Complex structures on the Iwasawa manifold

Georgios Ketsetzis and Simon Salamon

(Communicated by G. Gentili)

Abstract. We identify the space of left-invariant oriented complex structures on the complex Heisenberg group, and prove that it has the homotopy type of the disjoint union of a point and a 2-sphere.

Introduction

It is well known that every even-dimensional compact Lie group has a left-invariant complex structure [12], [14]. By contrast, not all nilpotent groups admit left-invariant complex structures. In 6 real dimensions there are 34 isomorphism classes of simply-connected nilpotent Lie groups, and the study [11] reveals that 18 of these admit invariant complex structures. The complex Heisenberg group G possesses a particularly rich structure in this regard, since it has a 2-sphere of abelian complex structures in addition to its standard bi-invariant complex structure J_0 .

The Iwasawa manifold $\mathbb{M} = \Gamma \setminus G$ is a compact quotient of G, and any leftinvariant tensor on G induces a tensor on \mathbb{M} . As explained in §2, studies of Dolbeault cohomology suggest that the moduli space of complex structures on \mathbb{M} is determined by the space of left-invariant complex structures on G. The set of such structures compatible with a standard metric g and orientation is the union of $\{J_0\}$ and the 2sphere already mentioned [1]. The present paper shows that this description remains valid at the level of homotopy when one no longer insists on compatibility with g. This requires a new approach, in which complex structures are described by a basis of (1,0)-forms in echelon form (see Proposition 2.3). Similar techniques can be applied to other Lie groups and nilmanifolds, though we refer the reader to [10] for related studies.

We work mainly with the Lie algebra g of G, and regard left-invariant differential forms on G as elements of $\bigwedge^k g^*$. A special feature of the space $\mathscr{C}(g)$ of all invariant complex structures on \mathbb{M} is that any J in $\mathscr{C}(g)$ is compatible with the fibration of \mathbb{M} as a T^2 bundle over T^4 . Algebraically, this amounts to asserting that the 4dimensional kernel \mathbb{D} of $d: g^* \to \bigwedge^2 g^*$ is necessarily J-invariant. As we show in §2, the essential features of an invariant complex structure J are captured by its restriction to \mathbb{D} , and are described by a complex 2×2 matrix X. In this way, topological questions are related to properties of the eigenvalues of $X\overline{X}$ and some matrix analysis described in [6].

The orientation of the restriction of an almost complex structure J to \mathbb{D} determines two connected components of $\mathscr{C}(\mathfrak{g})$ that we study separately. We establish global complex coordinates on the component \mathscr{C}_+ containing the complex structure induced by J_0 , and show that it has the structure of a contractible complex 6-dimensional manifold. By exploiting an SU(2) action on the second component \mathscr{C}_- , we prove that this retracts onto the 2-sphere of negatively-oriented orthogonal almost complex structures on \mathbb{D} .

1 Preliminaries

The Iwasawa manifold \mathbb{M} is defined as the quotient $\Gamma \setminus G$, where

$$G = \left\{ \begin{pmatrix} 1 & z_1 & z_3 \\ 0 & 1 & z_2 \\ 0 & 0 & 1 \end{pmatrix} : z_i \in \mathbb{C} \right\}$$

is the complex Heisenberg group and Γ is the lattice defined by taking z_1, z_2, z_3 to be Gaussian integers, acting by left multiplication. We shall regard \mathbb{M} as a real manifold of dimension 6, and we let g denote the real 6-dimensional Lie algebra associated to G.

An *invariant* complex structure on \mathbb{M} is by definition one induced from a leftinvariant complex structure on the real Lie group underlying G. Such a structure is invariant by the action of the centre Z of G, that persists on \mathbb{M} (Z consists of matrices for which $z_1 = 0 = z_2$). The set of such structures can be identified with the set $\mathscr{C}(\mathfrak{g})$ of almost complex structures on the real Lie algebra g that satisfy the Lie algebraic counterpart

$$[JX, JY] = [X, Y] + J[JX, Y] + J[X, JY]$$

of the Newlander-Nirenberg integrability condition.

