : M24;

ix. the system of 2300 lines in R23 related to 2 � Co2.

In fact, all these line systems, except for the sixth one, have been described by Shult
and Yanushka [32], who also gave some partial uniqueness results. A description of
these systems will also be given in Section 3 of this paper.

Certainly the most interesting example is the set of 2300 lines in R23 related to the
second Conway group Co2. It contains all the other line systems, except for the one
on 2048 lines related to 21þ11 : M24.

Our proof of Theorem 1.1 starts with the extended near hexagon defined on the
line system. As observed above, the point graph of this geometry is a connected
graph which is locally the distance 1-or-2 graph of a regular near hexagon. Such
geometries are classified in the following result, which is the main theorem of this
paper.

Main Theorem 1.2. Let G be an extended near hexagon with regular local near hexa-

gons having 3 points per line. If G satisfies (*), then G is isomorphic to one of the fol-

lowing:
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i. the extended generalized quadrangle on 10 points related to PSp4ð2Þ;

ii. the extended generalized quadrangle on 16 points related to 24 : Sp4ð2Þ;

iii. the extended generalized quadrangle on 28 points related to PSp6ð2Þ;

iv. the extended near hexagon on 40 points related to PSU4ð2Þ;

v. the extended generalized hexagon on 120 points related to PSp6ð2Þ;

vi. the extended generalized hexagon on 128 points related to the group 27 : G2ð2Þ;

vii. the extended near hexagon on 256 points related to 28 : Sp6ð2Þ;

viii. the extended near hexagon on 2048 points related to 211 : M24;

ix. the extended near hexagon on 2300 points related to Co2.

Theorem 1.1 is obtained as a corollary to the above result. As noticed above, any
line system satisfying the conditions of Theorem 1.1 gives rise to an extended near
hexagon as in Theorem 1.2. The set S of norm 3 vectors of a line system carries also
the structure of an extended near hexagon, and is a 2-fold cover of one of the exam-
ples in Theorem 1.2. Such covers can be determined, and the set S can be recovered
as a set of vectors obtained by projecting the points of the cover on an appropriate
eigenspace of the adjacency matrix of its collinearity graph. This will be carried out in
Section 6.

The enrichment of an extended near hexagon, i.e., the geometry of points, pairs of
points in a circle and circles (see [13]), is a diagram geometry with Buekenhout dia-
gram

� c � NH �

where NH stands for the class of near hexagons. In particular, if the local near
hexagon is a generalized hexagon we obtain a diagram geometry with diagram

� c � �

Moreover, as we will show in Section 4, the regular near hexagons containing
quads yield geometries with diagram

� c � � L �

The geometries of Theorem 1.2 appear as subgeometries of the Baby monster ge-
ometry. The results of Theorem 1.2 have been used by Ivanov, Pasechnik and Sphec-
torov in their geometric characterization of the Baby Monster, see [25].

The enrichments of all the nine examples of extended near hexagons in the above
theorem admit a flag-transitive automorphism group. Weiss [34, 35] has classified the
extensions of classical generalized hexagons as diagram geometries admitting a flag-
transitive group, and satisfying some additional conditions closely related to con-
dition (*) of Theorem 1.2. In [34], however, he missed the example on 120 points
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related to the group PSp6ð2Þ. Weiss informed us that this example should have ap-
peared in Lemma 4.5 of [34], as the group G1;1;1. In [19], the author extended Weiss’
result by classifying all flag-transitive extensions of buildings of type G2 or C�

3 under
the same additional conditions. The Co2 extended near hexagon has also been char-
acterized by Meixner [26] and by Yoshiara [36] as a flag-transitive extension of the
PSU6ð2Þ dual polar space.

The case of a circular extension of a near hexagon of order 2 is a special case of an
a‰ne extension of a near hexagon. In [4, 5] it is shown that the Examples (v), (vi) and
(vii) are special cases of a‰ne extensions of generalized hexagons of type G2 and dual
polar spaces of type C3, respectively.

Extensions of regular line thick generalized hexagons whose point graph is locally
the distance 1-or-3 graph of the local hexagon are investigated in [20]. There are just
four examples of such extended hexagons; they are related to the almost simple
groups G2ð2Þ, HJ, Suz and PSU4ð3Þ, see [20]. These examples are also characterized
by Weiss [34, 35] and the author [19] under the assumption of a flag-transitive action
of the automorphism group.

In the work of Weiss [34, 35], Yoshiara [36] and the author [19] also circular ex-
tensions of finite classical generalized hexagons and dual polar spaces of rank 3 are
considered where the number of points per line is not restricted, but arbitrary. The
methods we develop in Section 4 lead to the following theorem:

Theorem 1.3. Suppose G is an extended near hexagon, such that for each point p of G
the local near hexagon Gp at p is regular with classical parameters ðs; t2; tÞ where sd 2.
If G satisfies (*), then s ¼ 2. In particular, G is one of the examples of the conclusion of

Theorem 1.2.

Here, we say that a near hexagon has classical parameters ðs; t; t2Þ if and only if
either t2 > 0 and t ¼ t2ðt2 þ 1Þ or t2 ¼ 0 and t A f1;

ffiffi
s3

p
; s; s3g.

Acknowledgment. The author would like to thank John van Bon and Antonio Pasini
for many valuable remarks and comments on the subject of this paper.

2 Definitions and notation

In this section we recall some definitions and fix the notation used throughout this
paper.

Let G be the incidence structure ðP;CÞ consisting of non-empty sets P of points

and C of circles (also called blocks), which are subsets of size at least 2 of P. The
point graph (or collinearity graph) of G is the graph with vertex set P, and two points
adjacent if and only if they are cocircular (also called collinear), i.e., there is a circle
containing them. If p and q are points of P, then we denote by p ? q that there is a
circle containing them. For each subset X of P we write X? for the set of all points q
with q ? x for all x A X . For points p A P we usually write p? instead of fpg?.

A subspace X of G is a subset of P such that each circle meeting it in at least 2
points is contained in X . A subspace X is often tacitly identified with the incidence
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structure ðX ; fC A C j jC VX jd 2gÞ. A proper subspace of G meeting all circles non-
trivially is called a geometric hyperplane or, for short, hyperplane of G. A point in a
geometric hyperplane is called deep, if all the circles on that point are contained in the
geometric hyperplane.

We call G a near polygon, if it satisfies the following condition:

(NP) given an element C A C and p A P, then in the point graph of G there is a
unique point q A C at minimal distance from p.

Here distance is just the usual graph distance. A near polygon G is called a near

hexagon, if there are at least two non-collinear points in G and its point graph has
diameter at most 3. It is called a generalized quadrangle, when its point graph has
diameter at most 2. In a near polygon circles are usually referred to as lines. If all
lines of a near polygon have at least 3 points and two points at distance two have
more than one common neighbor, then the geodesic closure of these two points is a
subspace of the near polygon, carrying the structure of a generalized quadrangle.
This result is known as Yanushka’s Lemma, see [32]. Such subspaces are called
quads.

A near polygon, whose point graph is of diameter d, is called regular with param-
eters ðs; t2; . . . ; t ¼ tdÞ, if and only if all lines contain sþ 1 points, for every point p

there is a point q at distance d from p, and for each pair of points ðp; qÞ at distance i,
where 2c ic d, there are exactly ti þ 1 lines through p containing a point at dis-
tance i � 1 from q.

Consider an arbitrary incidence structure G ¼ ðP;CÞ. Let p be a point of G. Then
by Pp we denote the set of points adjacent to p in the point graph of G, and by Cp the
set of all circles containing p. If all circles of G contain at least 3 points, then we can
consider the incidence system Gp ¼ ðPp; fC � fpg jC A CpgÞ, the residue of G at p.
We will call G an extended near polygon, respectively, extended near hexagon, if and
only if its point graph is connected all circles contain at least 3 points, and Gp is a near
polygon, respectively, near hexagon, for all points p A P.

If G is an extended near polygon and p is a point of G, then Gp is also called the
local near polygon at p.

The enrichment EðGÞ of G is the incidence system ðP;E;CÞ, where E is the set of
edges of the point graph of G, and incidence is symmetrized inclusion. As was ob-
served in [13], if G is an extended near polygon, then this incidence system is a dia-
gram geometry with Buekenhout diagram

�
P

c �
E

NP �
C

where NP is a class of near polygons.

3 Examples of line systems and extended near hexagons

The examples of line systems and extensions of near hexagons appearing in the the-
orems of the introduction of this paper will briefly be discussed in this section. There
is also some discussion of most of these line systems in [32].
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We start with the Leech lattice L in 24-dimensional real space. This lattice is the
unique 24-dimensional even unimodular lattice, see [17]. Its automorphism group is
the group 2 � Co1. We scale the lattice in such a way that the vectors of type 2 whose
stabilizer in 2 � Co1 is isomorphic to Co2 have norm 4. All the line systems of Theo-
rem 1.1 are related to the lattice L.

Throughout this section we will use the Atlas [16] notation for elements in the
groups mentioned below.

3.1 The 2300 lines in R23 related to 2DCo2. Fix a norm 4 type 2 vector v of the
Leech lattice L, and consider all the 4600 type 2 vectors of L that have inner product
�2 with v. Projection of these 4600 vectors onto the 23-dimensional space v? per-
pendicular to v yields a set of 4600 vectors that are on 2300 lines. Two of these lines
make an angle a with cos a ¼G1=3 or 0. The setwise stabilizer of fv;�vg in AutðLÞ
is isomorphic to 2 � Co2 and acts on the 4600 vectors.

3.2 The 1408 lines in R22 related to 2DPSU6(2). In the system of 2300 lines ob-
tained above, the 1408 lines perpendicular to a fixed line form also a tetrahedrally
closed line system. The local near hexagon of this line system is isomorphic to the
Aschbacher near hexagon related to the group þW�

6 ð3Þ, see [1, 6]. (Here we follow
the notation of [21] for the orthogonal groups.) The group PSU6ð2Þ is contained in
the automorphism group of this set of lines. This line system is not in the conclusion
of Theorem 1.1, as it is not regular. Indeed, the local near hexagon Gp is not regular
as is shown in [6]. However, we have included it here to make the description of the
example of 40 lines in R10 related to 2 � PSU4ð2Þ easier.

3.3 The 256 lines in R16 related to the group 21+8 : Sp6(2). An involution of type
2A in the group Co2 fixes 256 of the 2300 lines that are all contained in the �1-
eigenspace of this involution of dimension 16. The centralizer of such an element is a
group 21þ8 : Sp6ð2Þ. The line system is tetrahedrally closed, and is locally the near
hexagon of the PSp6ð2Þ dual polar space. Inside AutðLÞ, the centralizer of an element
of type 2A is a group isomorphic to 21þ8 : Oþ

8 ð2Þ. The embedding of Sp6ð2Þ into
Oþ

8 ð2Þ is the spin representation of Sp6ð2Þ; the PSp6ð2Þ near hexagon is embedded
into the POþ

8 ð2Þ polar space. This will be used later on.

3.4 The 120 lines in R15 related to 2DPSp6(2). If one fixes a line of the 256 lines of
the above example, then the 120 lines perpendicular to this fixed line form a tetrahe-
drally closed system of 120 lines in R15, which is locally a generalized hexagon of
order ð2; 2Þ. The group 2 � PSp6ð2Þ acts transitively on these lines with line stabilizer
2 � G2ð2Þ.