The natural complex structure J_0 of G, for which z_1, z_2, z_3 are holomorphic, is a point of $\mathscr{C}(\mathfrak{g})$ that satisfies the stronger condition [JX, Y] = J[X, Y]. It induces a bi-invariant complex structure of G that therefore passes to a G-invariant complex structure on \mathbb{M} . We shall denote by $\mathscr{C}^+(\mathfrak{g})$ the subset consisting of complex structures inducing the same orientation as J_0 .

The 1-forms

$$\omega^{1} = dz_{1}, \quad \omega^{2} = dz_{2}, \quad \omega^{3} = -dz_{3} + z_{1} dz_{2}, \tag{1}$$

are left-invariant on G. Define a basis $\{e^1, \ldots, e^6\}$ of *real* 1-forms by setting

$$\omega^1 = e^1 + ie^2, \quad \omega^2 = e^3 + ie^4, \quad \omega^3 = e^5 + ie^6.$$
 (2)

These 1-forms are pullbacks of corresponding 1-forms on the quotient $\mathbb{I}M$, which we denote by the same symbols. They satisfy

$$\begin{cases} de^{i} = 0, & 1 \leq i \leq 4, \\ de^{5} = e^{13} + e^{42}, \\ de^{6} = e^{14} + e^{23}. \end{cases}$$
(3)

Here, we make use of the notation $e^{ij} = e^i \wedge e^j$.

Let $T^k \cong \mathbb{R}^k / \mathbb{Z}^k$ denote a real k-dimensional torus. Then \mathbb{M} is the total space of a principal T^2 -bundle over T^4 . The mapping $p : \mathbb{M} \to T^4$ is induced from $(z_1, z_2, z_3) \mapsto (z_1, z_2)$. The space of invariant 1-forms annihilating the fibres of p is

$$\mathbb{D} = \langle e^1, e^2, e^3, e^4 \rangle = \ker(d : \mathfrak{g}^* \to \bigwedge^2 \mathfrak{g}^*),$$

and this 4-dimensional subspace of g^* will play a crucial role in the theory.

Theorem 1.1. Let J be any invariant complex structure on \mathbb{M} . Then p induces a complex structure \hat{J} on T^4 such that $p: (\mathbb{M}, J) \to (T^4, \hat{J})$ is holomorphic.

Proof. Let J be an element of $\mathscr{C}(\mathfrak{g})$. The essential point is that \mathbb{D} is J-invariant. Once this is established, it suffices to define \hat{J} to be the T^4 -invariant complex structure determined on cotangent vectors by $J|_{\mathbb{D}}$. The pullback of a (1,0)-form on T^4 is then an invariant (1,0)-form on \mathbb{M} .

Let Λ denote the space of (1, 0)-forms relative to J. Then

$$\dim(\langle e^1, e^2, e^3, e^4, e^5 \rangle_c \cap \Lambda) = 2.$$

If dim($\mathbb{D}_c \cap \Lambda$) = 2 then $J\mathbb{D} = \mathbb{D}$, as required. If not, there exists a (1,0)-form $\delta + e^5$ with $\delta \in \mathbb{D}$. This implies that

$$de^5 \in \Lambda^{2,0} \oplus \Lambda^{1,1}$$

and consequently that $de^5 \in \Lambda^{1,1}$. Similarly for e^6 , and thus

$$\omega^1 \wedge \omega^2 = d\omega^3 = de^5 + ide^6 \in \Lambda^{1,1},$$

implying that $J\omega^1 \wedge J\omega^2 = \omega^1 \wedge \omega^2$ and hence

$$\langle J\omega^1, J\omega^2 \rangle = \langle \omega^1, \omega^2 \rangle.$$

Thus, the subspace $\langle \omega^1, \omega^2 \rangle$ is *J*-invariant, and $J\mathbb{D} = \mathbb{D}$.