3.5 The 128 lines in R16 related to 21+7 : G2(2). Let s be an element of order 4 in the
normal 2-group of 21þ8 : Sp6ð2Þ. Then the centralizer of this element induces a tran-
sitive group 27 : G2ð2Þ on the 128 lines fixed by s. These 128 lines form a closed line
system in the 1-eigenspace of dimension 16 of s, which is locally a generalized hexa-
gon of order ð2; 2Þ related to G2ð2Þ. Notice that the 128 lines are not contained in the
set of 256 lines on which 21þ8 : Sp6ð2Þ acts as in Example 3.3.
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3.6 The 40 lines in R10 related to 2DPSU4(2). In the group PSU6ð2Þ an element
of type 3A is centralized by a group isomorphic to PSU4ð2Þ. Such an element of
type 3A has an eigenspace of dimension 10 in the 22-dimensional representation of
2 � PSU6ð2Þ on the 1408 lines in the second example of this section. There are 40
lines inside this eigenspace that form a closed line system which is locally the near
hexagon of Hamming type on 27 points.

3.7 The systems C10,C16, and C28 related to 2DPSp4(2), 21+4 : Sp4(2) and

2DPSp6(2), respectively. The maximal sets of respectively 10; 16 or 28 non-
perpendicular lines in the Examples 3.6, 3.3 or 3.1 yield tetrahedrally closed systems
C10;C16 and C28 in R5;R6 and R7 respectively. These systems are locally a general-
ized quadrangle of order ð2; tÞ, where t is 1; 2 or 4, respectively. Notice that these
three extended generalized quadrangles can be obtained from the root lattices of type
E6;E7 and E8, respectively, (rescaled, such that root vectors have norm 4) by the
same procedure as in described in 3.1.

All the above systems are contained in the system of 2300 lines associated to the
second Conway group Co2. The following and last example, however, although
closely related to the Leech lattice and the group Co2, is not contained in that system.

3.8 The 2048 lines in R24 related to 21+11 : M24. Consider a orthonormal basis B for
R24 with respect to the standard inner product. The vectors of the form Sb AB G b

form a 24-dimensional vector space over the field fG1g. Inside this vector space we
can consider the extended binary Golay code C as a 12-dimensional subspace. The
4096 vectors inside C span 2048 lines in R24. The inner product of 2 codewords (as
vectors in R24) equals G24 (if they are the same or opposite), G8 or 0. So two dis-
tinct lines make an angle a with cos a ¼ 0 or G1=3. The system is tetrahedrally
closed. The local near hexagon at each vector is isomorphic to the near hexagon on
759 points related to the group M24. The stabilizer of this line system inside the or-
thogonal group on R24 with its standard inner product, is isomorphic to the group
21þ11 : M24.

4 The structure and combinatorics of extended near hexagons

In this section we start the investigation of extended near hexagons as in the hy-
pothesis of Theorems 1.2 and 1.3.

Let G ¼ ðP;CÞ be an extended near hexagon in which all circles contain at least 4
points. By G we denote the point graph of G, whose edge set will be denoted by E.
We assume that the graph G is locally the distance 1-or-2 graph of the local near
hexagon. So, if p is a point of G, then two points q and r in Pp are adjacent if and
only if they are at distance at most 2 in the near hexagon Gp. Moreover, for all points
p of G we assume the near hexagon Gp to be regular.

Lemma 4.1. There are parameters ðs; t2; tÞ such that for all p A P, the residue Gp is a

regular near hexagon with parameters ðs; t2; tÞ.
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Proof. Fix a point p and suppose that the near polygon Gp has parameters ðs; t2; tÞ.
Let q be a point cocircular with p. Suppose that the near hexagon Gq has parameters
ðs 0; t 02; t 0Þ. As there are tþ 1 lines on q in Gp, there are tþ 1 circles containing both p

and q. So the point p of Gq is on tþ 1 ¼ t 0 þ 1 lines in Gq and t ¼ t 0. As all circles on
p contain sþ 2 points, the lines of Gq on p contain sþ 1 points. Hence s 0 ¼ s.

Finally we will prove that t 02 ¼ t2. Consider the set ðp? V q?Þ � fpg. This is the
set of points at distance at most 2 from q in Gp, it has cardinality 1 þ sðtþ 1Þ þ
sðtþ 1Þst=ðt2 þ 1Þ. Similarly, ðq? V p?Þ � fqg, which is the set of points in Gq at dis-
tance at most 2 from p has cardinality 1 þ sðtþ 1Þ þ sðtþ 1Þst=ðt 02 þ 1Þ. But since
these two sets are of the same size, we find t 02 ¼ t2. This implies that Gq has the same
parameter set as Gp. By connectedness of the point graph of G we have proved the
lemma. r

From now on we fix integers s; t and t2 such that for all points p of G the local near
hexagon Gp has order ðs; t2; tÞ.

Lemma 4.2. Let C be a circle and p a point of G. Then CJ p? or jp? VCj ¼ 0 or 2.

Proof. Suppose p is a point and C a circle meeting p?. Fix a point q A C V p?. Inside
Gq the point p is either at distance 3 from all but one of the points of C � fqg, in
which case p? VC consists of 2 points, or p is at distance at most 2 from every point
of C � fqg, and CJ p?. r

Corollary 4.3. Suppose p and q are points of G at mutual distance 2. If s ¼ 2, then
p? � q?, i.e., the complement of p? V q? in p?, is a geometric hyperplane of Gp.

Proof. Suppose s to be equal to 2. Let C be a circle on p, then, by 4.2, there are 0 or 2
points of C in q?. So, C � fpg is contained in p? � q? or meets it in just one point.
Hence p? � q? is a geometric hyperplane of Gp. r

Lemma 4.4. Two circles meet in 0; 1 or 2 points.

Proof. Suppose C and D are two distinct circles meeting in at least 3 points. Without
loss of generality we may assume that there is a point q A D� C. Fix a point
p A C VD. Then inside Gp the two circles C and D define two lines with at least two
points in common, which is well known to be impossible in a near hexagon. r

Lemma 4.5. The parameter s and the size of a circle are both even.

Proof. Let C be a circle and q a point outside of C with CJ q?. (Such a point can be
found in Gr, where r is a point of C.)

If p is a point of C, then we see inside Gp that q is collinear to a unique point of
C � fpg. Thus there is a unique circle on q and p meeting C in two points. But that
implies that the circles on q, meeting C in two points, partition C into pairs. In par-
ticular, jCj ¼ sþ 2 is even. r

Extended near hexagons and line systems 189



Lemma 4.6. Let X be a set of points in a near hexagon such that the distance between

any two points of X is at most 2. If a line of the near hexagon is properly contained in

X, then X is either contained in a quad or there is a unique point p A X such that all

points of X are collinear with p.

Proof. Suppose X is a set as in the hypothesis of the lemma containing some line l.
We assume that X 0 l, so that there is a point x in X � l. Since x is at distance at
most 2 from any point on l, it is at distance 1 from l. Let p be the unique point on l

collinear with x.
So, either every point of X is collinear to p or there is a point in X not collinear to

p. We assume that we are in the latter case and show that X is contained in some
quad. Let y be a point in X not collinear to p. Then y is at distancec 2 from both p

and x, and thus collinear with some point z on the line through p and x. The point y

is also at distance one from the line l. Hence there is a point u A l collinear with y.
Thus x and l are contained in some quad Q. As x and l are in at most one quad, Q is
the unique quad containing x and l. This quad also contains y and z.

The above implies that every point of X not collinear to p is contained in the
quad Q.

Now suppose v A X is collinear to p. As y is at distance at most 2 from both p and
v, it is collinear to a point on the line through p and v. Since Q is geodesically closed,
this line and therefore also v is contained in Q. r

In a regular near hexagon with parameters ðs; t2; tÞ where sd 2, Yanuska’s Lemma
shows that the existence of quads is equivalent with t2 > 0. This will be exploited
below.

Lemma 4.7. If t2 d 1, and p is a point of G, then for all quads Q of Gp, the set fpgUQ

together with the circles contained in it, is a one point extension of a generalized

quadrangle.

Proof. Fix a point p of G, and suppose Q is a quad of the near hexagon Gp. Then
E :¼ fpgUQ is a clique in the point graph G of G. Suppose q is a point in E di¤erent
from p. Then consider the point set E � fqg in Gq. This is a subset of the near hexa-
gon Gq satisfying the hypothesis of the previous lemma. The point p is on t2 þ 1 lines
in this set. Thus by the above lemma either all points are collinear with p, or E � fqg
is contained in a quad. Since there are ð1 þ sÞð1 þ st2Þ points in E � fqg of which
there are only sðt2 þ 1Þ points collinear with p, this set E � fqg is contained in a
quad; it even consists of all points of a quad of Gq. This proves the lemma. r

Corollary 4.8. If t2 d 1, then sþ 2 divides 2t2ðt2 þ 1Þð2t2 � 1Þ.

Proof. This follows from the above lemma and [13, Theorem 5.1]. r

The extended generalized quadrangles, as considered in the above lemma, will be
called extended quads of G. By EQ we denote the set of all extended quads of G. A

Hans Cuypers190



consequence of the above lemma is that the extension of a near hexagon with quads
(i.e., a near hexagon with t2 > 0) under consideration is a Buekenhout geometry with
diagram

�
P

c �
E

�
C

L �
EQ

Lemma 4.9. If t2 > 0, then 2 þ sðt2 þ 1Þ j ðs2 þ 2sþ 2Þð1 þ sÞ2
sðt� t2Þ and 2 þ

st2 j s3
h
tðtþ1Þ�ðt�t2Þðt2þ1Þ2

t2ðt2þ1Þ � 1
i
.

Proof. Suppose t2 > 0. Then, as we saw above, G contains extended quads. Let EQ be
such an extended quad and fix a point p A EQ. Now consider a point q adjacent to p

but not in EQ. Denote by Qp the quad of Gp contained in EQ. Within the near
hexagon Gp we see that q is either collinear to a point of Qp or at distanced 2 from
all points of Qp and the points of Qp at distance 2 from q form an ovoid of Qp. In the
first case q is adjacent to 1 þ 1 þ sðt2 þ 1Þ points of EQ, in the second case to
1 þ 1 þ st2 points.

Suppose q? VEQ contains 1 þ 1 þ sðt2 þ 1Þ points. Let p 0 be a point of EQ di¤er-
ent from p but adjacent to q. Denote by Qp 0 the quad of Gp 0 contained in EQ. Then,
inside Gp 0 the number of points of Qp 0 at distancec 2 from q equals 1 þ sðt2 þ 1Þ. So,
inside Gp 0 we see that q is at distance 1 from the quad Qp 0 .

Counting pairs of adjacent points x; y with x A EQ and y B EQ, but y at distance 1
from the quad Qx defined by EQ inside Gx yields ½1 þ ð1 þ sÞð1 þ st2Þ� � ð1 þ sÞ �
ð1 þ st2Þsðt� t2Þ ¼ a � ð2 þ sð1 þ t2ÞÞ, where a is the number of points y outside EQ

but with y? VEQ of cardinality 2 þ sðt2 þ 1Þ. Hence 2 þ sðt2 þ 1Þ j ½1 þ ð1 þ sÞ �
ð1 þ st2Þ� � ð1 þ sÞð1 þ st2Þsðt� t2Þ from which we deduce that 2 þ sðt2 þ 1Þ j ½1 þ
ð1 þ sÞ2� � ð1 þ sÞ2

sðt� t2Þ.
By counting pairs of adjacent points x; y with x A EQ and y B EQ, but y at dis-

tance 2 from the quad EQx inside Gx we obtain the second divisibility condition. r

Let p and q be two adjacent points of G and denote by Xp;q the union of all cir-
cles on p and q. This is a clique in the point graph of G containing 1 þ 1 þ sðtþ 1Þ
points.