Decreeing the 1-forms e^i to be orthonormal determines a left-invariant metric

$$g = \sum_{i=1}^{6} e^i \otimes e^i \tag{4}$$

on G. This induces metrics on T^4 and \mathbb{M} (that we also denote by g) for which p is a Riemannian submersion. The subset $\mathscr{C}^+(\mathfrak{g},g)$ of $\mathscr{C}^+(\mathfrak{g})$ corresponding to g-orthogonal oriented complex structures is now easy to describe in terms of Theorem 1.1.

Lemma 1.2. The restriction of the mapping $J \mapsto \hat{J}$ to $\mathscr{C}^+(\mathfrak{g},g)$ is injective.

Proof. We need to describe the set of invariant orthogonal complex structures on T^4 in terms of 2-forms on \mathbb{D} . First recall that an element of $\mathscr{C}^+(\mathfrak{g},g)$ is determined by the corresponding *fundamental* 2-*form* γ satisfying $\gamma(X, Y) = g(JX, Y)$. Given J in $\mathscr{C}^+(\mathfrak{g},g)$, both \mathbb{D} and $\mathbb{D}^{\perp} = \langle e^5, e^6 \rangle$ are J-invariant and there exists an orthonormal basis $\{f^1, f^2, Jf^1, Jf^2\}$ of \mathbb{D} for which

$$\gamma = f^1 \wedge J f^1 + f^2 \wedge J f^2 \pm e^5 \wedge e^6.$$
⁽⁵⁾

Then the fundamental 2-form of \hat{J} is

$$\hat{\gamma} = f^1 \wedge J f^1 + f^2 \wedge J f^2.$$
(6)

The fact that the overall orientation of J on g is positive then determines uniquely the sign in (5).

To continue the discussion in the above proof, fix either a plus or minus sign. Then

$$e^{12} \pm e^{34}, \quad e^{13} \pm e^{42}, \quad e^{14} \pm e^{23}$$
 (7)

constitutes a basis of the 3-dimensional subspace $\bigwedge_{\pm}^2 {\rm I\!D}$ giving rise to the celebrated decomposition

$$\bigwedge^{2} \mathbb{D} = \bigwedge^{2}_{+} \mathbb{D} \oplus \bigwedge^{2}_{-} \mathbb{D}.$$
(8)

This determines a double covering $SO(4) \rightarrow SO(3)_+ \times SO(3)_-$, and there exist corresponding *subgroups* $SU(2)_+$, $SU(2)_-$ of SO(4) acting trivially on $\bigwedge_{-}^2 \mathbb{D}$, $\bigwedge_{+}^2 \mathbb{D}$ respectively.

The 2-form (6) belongs to the disjoint union

$$\mathscr{S}_{+} \sqcup \mathscr{S}_{-},$$
 (9)

where \mathscr{S}_{\pm} is a 2-sphere in $\bigwedge_{\pm}^2 \mathbb{D}$. The choice of sign depends on whether \hat{J} is positively or negatively oriented and is duplicated in (5). For example J_0 has fundamental 2-form

$$\gamma = e^{12} + e^{34} + e^{56},$$

168

and $\hat{\gamma} = e^{12} + e^{34} \in \mathscr{S}_+$. The product $\mathscr{S}_+ \times \mathscr{S}_-$ may be identified with the Grassmannian of oriented 2-planes in \mathbb{R}^4 and this was the origin of the concept of self-duality [2], [13]. Notice that (3) implies that $\operatorname{Im} d$ lies in the subspace $\bigwedge_+^2 \mathbb{D}$ of self-dual 2-forms; from this point of view \mathbb{M} is an 'instanton' over the torus T^4 .

The main result of [1] may now be summarized by

Theorem 1.3. The space $\mathscr{C}^+(\mathfrak{g},g)$ is the disjoint union of $\{J_0\}$ and the 2-sphere of all *g*-orthogonal almost complex structures J on \mathfrak{g} for which $\hat{J} \in \mathscr{G}_-$.