Lemma 4.10. Let p and q be adjacent points in G and suppose x is a point of Xp;q. Then
there is a point y in Xp;q di¤erent from x with Xx;y ¼ Xp;q.

Proof. If x equals p or q, then the result is obviously true. Thus assume x to be dif-
ferent from both p and q. The set Xp;q � fxg, as subset of Gx, satisfies the conditions
of Lemma 4.6. Moreover, as Xp;q is a maximal clique, Xp;q � fxg is either a quad in
Gx or there is a point y of Gx such that Xp;q � fxg consists of points of Gx collinear to
y. If we are in the first case, then Lemma 4.7 implies that X � fpg is also a quad,
which, however, is not the case. So we are in the second case and Xp;q is contained in
Xx;y for some point y of Gx. But as Xp;q and Xx;y both have size 2 þ sðtþ 1Þ, we ob-
tain Xx;y ¼ Xp;q. r
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Corollary 4.11. sþ 2 divides 2tðtþ 1Þ.

Proof. Let p and q be cocircular points and consider X ¼ Xp;q. Each point of X is on
tþ 1 circles contained in X . As each circle contains sþ 2 points, there are ð2 þ sþ
stÞð1 þ tÞ=ðsþ 2Þ circles contained in X . Thus sþ 2 divides ð2 þ sþ stÞð1 þ tÞ and
hence also 2tðtþ 1Þ. r

Corollary 4.12. If s ¼ 2, then the symmetric di¤erence of two circles meeting in two

points is again a circle.

Proof. Suppose C and D are two circles meeting in two points p and q. Consider the
two points p 0 and q 0 on C distinct from p and q. By Lemma 4.10 we find that
Xp;q ¼ Xp 0;q 0 . In particular, there is a circle E on p 0 and q 0 di¤erent from C and
meeting D non-trivially. Since two circles meet in 0 or 2 points, E meets D in the two
points di¤erent from p and q. In particular, E is the symmetric di¤erence of the two
circles C and D. r

Lemma 4.13. Let p and q be two points of G at distance 2. If r is a point in p? � q?,
then there are 0, ð2 þ sþ st2Þ=2 or ð2 þ tÞ=2 circles through p and r meeting q? non-

trivially. Moreover, the last possibility does occur, only if s > 2.

Proof. Consider the set Xp; r consisting of all points cocircular with p and r. Suppose
there is a point x A Xp; r V q? di¤erent from p and r. By Lemma 4.10 there is a unique
point y in Xp; r di¤erent from x with Xx;y equal to Xp; r. If q and y are at distance 2 in
Gx, then q? meets Xx;y in 2 þ sðt2 þ 1Þ points. If q and y are at distance 3, then q?

meets Xx;y in 1 þ tþ 1 points. Since each circle on p and r has either 0 or 2 points in
q?, there are ð2 þ sþ st2Þ=2 or ðtþ 2Þ=2 circles on p and q meeting q? non-trivially.

Now suppose s ¼ 2. Then C ¼ fp; r; x; yg is a circle meeting q? in two points, i.e.,
in the points x and y. Hence y and q are at distance 2 in Gx, and the second part of
the lemma follows. r

As noticed in the introduction, we say that a near hexagon of order ðs; t2; tÞ has
classical parameters if either t2 > 0 and t ¼ t2ðt2 þ 1Þ, or t2 ¼ 0 and t A f1;

ffiffi
s3

p
; s; s3g.

Combining various of the above results we obtain:

Theorem 4.14. If G is an extension of a regular near hexagon with classical parameters

ðs; t2; tÞ, sd 2, then s ¼ 2.

Proof. Let G be an extension of a regular near hexagon with parameters ðs; t2; tÞ,
sd 2 and td 1. Suppose p and q are two cocircular points and set X ¼ Xp;q. A point
x A Gp but not in X has tþ 2 neighbors in X if it is at distance 3 from q. Let x be such
a point (there are s3tðt� t2Þ=ðt2 þ 1Þ of them), and suppose y is a neighbor of x in X .
On the circle C that contains p; q and y the two neighbors of x are just p and y. So, if
z is the unique point in X di¤erent from y with X ¼ Xy; z, then x and z are not ad-
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jacent, and inside Gy the points x and z are at distance 3. This implies that x? meets
each circle in X in just 0 or 2 points.

Hence the number of points adjacent to some point of X but not to all the points of
a circle in X equals ð2 þ sþ stÞs3tðt� t2Þ=ððtþ 2Þðt2 þ 1ÞÞ. In particular, tþ 2 di-
vides ð2 þ sþ stÞs3tðt� t2Þ and then also 2ðs� 2Þs3ðt2 þ 2Þ.

Suppose s > 2. First assume that t2 ¼ 0 and t equals 1;
ffiffi
s3

p
; s or s3. Then G is an

extension of a generalized hexagon. Since sþ 2 divides 2tðtþ 1Þ, we find that t can-
not be equal to 1,

ffiffi
s3

p
or s, but has to be s3. However, this contradicts that tþ 2 di-

vides 4ðs� 2Þs3.
Next assume that t2 > 0 and t ¼ t2ðt2 þ 1Þ. For each point p of G the local near

hexagon Gp is either of Hamming type and t2 ¼ 1, or is a dual polar space and t2
equals

ffiffi
s2

p
;

ffiffiffiffi
s23

p
; s, or s2. In the latter case s and t2 are powers of 2, see [12].

Since sþ 2 divides 2t2ðt2 þ 1Þð2t2 � 1Þ, see 4.8, we find that t2 is at least 2. More-
over, using the above, 4.8 and 4.11, we find that sþ 2 divides 4ðt2 þ 1Þð2t2 � 1Þ
and 4ðt2 þ 1Þðt2

2 þ t2 þ 1Þ. Since 4 � ðt2
2 þ t2 þ 1Þ � ð2t2 þ 3Þ � ð2t2 � 1Þ ¼ 7, we de-

duce that sþ 2 divides 28ðt2 þ 1Þ.
If t2 ¼

ffiffi
s

p
, then sþ 2 j 28ð

ffiffi
s

p
þ 1Þ implies that s ¼ 4 and t2 ¼ 2. However, then

4.9 implies that 2 þ sðt2 þ 1Þ ¼ 14 divides ½1 þ ð1 þ sÞ2� � ð1 þ sÞ2
sðt� t2Þ ¼ 26 � 25 �

4 � 22, a contradiction.
If t2 ¼

ffiffiffiffi
s23

p
, then sþ 2 j 28ð

ffiffiffiffi
s23

p
þ 1Þ implies that s ¼ 8 and t2 ¼ 4.

If t2 ¼ s, then sþ 2 j 28ðt2 þ 1Þ implies sþ 2 j 28, which contradicts s to be a power
of 2.

If t2 ¼ s2, then sþ 2 j 28ðt2 þ 1Þ implies sþ 2 j 140. Here we can conclude that
ðs; t2Þ ¼ ð8; 64Þ.

Hence, we are left with the cases that ðs; t2Þ equals ð8; 4Þ or ð8; 64Þ. However, in
both cases tþ 2 does not divide 2ðs� 2Þs3ðt2 þ 2Þ. This contradiction proves the
theorem. r

5 Extension of near hexagons with three points per line

In this section we consider extensions of near hexagons as in the hypothesis of The-
orem 1.2. Let G be such an extended near hexagon. Then, conform Lemma 4.1, there
exist t2 and t such that for each point p of G the local near hexagon Gp is a regular
near hexagon of order ð2; t2; tÞ. By [7, 6], we either have that this near hexagon is a
generalized quadrangle of order ð2; tÞ, with t ¼ 1; 2 or 4, a generalized hexagon of
order ð2; tÞ, with t ¼ 1; 2; 8, or one of the following near hexagons containing quads:
the near hexagon of Hamming type on 27 points, the near hexagons on 135, respec-
tively, 891 points associated to the dual polar spaces related to PSp6ð2Þ and PSU6ð2Þ,
respectively, the M24-near hexagon on 759 points or the near hexagon on 729 points
related to 36 : 2 � M12.

In general, the approach for proving Theorem 1.2 is the following. Suppose G is an
extension of a near hexagon with 3 points per line. We first consider the point graph
G of G. This graph is locally the distance 1-or-2 graph of the local near hexagon. The
second neighborhood of a point p, i.e., the subgraph of G consisting of the vertices at
distance 2 from p, will be identified with the use of m-graphs, or rather their comple-
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ments. The subgraph of G induced on the second neighborhood of p can be recovered
by classifying the various m-graphs and considering the intersections between these m-
graphs. This approach eventually leads to the determination of the isomorphism type
of G. To finish the proof, we have to consider the various ways one can fix a collec-
tion of 4-cliques of G, such that these 4-cliques induce the structure of an extended
near hexagon on G. This program will be carried out for the several possibilities of
the local near hexagon Gp.

The main tool in the classification of m-graphs is the following proposition in which
we collect some properties of the complement of a m-graph. For the first two prop-
erties, see 4.3 and 4.13; the third property follows easily from the second one.

Proposition 5.1. Let p and q be points of G at mutual distance 2. Then we have the

following:

i. p? � q? is a geometric hyperplane of Gp;

ii. if r is a point of the hyperplane p? � q? of Gp, then either 2 þ t2 lines of Gp on r

meet q? or r is a deep point of p? � q?.

iii. if for all x and y at mutual distance 2 in G the hyperplane x? � y? of Gx does not

contain deep points, then the diameter of the graph G equals 2.

5.1 Extensions of generalized quadrangles. In this subsection we consider extensions
of the generalized quadrangles of order 2. These are one point extensions. Such ex-
tensions have been studied by several authors, and a proof of the following result can
be found at various places, see for example [13].

Proposition 5.2. Suppose G is a one point extension of a generalized quadrangle with

s ¼ 2, then it is one of the three unique extensions on 10; 16 or 28 points related to the

groups PSp4ð2Þ, 24 : Sp4ð2Þ, respectively, PSp6ð2Þ.

5.2 Extensions of generalized hexagons. Now we assume that for all p of G, the local
space Gp is a generalized hexagon with 3 points per line. By a result of Haemers and
Roos, see [7], we have that t can only take the values 1; 2 or 8. The generalized hex-
agons with these parameters have been classified, see [15]. There is only one gen-
eralized hexagon of order ð2; 1Þ, its point graph is the flag-graph of the Fano plane.
There are two generalized hexagons of order ð2; 2Þ, denoted by H and H�. They are
dual to each other and are the classical generalized hexagons related to the group
G2ð2Þ. We distinguish between H and H� in the following way: H is the G2ð2Þ gen-
eralized hexagon for which the stabilizer in G2ð2Þ of a point is of the shape 42 : D12,
while the stabilizer of a point of H� is of the shape 21þ4 : S3. Geometrically these
two generalized hexagons can be distinguished in the following way. The hexagon H
contains subhexagons of order ð2; 1Þ, while H� does not contain such hexagons.
Related to the group 3D4ð2Þ there is a generalized hexagon of order ð2; 8Þ; it is the
unique generalized hexagon with parameters ðs; tÞ ¼ ð2; 8Þ.

Lemma 5.3. For all points p of G, the local generalized hexagon Gp has order ð2; 2Þ.
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Proof. Suppose G is locally of order ð2; tÞ, with t A f1; 2; 8g. Fix a point p of G, and
let q be a point at distance 2 from p. Then, by Proposition 5.1, the complement of the
m-graph p? V q? is a geometric hyperplane of the generalized hexagon Gp. Call this
hyperplane H. It follows by 5.1 that each point of this hyperplane H is on t� 1 lines
contained in the hyperplane, or all lines on the point are in the hyperplane.

So, if t ¼ 1, then obviously H cannot contain deep points, and we find H to be an
ovoid. In particular, counting collinear point pairs ðu; vÞ with u A H and v B H in two
ways, we find 4jHj ¼ 2ð21 � jHjÞ; so H contains 7 points. This implies that G is a
strongly regular graph with parameters ðk; l; mÞ ¼ ð21; 12; 14Þ. However, these pa-
rameters do not satisfy the feasibility conditions for a strongly regular graph, see [7].

Suppose t ¼ 8. Then, again by counting collinear point pairs ðu; vÞ with u A H and
v B H, we have 9ð819 � jHjÞ ¼ 4ðjHj � jDjÞ, where D is the set of deep points in H.
From this it follows that jHj ¼ 567 þ 4jDj=13.

Fix a line l ¼ fu; v;wg of the near hexagon meeting H in the point u. Suppose that
u is collinear to x deep points of H. Then H contains 1 point of l, it contains 16 þ 14
points at distance 1 from l, and 536 þ 4x points at distance 2 from the line l. Hence
H contains 567 þ 4x points, and x ¼ jDj=13. (Notice that this implies that x is inde-
pendent of the choice of the point u.) In particular, jDj ¼ 13xc 13 � 14. If x > 0, then
counting the collinear pairs ðv;wÞ in H, with v deep and u not, we obtain that
ðjHj � jDjÞxc jDj � 18, and hence jHjc jDj þ ðjDj=xÞ � 18c 13 � 14 þ 13 � 18 < 567,
a contradiction. Thus x ¼ 0 and we can assume that H does not contain deep points.
But that implies that G is a strongly regular graph with k ¼ 819, l ¼ 306 and
m ¼ 252. In particular, the number of points equals 2484.

By 4.10 each point p of G is in 819 maximal cliques Xp;q of size 20. Let a denote the
number of such maximal cliques. Counting the number of pairs ðp;Xp;qÞ in two ways
yields that a � 20 ¼ 2484 � 819, which is impossible. This contradiction implies that
t0 8, and the lemma is proved. r

In the remainder of this subsection we assume G to be locally a generalized hexa-
gon of order ð2; 2Þ.

Lemma 5.4. Let p and q be points of G. If the distance between p and q is 2, then the

complement of p? V q? in Gp contains 27; 35 or 31 points.

Proof. Consider two points p and q that are at distance 2 in the graph G. The com-
plement of p? V q? in Pp is a geometric hyperplane of Gp, and will be denoted by H.
It follows from Proposition 5.1 that each point in H is either deep, or is on just one
line inside the hyperplane. Let D be the set of deep points in H. Then by counting
the pairs of collinear points ðu; vÞ with u A H and v B H we find ðjHj � jDjÞ4 ¼
ð63 � jHjÞ3. Fix a point u A H �D, that is collinear with x deep points, x ¼ 0; 1 or 2.
Then there are 2 points at distance 1 from u in H, there are 4xþ 8 points in H at
distance 2 from u, and, finally, there are 16 points at distance 3 from u in H. Hence
jHj ¼ 27 þ 4x ¼ 27 þ 4jDj=7. So every point u A H �D is adjacent to jDj=7 deep
points, and jDj ¼ 0; 7 or 14. In particular, jHj ¼ 27; 31 or 35. r
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Lemma 5.5. For all points p and q of G, the generalized hexagons Gp and Gq are iso-

morphic.

Proof. Suppose that there is a point p in G with Gp isomorphic to H�.
Fix a point q at distance 2 from p. The previous lemma implies that the comple-

ment H of p? V q? is a geometric hyperplane of Gp containing 27; 35 or 31 points. By
[23], H� does not contain hyperplanes on 27 or 35 points. So H contains 31 points.
Moreover, the results of [23] imply that H consists of all the points in Gp at distance
at most 2 from some fixed point of Gp.

The distance 1-or-2 graphs induced on the set of points at distance 3 in the two
generalized hexagons H and H� are non-isomorphic. So, as p? V q? is isomorphic to
such a graph in Gp FH�, we can conclude that Gq is also isomorphic to H�.

Let r be a point in p?. Fix a point r 0 in Gp collinear to r. Now let q 0 be a point in Gr 0

at distance 3 from p and r. Then inside G the distance between q 0 and p and r is 2.
The above implies that Gr FGq 0 FGp FH�. The connectedness of G implies now

that the residue at each point of G is isomorphic to H�. r

Lemma 5.6. The generalized hexagon H� can uniquely be recovered from its distance

1-or-2 graph.

Proof. Let H � be the distance 1-or-2 graph of H�. Let x and y be two vertices of H �.
If x and y are collinear in H�, then ðx? V y?Þ? consists of the 3 vertices x; y and z

forming a line of H�. If x and y are non-collinear, then ðx? V y?Þ? consists of just x
and y, see [33, 3.5.7]. So the lines of H� can uniquely be recovered from the graph
H �. This proves the lemma. r

Lemma 5.7. Let p be a point of G. Then Gp is isomorphic to H.

Proof. Let p be a point of G and q a point at distance 2 from p. Suppose Gp is iso-
morphic to H�. Then, by Lemma 5.5 we find that Gq is also isomorphic to H�.

The results of [23] and Lemma 5.4 imply that the m-graph p? V q? consists of all
the points of Gp at distance 3 (inside Gp) from some point r A Gp. Thus there are
63 � 32=32 ¼ 63 points at distance 2 from p (and similarly from q in G). We claim
that the point r is at distance 3 from q in G. Suppose not, then q and r are at distance
2 and r? V q? consists of the 32 points of Gr opposite to p. As r? V q? V p? is empty,
we have found 64 ¼ 32 þ 32 points in Gq. A contradiction. Hence, r is indeed at dis-
tance 3 from q.

Next we show that r is the unique point of G at distance 3 from q. Suppose u is
a common neighbor of p and r. Then u is adjacent to some point in p? V q?. Thus u
is at distance 2 from q. So, we can apply the above to u instead of p. The con-
nectedness of Gr implies that all the points of Gr are at distance 2 from q. In particular,
Gr consists of all the 63 points of G that are at distance 2 from q. Moreover, r is the
unique neighbor of each of these 63 points which is at distance 3 from q. This im-
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plies that G contains 1 þ 63 þ 63 þ 1 points; its distance distribution diagram reads
as follows:

In particular, for each point x A G there is a unique point x at distance 3 from x

in G.
Suppose x A Gp. Then x is at distance 2 from p. Moreover, x? V p? consists of all

the points of Gp which are in Gp opposite to x.
Suppose that x and y are two points in Gp. Then consider the points x and y. If x

and y are opposite in Gp, then x and y are adjacent as well as y and x. Since x and x

are at distance 3, we find that also x and y are not adjacent. But that implies that x
and y are adjacent if and only if x and y are adjacent. Thus we can describe all ad-
jacencies in G in terms of Gp. The adjacencies within p? are clear. The point p is ad-
jacent to all points x, with x A Gp; the point x; x A Gp, is adjacent to p, and all points y

of Gp at distance 3 from x in Gp, and finally x and y, where x; y are points of Gp, are
adjacent if and only if x and y are adjacent.

This description shows that the automorphism group G ¼ AutðGÞ of G contains
a subgroup stabilizing p and p and inducing G2ð2Þ on Gp and Gp. As the point p is
arbitrary, we see that the group G is transitive and of permutation rank 4 on G.

Now consider the stabilizer Gp of p inside G. As the generalized hexagon H� can
be recovered from its distance 1-or-2 graph, see Lemma 5.6 we find that Gp FG2ð2Þ.
Let g A Gp be an element of type 3A in the notation of the Atlas [16]. Then g fixes 9
points of the local hexagon Gp, and thus 20 points of G. Moreover, every element
of order 3 in G fixing exactly 20 points of G has to be conjugate to g. Hence, as
Gp contains 28 conjugates of hgi, the number of conjugates of hgi in G equals
128 � 28=20, which is impossible. This final contradiction shows that for all p in G, the
local generalized hexagon Gp is isomorphic to H. r

So, for the remainder of this subsection we may and do assume that for all points p

of G, the local generalized hexagon Gp is isomorphic to H. This implies that the
graph G is locally isomorphic to the distance 1-or-2 graph of H. This graph is iso-
morphic to the point graph of the symplectic polar space related to PSp6ð2Þ. From
this observation we deduce:

Proposition 5.8. The graph G is isomorphic to the collinearity graph of an a‰ne polar

space obtained from the PSp8ð2Þ polar space by removing a hyperplane.

Proof. This follows by the results of [14, 24] or [22]. r

Let S be the PSp8ð2Þ polar space. Up to isomorphism, there are three types of
hyperplanes in the Sp8ð2Þ polar space, the degenerate ones and the POþ

8 ð2Þ and
PO�

8 ð2Þ hyperplanes, see [14]. Thus G is isomorphic to the collinearity graph of an
a‰ne polar space AS obtained from the Sp8ð2Þ polar space S by removing a de-
generate hyperplane, a POþ

8 ð2Þ hyperplane, or a PO�
8 ð2Þ hyperplane.
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By the above proposition, it remains to check which of the three graphs does con-
tain a set of distinguished 4-cliques making it into the point graph of an extended
hexagon. Let A be the (unique) set of a‰ne planes that make G into the a‰ne polar
space AS. Then, as has been shown in [14, 22] and [18], there is an equivalence re-
lation, called parallelism on the set of A of a‰ne planes, whose equivalence classes
form (part of ) the line set of the polar space at infinity ASy of AS. The set C of
circles of G is a subset of A. In the lemma below we will show that it consists of a
union of parallel classes of A.

As a consequence of this observation we see that also for G we can define a space at
infinity, called Gy, embedded into the polar space at infinity ASy of AS. The space
Gy consists of all the points of ASy, except for the radical of this polar space, and
all the lines at infinity corresponding to those parallel classes of a‰ne planes that
contain circles of C.

Lemma 5.9. If p is a circle in C, then the whole parallel class of p in A is in C.

Proof. Let p0 be a plane of C. Let p be a point of p0 and q a point in p?0 np0. By m we
denote the line through p and q. In the hexagon Gp we see that m is at distance 1 from
some line n on p inside p0. Thus there is a plane p1 A C on m meeting p0 in n. Let p2

be the a‰ne plane of AS on q which is parallel to p0. Fix a line g on q in p2, but
outside p1. In Gq we see that g is at distance 1 from some element of p1, (indeed, p0

and g are in a singular 3-space of S) so there is a unique plane p3 A C on g meeting
p1 in a line, k say. Suppose k meets n at the point r of G. Then inside Gr we encounter
the three planes p0; p1 and p3. Since the planes are inside an a‰ne 3-space, we find
that p0 and p3 intersect in a line on r distinct from k and n. In particular, the three
planes form a triangle in Gr. This contradicts ResðrÞ to be a generalized hexagon.
Thus k and n meet at infinity. In particular, p2 ¼ p3 A C. We can conclude that the
unique plane on q which is parallel with p0 is also in C.