Let

$$\mathscr{Z}'_{-} = \{ J \in \mathscr{C}^{+}(\mathfrak{g}, g) : \hat{J} \in \mathscr{S}_{-} \}$$

denote the 2-sphere featuring in this theorem; we use the notation of [1]. Consider SO(4) as a subgroup of GL(6, \mathbb{R}) by letting it act trivially on e^5 , e^6 . Since $d(\mathfrak{g}^*)$ is spanned by 2-forms in $\bigwedge_{+}^2 \mathbb{D}$, the subgroup SU(2)₋ is a group of Lie algebra automorphisms of \mathfrak{g} , acting transitively on \mathscr{Z}'_{-} . This observation will be important in §4.

2 Deformation of J_0

The main purpose of what follows is to generalize Theorem 1.3 by removing the orthogonality constraint. We begin by decomposing the space of *all* almost complex structures on \mathbb{D} as

$$\mathscr{A}_+ \sqcup \mathscr{A}_-$$

where \mathscr{A}_{\pm} consists of those structures inducing a \pm orientation on \mathbb{D} . This is the extension of (9) in the non-metric situation, and

$$\mathscr{A}_{\pm} \cong \frac{\mathrm{GL}^+(4,\mathbb{R})}{\mathrm{GL}(2,\mathbb{C})} \supset \frac{\mathrm{SO}(4)}{U(2)} \cong \mathscr{S}_{\pm}.$$

We then set

Definition 2.1. Let $\mathscr{C}_{\pm} = \{J \in \mathscr{C}^+(\mathfrak{g}) : \hat{J} \in \mathscr{A}_{\pm}\}.$

In contrast to \mathscr{A}_{\pm} , the definition of \mathscr{C}_{\pm} incorporates the requirement of integrability. If the overall orientation of g is not fixed, we obtain

$$\mathscr{C}(\mathfrak{g}) = \mathscr{C}_+ \sqcup \mathscr{C}_- \sqcup (-\mathscr{C}_+) \sqcup (-\mathscr{C}_-),$$

where $-\mathscr{C}_{\pm} = \{-J : J \in \mathscr{C}_{\pm}\}$. Signs that appear as *subscripts* refer exclusively to the orientation on \mathbb{D} .

In order to gain a greater understanding of the subsets $\mathscr{C}_+, \mathscr{C}_-$, we now describe a

completely different set-theoretic partition of $\mathscr{C}^+(\mathfrak{g})$, in which J_0 plays the role of an origin. We use the notation (1), with $\overline{\omega}^{123} = \overline{\omega}^1 \wedge \overline{\omega}^2 \wedge \overline{\omega}^3$ etc.

Definition 2.2. Let \mathscr{C}_0^{\bullet} be the open subset of $\mathscr{C}^+(\mathfrak{g})$ consisting of complex structures admitting a basis $\{\alpha^1, \alpha^2, \alpha^3\}$ of (1, 0)-forms for which $\alpha^{123} \wedge \overline{\varpi}^{123} \neq 0$, and let \mathscr{C}_0^{∞} be the complement $\mathscr{C}^+(\mathfrak{g}) \setminus \mathscr{C}_0^{\bullet}$.

The zero subscript emphasizes that comparisons are being made with reference to J_0 , elements of \mathscr{C}_0^{∞} are 'infinitely far' from J_0 in the sense that the coefficients in (10) below become unbounded.

Proposition 2.3. If $J \in \mathscr{C}_0^{\bullet}$ then there exists a basis $\{\alpha^i\}$ of (1,0)-forms and $a, b, c, d, x, y \in \mathbb{C}$ such that

$$\begin{cases} \alpha^{1} = \omega^{1} + a\overline{\omega}^{1} + b\overline{\omega}^{2}, \\ \alpha^{2} = \omega^{2} + c\overline{\omega}^{1} + d\overline{\omega}^{2}, \\ \alpha^{3} = \omega^{3} + x\overline{\omega}^{1} + y\overline{\omega}^{2} + u\overline{\omega}^{3}, \end{cases}$$
(10)

where u = -ad + bc.