Let p0 A C and p1 A A be two parallel planes in AS. Let ly be the line at infinity
in ASy of p0 and p1. If p1 contains a point r with r A p?0 then, by the above, p1 is
also in C. By connectedness of the a‰ne polar space on the singular planes of S

meeting ASy just in ly and transitivity of being parallel we find that in any case p1

is in C. r

We consider the three possibilities for G separately. First assume G to be isomor-
phic to the graph on 136 points obtained by removing a PO�

8 ð2Þ hyperplane from the
polar space S. Then each parallel class of circles contains 10 circles. As there are
136 � 63=4 circles in G, we find 34 � 63=10 parallel classes of circles of G, which is im-
possible.

Now assume that G is isomorphic to the graph on 120 points obtained by removing
a POþ

8 ð2Þ hyperplane. The geometry at infinity of AS is now the POþ
8 ð2Þ polar space

with 135 points. As each parallel class of circles in AS contains 6 circles, we find
that the space at infinity of G consists of all the points of POþ

8 ð2Þ polar space at in-
finity, and of 120 � 63=ð4 � 6Þ ¼ 315 lines of this polar space. Each of the 120 PO7ð2Þ
hyperplanes of the polar space ASy meets the space Gy at infinity of G in a subspace
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isomorphic with H. We will show that Gy is isomorphic to the near hexagon asso-
ciated to the PSp6ð2Þ dual polar space.

Suppose p is a point and l a line in Gy, the point p not on l. Then there exist
PO7ð2Þ hyperplanes of ASy containing both p and l. Such hyperplanes meet G in a
subspace isomorphic to H. So, inside such hyperplanes we see that l contains at least
one points at distancec 2 from p (measured in Gy). If p is collinear (inside Gy) with
two points on l, then inside ASy we find p and l to be in a singular plane. However,
the intersection of a PO7ð2Þ hyperplane containing p and l with Gy has no plane.
This contradiction implies that p is collinear to at most one point on l. Suppose p is,
inside Gy, at distance 2 from two points, say q1 and q2, of l. Let r1 and r2, respec-
tively, be common neighbors of p and q1 and q2, respectively. There is a PO7ð2Þ hy-
perplane H of ASy containing p; q1; q2; r1 and r2. Intersecting Gy with H we obtain
a generalized hexagon containing p; q1; q2; r1 and r2. Inside this hexagon we find that
p is collinear to a point on l. Thus Gy is indeed a near hexagon.

Next we show that any two points of Gy at distance 2 are in a quad. Suppose p and
r are two such points. Then they are collinear in the polar space ASy. But that im-
plies that in any hexagon obtained by intersecting Gy with a PO7ð2Þ hyperplane they
stay at distance two and have a common neighbor. By varying these hyperplanes we
easily find that p and r have at least two common neighbors, from which we deduce
with Yanuska’s Lemma ([32]), that they are in a quad.

The above shows that Gy is a near hexagon with quads and, by [6], it is isomorphic
to the PSp6ð2Þ near hexagon. But then G can be described as the tangent space of the
embedded PSp6ð2Þ near hexagon Gy into the POþ

8 ð2Þ polar space at infinity of AS.
Indeed, G consists of the points and lines of the a‰ne polar space AS; its circles are
those a‰ne planes of AS whose line at infinity is a line Gy, which is embedded in the
POþ

8 ð2Þ hyperplane of S at infinity of AS. As such an embedding of the PSp6ð2Þ
near hexagon Gy is unique up to isomorphism (it is the spin representation of
PSp6ð2Þ), we find that G is unique up to isomorphism. In particular, G is isomorphic
to the extended generalized hexagon on 120 points related to PSp6ð2Þ. (See also [5].)

Finally assume G to be isomorphic to the graph on 128 points obtained by re-
moving a degenerate hyperplane y? for some point y of the PSp8ð2Þ polar space. If
we fix a point p of G, then the parallel classes of edges and circles of C on p form
the points and lines of a generalized hexagon Hp isomorphic to H embedded into
p? Vy?. The lines and singular planes on y meeting the generalized hexagon Hp in
a point respectively line we denote by Hp. This yields an embedding of H into the
PSp6ð2Þ polar space on lines through y.

For p and q adjacent points of G we find that Hp and Hq meet in at least 15 lines,
as Hp and Hq meet in 15 lines. For antipodal points p and q in G (points at distance 3)
we find Hp ¼ Hq. But this implies that for any two points p and q of G the intersection
of Hp and Hq contains at least 15 lines.

In total, there are 120 di¤erent embeddings of H into a PSp6ð2Þ polar space. They
form an orbit under PSp6ð2Þ. Two distinct embeddings either share 15 lines contain-
ing some point at distancec 1 from a fixed point or 9 non-intersecting lines. The
graph on these 120 distinct embeddings, with two embeddings adjacent if and only
if they intersect in 15 lines is the graph on 120 points of the extended generalized
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hexagon related to PSp6ð2Þ consider above. As this graph does not contain 64-
cliques, we find that there are points p and q in G with Hp ¼ Hq. By switching to an
antipodal of q, if necessary, we even may assume that these points p and q are adja-
cent in G.

Let r be a point di¤erent from but cocircular with p and q. Let rp and rq, respec-
tively, be the point of the PSp6ð2Þ polar space formed by the line through y and the
point at infinity of the line through r and p or q, respectively. Then Hr VHp share at
least the 15 lines containing a point at distancec 1 from rp, and Hr VHp share at
least the 15 lines at distancec 1 from rq. But since rp 0 rq and Hp ¼ Hq, we find that
Hp and Hr share more than 15 lines, and therefore are equal. By connectivity we find
that for all points p and q of G we have Hp ¼ Hq.

As (up to isomorphism) there is only one embedding of H into a PSp6ð2Þ polar
space, we find that (up to isomorphism) the space Gy at infinity of G is unique. But
then, as G consists of the points and lines of AS and those a‰ne planes whose line at
infinity is in Gy, uniqueness of G follows easily. In fact, we find G to be isomorphic to
the extended generalized hexagon on 128 points related to the group 27 : G2ð2Þ.

The results of this subsection lead to the following.

Proposition 5.10. Let G be locally a generalized hexagon of order ð2; tÞ. Then G is

isomorphic to the extended generalized hexagon on 128 points related to 27 : G2ð2Þ, or
the extended generalized hexagon on 120 points related to PSp6ð2Þ.

5.3 Extensions of the near hexagon of Hamming type. Now we consider the case that
G is locally the near hexagon of Hamming type, which is the unique near hexagon
with parameters ðs; t2; tÞ ¼ ð2; 1; 2Þ.

Suppose p is a point of G and let q be a point at distance 2 from p in the graph G.
As before, denote by H the geometric hyperplane of Gp consisting of the points not in
p? V q?. As follows from Lemma 4.7, G contains a family EQ of extended quads. As
each point quad pair in the near hexagon of Hamming type is classical, we find that
q? meets each extended quad on p in 0 or 6 points. Hence H meets each quad of Gp
in an ovoid of 3 points or contains the quad. By Proposition 5.1, every point in H is
on 0 lines inside H, or is deep. Thus if H contains a quad, then all points in this quad
are deep. This would imply that all points of the near hexagon are in H, which is
impossible. Hence H contains no deep points, it is an ovoid and has cardinality 9.
From this we deduce that G has diameter 2, and is strongly regular with parameters
ðv; k; l; mÞ ¼ ð40; 27; 18; 18Þ.

Suppose r is a point at distance 2 from p with p? V q? ¼ p? V r?, and suppose
u A p? V q?. Then in the near hexagon Gu we see that all points at distance at most 2
from p and q are also at distance at most 2 from r. One easily checks that this implies
that r ¼ q. So the 12 points at distance 2 from p all determine di¤erent ovoids in Gp.
But Gp admits exactly 12 ovoids. Indeed, each grid in Gp admits 6 ovoids, and an
ovoid of such grid, together with a point outside that grid non-collinear with the 3
points of the ovoid in the grid determines a unique ovoid in Gp. Hence Gp admits
6 � 12=ð9 � 3Þ ¼ 12 ovoids. So, each point at distance 2 from p can uniquely be
identified with the ovoid it determines.
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Fix an ovoid O of the Hamming near hexagon. Then, inside the Hamming near
hexagon, each point of this ovoid is at distance 2 from 6 points inside the ovoid, and
at distance 3 from 2 points of the ovoid. There are 9 ovoids of the Hamming near
hexagon meeting O in 3 points (which form an ovoid in a grid of the Hamming near
hexagon), and 2 ovoids disjoint from O.

The point q has 9 neighbors in G that are not adjacent to p. These 9 points form an
ovoid in Gq, and hence each of these points has 6 common neighbors with q which are
not in Gp. In particular, these 9 points correspond uniquely to the 9 ovoids of Gp
meeting H in 3 points. The two points that are at distance 2 from both p and q have 9
common neighbors with p and q. So they correspond to the two ovoids in Gp that are
disjoint from the ovoid determined by q.

It follows from the above, that the graph G is unique (up to isomorphism). But as
the collinearity graph from the near hexagon can be recovered from its distance 1-or-
2 graph (collinear points have 13 common neighbors, while points at distance 2 have
11 common neighbors in the distance 1-or-2 graph), G is also unique. Hence we have
proven:

Proposition 5.11. Suppose G is locally the near hexagon of Hamming type on 27 points.
Then G is isomorphic to the extended near hexagon on 40 points related to PSU4ð2Þ.

5.4 Extensions of the PSp6(2) near hexagon. The near hexagon related to the group
PSp6ð2Þ is the unique near hexagon with the parameters ðs; t2; tÞ ¼ ð2; 2; 6Þ, it has 135
points. Its distance 1-or-2 graph is isomorphic with the graph on the 135 singular
points in an orthogonal POþ

8 ð2Þ geometry. Two points are adjacent, if and only if
they are perpendicular. This graph is a polar graph. Hence, if G is locally the PSp6ð2Þ
near hexagon, then its collinearity graph is locally a polar graph. In particular, we
have:

Lemma 5.12. Suppose G is locally the PSp6ð2Þ near hexagon. Then G is isomorphic to

the collinearity graph of the a‰ne polar space obtained by removing a hyperplane from

the non-degenerate polar space related to POþ
10ð2Þ.

Proof. See [14]. r

The above proposition shows us that G can be embedded into an a‰ne polar space
AS, which together with its space at infinity ASy forms the POþ

10ð2Þ polar space S.
This polar space S has two types of hyperplanes; the degenerate hyperplanes with a
unique point in the radical, and the PO9ð2Þ hyperplanes, see [14]. As in Subsection
5.3 we can construct a space Gy at infinity for G by taking all points of the space
at infinity of the a‰ne polar space AS together with those lines at infinity corre-
sponding to parallel classes containing circles in C.

First assume that the removed hyperplane is non-degenerate and consider the
space Gy. It contains 255 points. It is embedded in the polar space at infinity ASy of
AS, which is a PO9ð2Þ polar space. Each point of G determines a unique POþ

8 ð2Þ
hyperplane of this polar space meeting the space at infinity of G in a near hexagon
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isomorphic to Gp. As in Subsection 5.3, it follows from the fact that any point-line
pair of the polar space is contained in such a hyperplane that the space at infinity of G
is a near hexagon. By the results of [6], however, we find that no such near hexagon
exists.

Thus we can assume that the polar space at infinity of AS is degenerate. Let y be
the radical of ASy. If we fix a point p of G, then the edges and circles on p define
a near hexagon Hp isomorphic to Gp embedded into the subspace p? Vy? of the
POþ

10ð2Þ polar space. The singular lines and planes of this polar space on the point y
meeting Hp in a point or line, respectively, form a near hexagon embedded in the
residue of y. This embedded near hexagon will be denoted by Hp. We will show that
Hp and Hq are equal for any two points p and q of G (compare with Subsection 5.2).

There are 240 di¤erent embeddings of the Sp6ð2Þ near hexagon in the POþ
8 ð2Þ

polar space, forming one orbit under the automorphism group of the polar space. As
G contains 256 points, there are at least two distinct points of G; p and q say, with
Hp ¼ Hq. For any point r of G collinear with p and q, respectively, we find that Hr

and Hp meet in at least all the points of Hp (or Hq, respectively) not opposite to the
point pry (or qry) which is at infinity of the edge through r and p (or q, respectively).
But that implies that Hp ¼ Hq and Hr meet in more than the geometric hyperplane
of Hp consisting of all points at distancec 2 from the point represented by the line
through y and pry. As Hp is generated by that hyperplane and any point outside it
(the complement of the hyperplane is connected, see [2]) we find Hp ¼ Hq and Hr to
be the same. By connectivity of Gp we find that Hr ¼ Hp for all points r of Gp. But
then connectivity of G implies Hr ¼ Hp for all r of G. Finally the uniqueness of G
follows easily from the fact that, up to isomorphism, there is a unique embedding of
Gp in the POþ

8 ð2Þ polar space. This proves:

Proposition 5.13. If G is an extension of the PSp6ð2Þ near hexagon, then it is isomor-

phic to the extension on 256 points related to the group 28 : Sp6ð2Þ.

5.5 Extensions of the PSU6(2) near hexagon. In this subsection we consider the case
where for all points p of G the local near hexagon Gp is isomorphic to the PSU6ð2Þ
near hexagon on 891 points. We prove:

Proposition 5.14. Suppose G is locally the PSU6ð2Þ near hexagon, then it is isomorphic

to the extension on 2300 points related to Co2.

Suppose G satisfies the hypothesis of the above proposition. Denote the PSU6ð2Þ
near hexagon by U. Fix a point p of G and a point q at distance 2 in the collinearity
graph of G. By Proposition 5.1 we know that the set p? V q? is the complement of
a geometric hyperplane of Gp, in which a point is deep or on 15 lines inside the hy-
perplane.

In the following proposition we classify the geometric hyperplanes of H having
this property. The following lemma will turn out to be useful in the proof of the
proposition.
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Lemma 5.15. Suppose X is a set of at most qþ 2 points in a projective plane of order q

meeting every line in 0 or at least 2 points. Then X is a hyperoval, i.e., a set of qþ 2
points meeting every line in 0 or 2 points.

Proof. Suppose l is a line meeting X in at least 3 points. Fix a point p A X V l. Then,
as there are at most q� 1 points of X not in l, there is at least one line through p

meeting X in just the point p, which leads to a contradiction. r

Proposition 5.16. Let H be a proper geometric hyperplane of U, in which every point is

deep or on 15 lines in the hyperplane, then H is one of the orbits of length 567 on the

points of U under a subgroup of AutðUÞ isomorphic to þW�
6 ð3Þ.

Proof. Let H be a hyperplane as in the hypothesis. Suppose Q is a quad in U. Then H

contains Q or intersects it in a hyperplane which is either a subquadrangle of order
ð2; 2Þ in Q, or a point and all its neighbors in Q.

Suppose p is a point of H which is not deep. Then the lines and quads of U on p

form a projective plane of order 4. Let Xp be the set of six lines on p not in H. Then a
quad on p has either no line in Xp, or at least two lines in Xp. But then Lemma 5.15
implies that Xp is a hyperoval in the projective plane of lines and quads on p.

Suppose q ð0 pÞ is a point in H on a line l through p. Then by the above there
exists a quad containing l and meeting H in a proper subquadrangle. In particular, q
is not deep. A quad on p and q with all lines through p inside H has (by the above
applied to q) at least three lines through q inside H and hence is contained in H. This
implies that the point p is on exactly six quads that are fully contained in H. (These
six quads form a dual hyperoval in the projective plane of lines and quads on p.)
Moreover, every line on p in H is on exactly two quads contained in H.

Fix a quad Q on p inside H. If r is a point in H, but not in Q, then there is unique
line on r meeting Q. This line is contained in H. In particular, H is connected.
Moreover, by the above, no point of H is deep. Counting pairs of collinear points
ðx; yÞ with x A H and y B H, we obtain that 12jHj ¼ 21 � ð891 � jHjÞ. So, jHj ¼ 567.
Moreover, H contains 567 � 6=27 ¼ 126 quads.

Let Q be an arbitary quad of U. Then through each point of U outside Q there is a
unique line meeting Q. The map tQ which fixes all points of Q and interchanges the
two points on each line meeting Q in a single point is an automorphism of U. It is an
elation of PSU6ð2Þ. If the quad Q is inside H then tQ stabilizes H. Indeed, if r is a
point of H not in Q, then tQðrÞ is on the unique line through r meeting Q which is in
H. So, the stabilizer GH of H in AutðUÞ contains the 126 involutions tQ where Q runs
over the quads in H. Moreover, this group is transitive on the points of H. Indeed, if
x and y are collinear points in H, then on the third point of the line through x and y

we can find a quad Q in H but not containing x nor y. For this quad we have
tQðxÞ ¼ y. So, connectedness of H implies GH to be transitive on H.

It remains to prove that GH is isomorphic to the group þW�
6 ð3Þ. Using the Atlas

[16], or with the help of the classification of groups generated by 3-transpositions, see
[21], it is easy to see that GH is isomorphic to þW�

6 ð3Þ. This also follows by the results
of [6] or [29]. r
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The set of hyperplanes of U satisfying the hypothesis of the above proposition will
be denoted by GH. The group PSU6ð2Þ contains three conjugacy classes of sub-
groups isomorphic to þW�

6 ð3Þ and generated by elations. This implies that the group
PSU6ð2Þ has 3 orbits of length 1408 on the set GH of geometric hyperplanes sat-
isfying the conditions of the previous proposition. The outer automorphism group of
PSU6ð2Þ induces the full symmetric group S3 on the three classes of subgroups, see
[16]. Each of the subgroups isomorphic to þW�

6 ð3Þ contains a single conjugacy class
of 126 elations and acts transitively by conjugation on the remaining 693 � 126 ¼
567 elations in PSU6ð2Þ.

For each H A GH the set of lines in H induces a near hexagon on the 567 points of
H, the Aschbacher near hexagon, see [1, 6]. Moreover, we observe that every line of
the PSU6ð2Þ near hexagon is contained in precisely two quads contained in H.

In the following lemma, we see how we can distinguish between pairs of geometric
hyperplanes in one or in distinct PSU6ð2Þ-orbits on GH.

Lemma 5.17. Let H be a geometric hyperplane in GH. Then there are 567 elements of

GH intersecting H in 375 points, and 840 elements intersecting H in 351 points. To-
gether with H, these 1408 ¼ 1 þ 567 þ 840 hyperplanes form the PSU6ð2Þ-orbit on

GH containing H.
The hyperplane H intersects of each other PSU6ð2Þ-orbit on GH 112 elements in

405 points and 1296 in 357 points.

Proof. Let GH F þW�
6 ð3Þ be the stabilizer of H in G ¼ PSU6ð2Þ, and let Q be a quad

of U intersecting H in a subquadrangle of order ð2; 2Þ. Then the geometric hyper-
plane HtQ intersects H in the 375 points of H that are at distance at most 1 from this
subquadrangle. Each hyperplane H 0 intersecting H in the set of points at distance 1
from a subquadrangle of order ð2; 2Þ is obtained as the image under an involution t

conjugate under GH to tQ. As we can find 567 such involutions in G, this yields a GH -
orbit of length 567. Notice that each point of H is in 567 � 375=567 ¼ 375 hyper-
planes in this GH -orbit.

As PSU6ð2Þ has permutation rank 3 in its action on the cosets of þW�
6 ð3Þ, see [16],

the remaining 840 geometric hyperplanes form a GH -orbit. Each point of H is in
896 ¼ 1408 � 567=891 geometric hyperplanes in the G-orbit of H. So, since a point of
H is in 375 hyperplanes meeting H from the GH -orbit described above, such a point
is in 520 hyperplanes of the orbit of length 840. But that implies that each hyperplane
of that orbit intersects H in 567 � 520=840 ¼ 351 points.

By GH1 we denote the G-orbit of H. Let GHi with i ¼ 2; 3 be the other two G-
orbits of length 1408 on GH. From Lemma 2.3 of [28], we know that the stabilizer
GH of H has two orbits of length 112 and 1296, respectively, on GHi. If H 0 A GHi

is an element in the orbit of length 112, then the stabilizer of H 0 is a group isomor-
phic to 34 : S6, see [28]. This group contains 45 elations and H VH 0 is the Hall near
hexagon as described in [6]. In particular, H 0 A GH contains 405 points. Notice that
each point of H is in 112 � 405=567 ¼ 80 hyperplanes in the GH -orbit of H 0.

As each point of H is in 896 hyperplanes of GHi, it is in 816 hyperplanes in the
GH -orbit of length 1296 on GHi. But then by counting incident point-hyperplane
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pairs ðp; IÞ with p A H and I in the GH -orbit of length 1296 on GHi, we find that
816 � 567 ¼ 1296 � jH V Jj, where J is an element of the GH -orbit of length 1296.
Hence, each such hyperplane J meets H in 357 points. r

Lemma 5.18. The point graph of G is strongly regular with parameters

ðv; k; l; mÞ ¼ ð2300; 891; 378; 324Þ:

Proof. Since the hyperplanes in GH have no deep points, we see that the graph G has
diameter 2. The rest is now straightforward by the above. r

Lemma 5.19. Let p be a point of G. Then the subgraph of the point graph of G induced

on the vertices distinct and non-adjacent to p, is a graph which is locally the distance 1-
or-2 graph of the Aschbacher near hexagon.

Proof. Straightforward by the above. r

Let p be a vertex of G. For each vertex q non-adjacent to p denote by Hq the
geometric hyperplane of the near hexagon induced on Gp consisting of all vertices
adjacent to p, but not to q.

Suppose q and r are two vertices di¤erent from p and non-adjacent to p. Since the
two hyperplanes Hq and Hr cannot cover the whole Gp, see also 5.17, there is a vertex
u adjacent to p; q and r. Inside Gu we find a vertex w A Hq �Hr. In particular, we find
Hq and Hr to be distinct. Furthermore, we see that there is a vertex adjacent to q and
r, but not to p. In particular, the subgraph of the point graph of G induced on the set
of points at distance 2 from p is connected.

If q and r are adjacent, then, as can be checked within the Aschbacher near
hexagon, they have 246 common neighbors that are not adjacent to p, and hence
378 � 246 ¼ 132 common neighbors in Gp. Thus Hq VHr contains 891 � 2 � 324 þ
132 ¼ 375 vertices, and Hq and Hr are in the same PSU6ð2Þ-orbit on GH.