Proof. Theorem 1.1 implies that α^1, α^2 can be chosen so that their real and imaginary components span \mathbb{D} . The condition $\alpha^{123} \wedge \overline{\omega}^{123} \neq 0$ ensures that $\omega^1, \omega^2, \omega^3$ appear with non-zero coefficients. We thus obtain the description (10) for some $u \in \mathbb{C}$. The equation relating a, b, c, d, u is a direct consequence of the integrability condition

$$d\alpha^3 \wedge \alpha^{123} = 0$$

expressing the fact that $d\alpha^3$ has no (0, 2)-component.

For the remainder of this section, we focus on \mathscr{C}_0^{\bullet} . In (10), \hat{J} is the almost complex structure on \mathbb{D} with (1,0)-forms

$$\begin{cases} \alpha^1 = \omega^1 + a\overline{\omega}^1 + b\overline{\omega}^2, \\ \alpha^2 = \omega^2 + c\overline{\omega}^1 + d\overline{\omega}^2, \end{cases}$$
(11)

and is conveniently represented by the matrix

$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$
 (12)

The characteristic polynomial of $X\overline{X}$ has the form

$$c(x) = x^2 - \gamma x + \delta,$$

where

Complex structures on the Iwasawa manifold

$$\gamma = \operatorname{tr}(X\overline{X}) = |a|^2 + |d|^2 + 2\operatorname{Re}(b\overline{c}),$$

$$\delta = \det(X\overline{X}) = |u|^2.$$

Let λ, μ denote the roots of c(x). An inspection of the coefficients γ, δ shows that λ, μ are either both real of the same sign or complex conjugates. The following result is less obvious.

Lemma 2.4. If λ, μ are real and non-positive, then $\lambda = \mu \leq 0$.

Proof. Let $z = b\overline{c} \in \mathbb{C}$. The inequality $0 \leq |z| + \operatorname{Re}(z)$ implies that

$$0 \leq |bc| + \operatorname{Re}(b\overline{c}) \leq |bc - ad| + |ad| + \operatorname{Re}(b\overline{c}).$$

Thus,

$$0 \leq 2|ad - bc| + |a|^2 + |d|^2 + 2\operatorname{Re}(b\bar{c}) = 2\sqrt{\delta} + \gamma.$$

If $\gamma < 0$ then the discriminant $\gamma^2 - 4\delta$ is negative and the roots of c(x) are not real.

A direct calculation reveals that

$$\alpha^{12} \wedge \overline{\alpha}^{12} = (1 - \gamma + \delta)\omega^{12} \wedge \overline{\omega}^{12} = c(1)\omega^{12} \wedge \overline{\omega}^{12}.$$

Whence

Proposition 2.5.

$$\alpha^{12} \wedge \bar{\alpha}^{12} = 4(1-\lambda)(1-\mu)e^{1234},$$

$$\alpha^{123} \wedge \bar{\alpha}^{123} = -8i(1-\lambda)(1-\mu)(1-\lambda\mu)e^{12\cdots 6}.$$

This proposition implies that the sign of $(1 - \lambda)(1 - \mu)$ corresponds to that of \mathscr{C}_{\pm} . Moreover, $\lambda \mu \ge 0$, so that

- (i) $J \in \mathscr{C}_+ \cap \mathscr{C}_0^{\bullet} \Rightarrow 0 \leq \lambda \mu < 1$,
- (ii) $J \in \mathscr{C}_{-} \cap \mathscr{C}_{0}^{\bullet} \Rightarrow \lambda \mu > 1.$

Note that $\mu = \overline{\lambda}$ implies that $c(1) = |1 - \lambda|^2 > 0$, and is only admissible for $J \in \mathscr{C}_+$. The possibilities for the unordered pair $\{\lambda, \mu\}$ are illustrated schematically in Figure 1. The two labelled regions correspond to Condition (i), with the origin a common point of intersection. The semi-circular region corresponds to Im $\lambda > 0$ and $|\lambda| < 1$. By contrast, points (λ, μ) south-east of the diagonal line $\lambda = \mu$ represent those of the real plane in the usual way: the triangular region bounds points arising from \mathscr{C}_+ with $\lambda > \mu \ge 0$ and the shaded region represents points satisfying (ii).

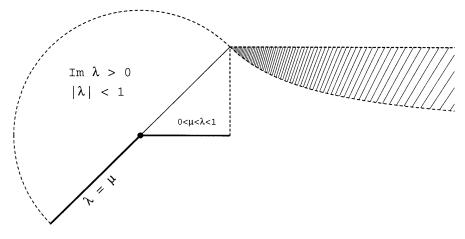


Figure 1

Remark. The similarity class of $X\overline{X}$ is invariant by the action

$$X \mapsto g^{-1} X \overline{g}, \quad g \in \mathrm{GL}(2, \mathbb{C}),$$

that characterizes the relation of 'consimilarity' [6]. This action is known to be transitive on the set of X corresponding to a fixed similarity class of $X\overline{X}$, provided $X\overline{X} \neq 0$. In particular, if $X\overline{X}$ is diagonalizable with λ, μ positive then there exists $g \in GL(2, \mathbb{C})$ such that

$$X = g^{-1} egin{pmatrix} \sqrt{\lambda} & 0 \\ 0 & \sqrt{\mu} \end{pmatrix} ar{g}$$

(the sign of the square roots can be changed by modifying X) [6, 4.6.11]. Points in the open triangular region therefore represent $GL(2, \mathbb{C})$ orbits of \mathscr{A}_+ that consist of projections (via Theorem 1.1) of complex structures in \mathscr{C}_+ . On the other hand, \mathscr{C}_- contains elements for which λ is infinite and the corresponding eigenvector of $X\overline{X}$ determines a point of \mathbb{CP}^1 that re-appears as a 2-sphere in Theorem 4.5 below.

We are focussing attention on the set $\mathscr{C}(\mathfrak{g})$ of left-invariant complex structures on G. The right action of G induces a transitive action on \mathbb{M} and an induced action on $\mathscr{C}^+(\mathfrak{g})$. Given an element J of $\mathscr{C}^+(\mathfrak{g})$, let $R_G(J)$ denote the orbit of J induced by this action.

Proposition 2.6. If J is given by (10) and (12), then

$$\dim_{\mathbb{C}} R_G(J) = \begin{cases} 0 & \text{if } X = 0, \\ 1 & \text{if } u = 0 \text{ and } X \neq 0, \\ 2 & \text{otherwise.} \end{cases}$$

Proof. Right translation leaves invariant the 1-forms ω^1, ω^2 in (1), but maps ω^3 to $\omega^3 + p\omega^1 + q\omega^2$ for arbitrary $p, q \in \mathbb{C}$. Thus

$$\begin{aligned} \alpha^{3} &\mapsto \alpha^{3} + p\omega^{1} + q\omega^{2} + u(\overline{p\omega}^{1} + \overline{q\omega}^{2}) \\ &= \alpha^{3} + p(\alpha^{1} - a\overline{\omega}^{1} - b\overline{\omega}^{2}) + q(\alpha^{2} - c\overline{\omega}^{1} - d\overline{\omega}^{2}) + u(\overline{p\omega}^{1} + \overline{q\omega}^{2}) \\ &= \alpha^{3} + p\alpha^{1} + q\alpha^{2} + (u\overline{p} - ap - qc)\overline{\omega}^{1} + (u\overline{q} - bp - dq)\overline{\omega}^{2}. \end{aligned}$$

This has the effect of replacing (x, y) by $(x + u\overline{p} - ap - cq, y + u\overline{q} - bp - dq)$ in (10). If X = 0 then J is unchanged, and $R_G(J) = \{J\}$. The remaining cases follow from the fact that u = 0 if and only if ap + cq is proportional to bp + dq.