Connectedness of the subgraph of the point graph of G induced on the set of points
at distance 2 from p, implies that also when q and r are not adjacent, we find Hq and
Hr in the same PSU6ð2Þ-orbit on GH.

Fix the PSU6ð2Þ-orbits on GH, containing Hq. (Since OutðPSU6ð2ÞÞ is transitive
on the three orbits, it is of no concern, which of the three we have to take.) We can
identify each of the 1408 points r of G that are not collinear to p with the unique
geometric hyperplane Hr in this orbit. On the other hand, for each geometric hyper-
plane H in this orbit there is a unique vertex r of G not adjacent to p with Hr ¼ H.
As follows from Lemma 5.17, two vertices q and r of G, not adjacent to p are adja-
cent, if and only if jHq VHrj ¼ 375. This shows us that the collinearity graph G of G
is unique up to isomorphism.

Consider the subgraph of the collinearity graph of G induced on Gp. Then two ad-
jacent vertices of this graph are at distance 1 or 2 in the near hexagon Gp. They are at
distance 1 if and only if they have 121 common neighbors. Hence, the set C of circles
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of G can uniquely be recovered from the collinearity graph of G, which shows that G
is unique up to isomorphism. We have proved Proposition 5.14.

5.6 Extensions of the 36 : 2 . M12 near hexagon do not exist. The 36 : 2 � M12 near
hexagon is the unique example with parameters ðs; t2; tÞ ¼ ð2; 1; 11Þ. We show that
there is no extension of the 36 : 2 � M12 near hexagon satisfying condition (*).

Proposition 5.20. G is not an extension of the 36 : 2 � M12 near hexagon.

Proof. Suppose G is locally the 36 : 2 � M12 near hexagon, and let p and q be two
points of G at mutual distance 2 in G. By H we denote the geometric hyperplane of Gp
consisting of the complement of p? V q? in Gp.

From Proposition 5.1 we deduce that each point of H is either deep or on 9 lines
inside H and 3 lines meeting the complement of H. Counting pairs of collinear
points, one in H and the other not, we obtain that ðjHj � jDjÞ6 ¼ ð729 � jHjÞ12,
where D is the set of deep points in H. Hence jHj ¼ 486 þ jDj=3d 486.

Now fix a line l of Gp not in H. Let r be the unique point in l VH. We will count
the number of points in H with respect to their distance to l.

On l there is a unique point in H, the point r. Of the points collinear to r there are
18 ¼ 9 � 2 inside H. The other two points of l are both collinear to 12 points in H,
one of them being r. So at distance 1 from l there are 22 þ 18 ¼ 40 points in H. Now
consider a point u at distance 2 from l. This point is in a unique grid meeting l in a
point. Each point of l is on 55 grids not containing l. On r, one of these 55 grids
meets H in an ovoid, 2 � 9 ¼ 18 grids meet H in 5 points of which only 2 are at dis-
tance 2 from r, and the remaining 36 grids meet H in 5 points or are completely
contained in H. So, in H there are 2 þ 18 � 2 þ a � 4 ¼ 38 þ 4a points at distance 2
from r and l, where a equals the number of grids on r completely inside H.

Consider a point x on l but not in H. On x there are 9 lines which together with l

generate a grid meeting H in 5 points. Each of these 9 lines is in 2 grids meeting H in
3 points of an ovoid from which only one point is at distance 2 from l. The other two
lines on x are on a unique other grid meeting H in an ovoid with just one point at
distance 2 from l. Thus there are ð9 � 2 þ 2 � 1Þ=2 ¼ 10 grids on x containing exactly
one point of H at distance 2 from l and 55 � 10 ¼ 45 grids on x with 3 points at
distance 2 from l. So, in H we find 2ð10 þ 45 � 3Þ ¼ 290 points at distance 3 from r. In
particular, H contains 1 þ 40 þ 38 þ 4aþ 290 ¼ 369 þ 4a points and jHjc 369 þ
36 � 4 ¼ 513. Since 486 � 369 ¼ 117 is not divisible by 4, we find that H has at least
one deep point, say d. Let m be a line on d. We will now count the points of H with
respect to their distance to m. If m contains a second deep point, then all grids on m

are inside H and we can conclude that the third point of m is also deep. But then we
find 3 � 22 points at distance 1 from m andd3 � 22 � 14=2 points at distance 2 from m.
The total number of points in H is then at least 3 þ 66 þ 462 ¼ 531 which contradicts
jHjc 513.

So d is the unique deep point on m. This implies that there are 22 þ 16 þ 16 ¼ 54
points at distance 1 from m in H. On d there are 3 lines generating a grid with m not
inside H. On each of these three lines we find two grids not containing m, nor a point
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of H at distance 2 from m and 8 grids not on m but contained in H. On the 8 lines on
d which generate a grid with m contained in H we find 3 grids not containing m nor a
point of H at distance 2 from m and 7 grids containing 4 points of H at distance 2
from m. Thus inside H we find ð3 � 8 þ 8 � 7Þ=2 ¼ 40 grids on d each containing 4
points at distance 2 from l and 15 grids not on m having no point of H at distance 2
from m. This accounts for 160 points at distance 2 from l and d.

Now we consider the grids on a point e of m, where e0 d. By arguments similar to
the above we find that among the 55 grids on e not containing m, there are 12 not
containing a point in H and at distance 2 from m, there are 24 þ 3 grids containing 2
points of H at distance 2 from m and finally 16 completely inside H. This accounts
for 2 � ð27 � 2 þ 16 � 4Þ points in H at distance 3 from d. In particular, H contains
3 þ 54 þ 160 þ 236 ¼ 453 points, which contradicts jHjd 486. r

5.7 Extensions of the M24 near hexagon. In this subsection we assume G to be an
extension of the M24 near hexagon. The M24 near hexagon is the unique near hexa-
gon with parameters s ¼ 2 ¼ t2 and t ¼ 14. This near hexagon can be described in
terms of the Steiner system Sð24; 4; 8Þ on a set of 24 symbols. Its points are the octads
of this Steiner system, while lines are the partitions of the 24 elements of the Steiner
system into three octads. A dodecad is a set of 12 symbols that is the symmetric
di¤erence of two octads meeting in 2 symbols. The complement of a dodecad is also
a dodecad. To each dodecad we can associate a geometric hyperplane of the near
hexagon consisting of those octads that meet the dodecad in precisely 4 symbols. A
pair of complementary dodecads is also called a duum. The two dodecads of a duum
define the same hyperplane. Using some detailed knowledge of the Steiner system one
can verify that two distinct hyperplanes associated to dodecads intersect in 335 or
315 octads, corresponding to the cases where the dodecads intersect in either 4 or 8
points, or 6 points, respectively.

Let p and q be two points at mutual distance 2 in the collinearity graph G of G, and
as usual, let Hq denote the geometric hyperplane which is the complement of p? V q?

in Gp. Then each point in H is on 11 lines inside H and 4 lines meeting H in just one
point, or the point is deep.

By the classification of hyperplanes of the M24 near hexagon, see [8], the hyper-
plane Hq is equal to a hyperplane determined by a dodecad as described above. In
particular, Hq does contain 495 points, none of them being deep. This implies that
the collinearity graph of G has diameter 2 and is strongly regular with parameters
ðv; k; l; mÞ ¼ ð2048; 759; 310; 264Þ. Thus there are 1288 points at distance 2 from p.
Suppose r is a point not collinear with p, but with p? V q? ¼ p? V r?, i.e., Hq ¼ Hr.
Then for each point u collinear with both p and q we see that in Gu the points at
distance at most 2 from p and q are also at distance at most 2 from r. Inside Gu we see
immediately that this implies that q and r are equal. Hence, the map q 7! Hq is a bi-
jection between the points at distance 2 from p and the set of 1288 hyperplanes of Gp
corresponding to dodecads.

As there are 206 points at distance at most 2 from a fixed point in a hyperplane
associated to a dodecad, we find that in the subgraph of G induced on the set of
points at distance two from p, two adjacent points have 206 common neighbors.
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Since any two adjacent points in G have 310 common neighbors, the two adjacent
points q and r, both not adjacent to p, have 310 � 206 ¼ 104 common neighbors in
p?. In particular, if two points q and r, both not adjacent to p are adjacent, then the
hyperplanes Hq and Hr intersect in 335 ¼ 759 � 2 � mþ 104 points. As there are ex-
actly 495 dodecads meeting a fixed dodecad in 4 symbols, we see that two points q

and r, both not adjacent to p are adjacent, if and only if the dodecads associated to
the hyperplanes Hq and Hr meet in 4 or 8 points. This implies the uniqueness of the
point graph G of G. But then the uniqueness of G follows easily and we have proven:

Proposition 5.21. Let G be an extension of the M24 near hexagon, then it is isomorphic

to the extension on 2048 points related to 211 : M24.

5.8 Proof of Theorem 1.2. We have finished the proof of Theorem 1.2. Indeed, if G
is an extended near hexagon as in the hypothesis of 1.2, then for each point p of G the
local near hexagon Gp is either a generalized quadrangle, a generalized hexagon, or a
near hexagon with quads. If G is locally a generalized quadrangle, then 5.2 applies
and if it is locally a generalized hexagon, then 5.10 applies. If G is locally a near
hexagon with quads, then by [6] it is locally a near hexagon of Hamming type, han-
dled by 5.11, the PSp6ð2Þ near hexagon, handled by 5.13, the PSU6ð2Þ near hexagon,
handled by 5.14, or one of the two near hexagons related to the groups 36 : 2 � M12 or
M24, which are handled by 5.20 and 5.21.

6 Classification of line systems

In this section we show how Theorem 1.1 follows from Theorem 1.2.
Let L be a line system as in the hypothesis of Theorem 1.1. Then as already ob-

served in the introduction, this line system carries the structure of an extension of a
near hexagon GðLÞ, the circles of this extended near hexagon being the sets of 4 lines
passing through the vertices of a regular tetrahedron centered at the origin. Let S be
the set of norm 3 vectors on the lines in L. Then S also carries the structure of an
extended near hexagon GðSÞ, whose circles are now the sets of 4 vertices on the tet-
rahedra mentioned above. The extended near hexagon GðSÞ is a 2-fold cover of
GðLÞ, which is an extended near hexagon as in the hypothesis of Theorem 1.2.

We will show that there is a unique way to obtain the 2-fold cover GðSÞ for each of
the extended near hexagons of the conclusion of Theorem 1.2.

Consider GðLÞ whose point set is L. For each line p of L we denote by þp and
�p the two norm 3 vectors on p. Then fGp j p A Lg is the point set of GðSÞ. Ad-
jacency in the point graph of GðSÞ is the same has having inner product �1.

Throughout this section we fix a point p of GðLÞ and we show that all adjacencies
in GðSÞ can be expressed in terms of adjacencies in GðLÞ and subconfigurations of
the local near hexagon Gp. Without loss of generality, we can assume that all the
points adjacent to þp are the points þq, and all the points adjacent to �p are the
points �q, where q A p? � fpg.

Lemma 6.1. Let q; r A p? � fpg. Then þq and þr, respectively, �q and �r are adja-
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cent, if and only if the points p; q and r are in a circle. The points þq and �r are ad-

jacent, if and only if q and r are adjacent, but not in a circle with p.

Proof. Obvious. r

Lemma 6.2. Suppose q is a point of GðLÞ, which is at distance 2 from p in the point

graph of GðLÞ. Then p? V q? is a disjoint union of the sets fr A L j þr A þp? Vþq?g
and fr A L j þr A þp? V�q?g. Moreover, the sets þp? Vþq? and þp? V�q? are

both cocliques in the near hexagon GðSÞþp.