A point of the moduli space of complex structures on \mathbb{M} consists of an equivalence class of a complex structure (invariant or not) under the action of the diffeomorphism group. A neigbourhood of it at a smooth point J can be identified with a subset of $H^1(\mathbb{M}, \mathcal{O}(T_J))$, where $T = T_J$ denotes the holomorphic tangent bundle of J. This vector space is isomorphic to the corresponding cohomology group of the Dolbeault complex

$$0 \to \Omega^{0,0}(T) \to \Omega^{0,1}(T) \to \Omega^{0,2}(T) \to \Omega^{0,3}(T) \to 0.$$
(13)

Now, at least if J has rational coefficients relative to the basis $\{e^i\}$, it is known that the cohomology of (13) coincides with that of the finite-dimensional subcomplex formed by restricting to left-invariant forms of type (p, q) [3], [4].

The cohomology of the invariant subcomplex is easily computed in the case of \mathbb{M} , using the techniques of [11]. In all cases, ker $\overline{\partial} : \Omega^{0,1}(T) \to \Omega^{0,2}(T)$ has dimension 6, whereas $\overline{\partial}(\Omega^{0,0}(T))$ has dimension 0, 1, 2, consistent with the above proposition. This phenomenon leads to the jumping of Hodge numbers at J_0 described in [8]. In any case, it implies that the true moduli space of complex structures on \mathbb{M} has dimension 4 at generic points. It is also suggests that every point is represented by an invariant complex structure, though the moduli space is singular at J_0 and other boundary points in Figure 1.

3 Study of \mathscr{C}_+

In recovering J from \hat{J} , we need only worry about the coefficients of α^3 in (10), for which u is determined by a, b, c, d and x, y are arbitrary complex numbers. Connectivity properties of $\mathscr{C}^+(\mathfrak{g})$ are determined by those of its dense subset \mathscr{C}^{\bullet}_0 , and one expects the topology to be captured by that of the domains (i), (ii) characterizing the choice of $\{\lambda, \mu\}$. Results in this and the next sections will confirm that \mathscr{C}_+ and \mathscr{C}_- are the connected components of $\mathscr{C}^+(\mathfrak{g})$.

Proposition 3.1. $\mathscr{C}_+ \cap \mathscr{C}_0^{\infty} = \emptyset$.

Proof. Let $J \in \mathscr{C}_0^{\infty}$. Suppose that $\{\alpha^1, \alpha^2, \alpha^3\}$ is a basis of (1, 0)-forms of J with the real and imaginary components of α^1, α^2 spanning \mathbb{D} . Consider the two cases:

(i) $\alpha^{12} \wedge \overline{\omega}^{12} \neq 0$. This implies that $\alpha^3 \in \langle \overline{\omega}^1, \overline{\omega}^2, \overline{\omega}^3 \rangle$. The positive overall orientation of *J* then forces $\hat{J} \in \mathscr{A}_-$, and *J* cannot be in the same connected component as J_0 .

(ii) $\alpha^{12} \wedge \overline{\omega}^{12} = 0$ and $\alpha^3 \notin \langle \overline{\omega}^1, \overline{\omega}^2, \overline{\omega}^3 \rangle$. Then $\langle \alpha^1, \alpha^2 \rangle \cap \langle \overline{\omega}^1, \overline{\omega}^2 \rangle \neq \{0\}$, and \hat{J} has a non-zero (1,0)-form $A\overline{\omega}^1 + B\overline{\omega}^2$, which (without losing generality) we may take to equal α^1 . If

$$\alpha^2 = P\omega^1 + Q\omega^2 + C\overline{\omega}^1 + D\overline{\omega}^2,$$

then the integrability of *J* forces AD - BC = 0, and (subtracting a multiple of α^1) we may suppose that C = D = 0. But then $\hat{J} \in \mathcal{A}_-$, and again $J \notin \mathcal{C}_+$.