Proof. The two sets þq? and �q? are disjoint. Thus certainly the two sets þp? Vþq?

and þp? V�q? are disjoint. If r A p? V q?, then þr is a either adjacent to þq or to
�q and hence contained in one of the two sets þp? Vþq? or þp? V�q?.

Suppose þr A þp? Vþq?. Then the points þq and þp are points at distance 3 in
the local near hexagon GðSÞþr. In particular, there is no point in þp? Vþq? adjacent
to þr, and we may conclude that þp? Vþq? is a coclique. Clearly the same does also
hold for þp? V�q?. r

Lemma 6.3. Let G be an extended near hexagons of the conclusion of Theorem 1.2.
Then, for any pair p; q of points at distance two in the point graph of G, there is a

unique decomposition of the m-graph p? V q? into two sets Pþ and P�, which are co-

cliques in both local near hexagons Gp and Gq.

Proof. The existence of a decomposition of the m-graphs into two cocliques follows by
the above lemma and the existence of the line systems related to all the extended near
hexagons of Theorem 1.2. It remains to show uniqueness.

The m-graph is the point set of the complement of some hyperplane H of the local
near hexagon Gp.

Suppose there are two decompositions Pþ UP� and Qþ UQ� of the m-graph. Then
ðPþ VQþÞU ðP� VQ�Þ and ðPþ VQ�ÞU ðP� VQþÞ are joins of di¤erent components
of the m-graph. In particular, the m-graph and hence the complement of the hyper-
plane H in the local near hexagon is disconnected. We will show that this leads to a
contradiction, except in the case where G is the extended near hexagon related to
PSp6ð2Þ.

For generalized quadrangles it is well known that the complements of hyperplanes
are connected. Thus we can assume that the diameter of the near hexagon is at
least 3.

Suppose the near hexagon contains quads. Then any two points at distance two are
contained in a quad. Thus, if two points are in distinct connected components of the
complement of H, then they are at distance 3. Suppose ða; b; c; dÞ is a path of length 3
in the collinearity graph of the near hexagon with a and d not in H, and in distinct
connected components of the complement of H. Thus b; c A H. Let Q be a quad
containing b and c. As all points of Q that are at distancec 2 from a and d are in H,
this quad has to meet H in b? VQ or in c? VQ, or is contained in H. Since there are
t2 þ 2 lines on b (respectively c) that are not in H, there are ðt2 þ 2Þ=t2 quads on the
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line through c and b meeting H in c? VQ (respectively b? VQ). But that would imply
that the third point of this line is on 2ðt2 þ 2Þ lines not contained in H. A contradic-
tion to 5.1.

Now consider the case that G is locally a generalized hexagon as in ðivÞ of Theorem
1.2. In this case the m-graph is the set of points at distance 3 from a fixed point in the
generalized hexagon H, and as is shown in [15], this graph is connected.

So, for all the extended near hexagons di¤erent from the extended generalized
hexagon related to PSp6ð2Þ we have shown the lemma. It remains to consider the case
where G is the extended generalized hexagon related to PSp6ð2Þ. Here the situation is
a bit di¤erent.

Fix two points p and q as in the hypothesis of the lemma. The m-graph M :¼
p? V q? of the collinearity graph of the extended generalized hexagon on 120 points
related to PSp6ð2Þ is the complement of a hyperplane H of the generalized hexagon
Gp consisting of 9 lines pairwise at distance 3 in the dual hexagon. Inside the hexagon
Gp, the complement of such a hyperplane is not connected but has two connected
components of 18 points, see [23]. These connected components are distance regular
bipartite graph with intersection array f3; 2; 2; 1; 1; 1; 2; 3g. Thus we can partition the
36 vertices in the complement of H into 4 cocliques of 9 vertices, called Ci, with
i ¼ 1; . . . ; 4, being the 4 halves of the 2 bipartite subgraphs. Up to permutation of the
indices we may assume that the two bipartite graphs decomposing M inside Gp have
vertex set C1 UC2 and C3 UC4, respectively. Now C1 UC3 together with C2 UC4 as
well as C1 UC4 with C2 UC3 yield a partition of the complement of H into two co-
cliques of Gp of size 18. These are the only two ways to obtain such a partition. We
will show that only one of these two partitions satisfies the hypothesis of the lemma.
Therefore consider the graph on M induced by Gq. At least one of the two partitions
obtained inside Gp has to remain a partition into cocliques inside Gq. (Indeed, that
such a partition exists follows from the existence of the corresponding line system.)
Suppose C1 UC3 and C2 UC4 is such a partition. It now su‰ces to show that C1 UC4

is not a coclique inside Gq. Fix a point c of C1. Then c? VCi, with i ¼ 2; 3; 4 contains
3 points. The three points of c? VC1 are collinear with c inside Gp, and hence not in-
side Gq. The three points of c? VC3 as well as the points in c? VC1 are also not col-
linear to c inside Gq as, by assumption, C1 UC3 is a coclique inside Gq. Hence, the
three points of M collinear to c inside Gq are the points of c? VC4. In particular,
C1 UC4 is not a coclique. This shows that also in this case, there is a unique way to
partition M into two sets of size 18 which are both cocliques in Gp and Gq. r

We are now able to prove that for each of the extended near hexagon G from
Theorem 1.2 there exists, up to isomorphism, a unique regular line system L as in the
hypothesis of Theorem 1.1 with GðLÞFG.

We fix the notation as before. If q is a point of GðLÞ at distance 2 from p, then the
m-graph p? V q? can be uniquely be partitioned as Pþ UP�, as in 6.3. The above
lemmas show that without loss of generality we can now assume that the point þq of
GðSÞ is the point with m-graph þp? Vþq? ¼ Pþ and �q is the point with þp? V
�q? ¼ P�.

In the next lemma we will see when two such points are adjacent.
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Lemma 6.4. Let q and r be two adjacent points at distance 2 from p, and

C ¼ fq; r; u; vg a circle on q and r meeting p?. Then þq (respectively þr) is adjacent to
eu and hv for a unique pair pq ¼ ðe; hÞ A fþ;�g2 (respectively pr) with e � h ¼ �.
Moreover, þq and þr are adjacent if and only if pq ¼ pr.

Proof. The point þq is adjacent to eu and hv for some e; h A fþ;�g. Suppose þq is
adjacent to þu. The points þu and þv are not adjacent in the near hexagon Gþp. Thus
þu is adjacent to �v. In the near hexagon Gþq there is a unique line through þu and
one of the points þv or �v. Clearly, this can only be �v. Hence þq is also adjacent to
�v. This proves the first part of the lemma.

The second part follows from the observation that the point þq is adjacent to þr if
and only if þr is on the unique line in Gþq through þu and �v. Hence if and only if
þr is also adjacent to þu and �v. r

The above lemmas show that the point graph of GðSÞ is uniquely determined by
the isomorphism type of GðLÞ, which clearly implies that GðSÞ is uniquely deter-
mined by GðLÞ, provided that on each edge at distance 2 from p there is a circle
meeting p?. In other words, provided that the geometric hyperplane which is the
complement of the m-graph in GðLÞp has no deep points. This proves that for each of
the extended near hexagons GðLÞ of 1.2 there is a unique point graph for GðSÞ, ex-
cept possibly, when GðLÞ is isomorphic to the extended generalized hexagon related
to the group 27 : G2ð2Þ. So, assume that GðLÞ is isomorphic to this extended gen-
eralized hexagon related to the group 27 : G2ð2Þ. Then there is a unique point q at
distance 3 from p in the point graph of GðLÞ. There are 126 pointsGr at distance 2
from þp, with r at distance 2 from p in the point graph of GðLÞ. Of these 126 points
63 are adjacent to þq, the other 63 to �q. The induced subgraphs on the neighbors
of þq (or �q) is a generalized hexagon isomorphic to H. The subgraph induced on
the 126 points is isomorphic to the subgraph induced on the 126 points adjacent to
þp or �p. There is a unique way to partition the 126 points into two sets of 63
points on which the induced subgraph is the point graph of the hexagon H. (Two
adjacent vertices are in the same 63-set if and only if they have 5 common neigh-
bors.) Thus also in this case GðSÞ is uniquely determined by the isomorphism type of
GðLÞ.

It remains to prove that there is a unique presentation of the point graph of GðSÞ as
a set of norm 3 vectors in a line system satisfying the hypothesis of Theorem 1.1. But
the point graph of GðSÞ uniquely determines the Gram matrix of the set of vectors S,
and hence the line system L. This finishes the proof of Theorem 1.1.

We want to finish the paper with some additional remarks. Consider any of the
lines systems L from Theorem 1.1 di¤erent from the one related to 27 : G2ð2Þ. Then
the point graph of GðLÞ is strongly regular. Suppose the parameters of this strongly
regular graph are ðk; l; mÞ and l ¼ kðk � l� 1Þ=m. Then the point graph of GðSÞ has

distance distribution diagram as follows. (Here l ¼ k1 ¼ 2ðtþ 1Þ, k2 ¼ 22tðtþ1Þ
t2þ1 and

k3 ¼ 23tðt�t2Þ
t2þ1 , i.e., ki is the number of points at distance i from a fixed point in the

local near hexagon.)
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k 1

k2

k2

k3

k 1

k3

2(t + 1)

2(t + 1)

m / 2

m / 2

k – m

k

k

2l

If GðLÞ is isomorphic to the 27 : G2ð2Þ extended generalized hexagon then the dis-
tribution diagram for the point graph of GðSÞ is as follows.

63 1

63 1

24

24

6

6

32

32

16

16

6 + 24

1 63

63

63

126 2

In all cases the line system L can be realized as follows. Suppose V is the real
vector space with basis S and equipped with an inner product for which S is an or-
thogonal basis. Let A be the 0; 1-adjacency matrix of the point graph of GðSÞ. From
the distribution diagrams it is easy to see that the vector

ðþpÞ � ð�pÞ � ð1=3ÞðSq A p?�f pgððþqÞ � ð�qÞÞÞ

is an eigenvector with eigenvalue �k=3 of A, where k is the number of points in
the local near hexagon. Orthogonal projection of the vectors of S onto the �k=3-
eigenspace of A and rescaling yields a representation of S as norm 3 vectors on a
tetrahedrally closed regular line system. The dimension of this representation is equal
to the multiplicity of the eigenvalue �k=3 of A and equals jLj=ð1 þ k=9Þ, see [7].
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We notice that parts of this section could also be obtained using the theory on
covers of diagram geometries, e.g. see [31]. For example, there it is shown that the
extended near hexagon on 2300 points related to the group Co2 has a unique uni-
versal cover, which is the extended near hexagon related to the 4600 vectors on the
2300 lines in R23 in the line system of Example 3.1.
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(Siena, 1996), 29–38, Birkhäuser 1998. MR 99k:51015 Zbl 0899.51005
[3] J. van Bon, Some extended generalized hexagons. In: Finite geometry and combinatorics

(Deinze, 1992), volume 191 of London Math. Soc. Lecture Note Ser., 395–403, Cambridge
Univ. Press 1993. MR 95a:51005 Zbl 0791.51004

[4] J. van Bon, H. Cuypers, A‰ne extensions of near hexagons related to the spin module of
type B3. In: Groups and geometries (Siena, 1996), 215–229, Birkhäuser 1998.
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