Theorem 3.2. \mathscr{C}_+ is isomorphic to $\mathscr{U} \times \mathbb{C}^2$ where \mathscr{U} is a star-shaped subset of \mathbb{C}^4 .

Proof. Proposition 3.1 implies that $\{\hat{J} : J \in \mathscr{C}_+\}$ is a subset of

$$\mathscr{U} = \{ X \in \mathbb{C}^4 : (1 - \lambda)(1 - \mu) > 0, 0 \leq \lambda \mu < 1 \},\$$

using the notation (12). We shall show that if $X \in \mathcal{U}$ then $tX \in \mathcal{U}$ for any $t \in [0, 1]$, a fact that is illustrated by Figure 1. Indeed, if the eigenvalues λ, μ of $X\overline{X}$ are complex conjugates, then the defining condition for \mathcal{U} is $|\lambda| < 1$, which becomes $t^2 |\lambda| < 1$ and remains valid. Suppose now that $\lambda, \mu \in \mathbb{R}$. Then $(1 - \lambda)(1 - \mu)$ becomes

$$f = (1 - t^2 \lambda)(1 - t^2 \mu),$$

an expression with roots $t_1^2 = 1/\lambda$ and $t_2^2 = 1/\mu$. If λ, μ are both negative then f has no real roots and is always strictly positive. If λ, μ are both positive then at least one of $1/\lambda, 1/\mu$ is greater than 1, and $(1 - \lambda)(1 - \mu) > 0$ implies that both are greater than 1. It follows that f > 0 for all $t \in [0, 1]$, as required.

The restriction of p to \mathscr{C}_+ is a trivial bundle, whose fibre is obtained by varying only x, y, and \mathscr{C}_+ can be identified with $\mathscr{U} \times \mathbb{C}^2$.

The complex structure induced on \mathscr{C}_0^{\bullet} and $\mathscr{U} \times \mathbb{C}^2$ by the coefficients in (10) obviously coincides with that induced by the natural inclusion

$$\mathscr{C}(\mathfrak{g}) \to \mathbf{Gr}_3(\mathbb{C}^6)$$

obtained by mapping an invariant complex structure J to the span of a (3,0)-form α^{123} . This is also the natural complex structure induced from that of the potential tangent space $H^1(\mathbb{IM}, \mathcal{O}(T_J))$ to the moduli space [11]. From this point of view, as a complex manifold, \mathcal{C}_+ can be identified with an open set of the quadric in \mathbb{C}^7 defined by the equation u = -ad + bc.

Remark. A completely different approach to describing complex structures on a 6dimensional nilmanifold is based on properties of a (3,0)-form $\alpha^{123} = \varphi + i\psi$. The real component φ is a closed 3-form belonging to the open orbit \mathcal{O} of elements of $\bigwedge^3 \mathfrak{g}^* \cong \mathbb{R}^{20}$ with stabilizer isomorphic to $SL(3, \mathbb{C})$. As a consequence, any element φ of \mathcal{O} determines a corresponding almost complex structure J_{φ} and $\psi = J_{\varphi}\varphi$ [5]. The kernel of $d : \bigwedge^3 \mathfrak{g}^* \to \bigwedge^4 \mathfrak{g}^*$ has dimension 15, and $d(J_{\varphi}\varphi) = 0$ turns out to be a single cubic equation in the coefficients of φ . This provides a description

$$\mathscr{C}(\mathfrak{g}) \cong \{ \varphi \in \ker d \cap \mathcal{O} : d(J_{\varphi}\varphi) = 0 \} / \mathbb{C}^*.$$

More details will appear elsewhere.

Consider an element $J \in \mathscr{C}_+$ whose restriction to \mathbb{D} is *g*-orthogonal and therefore an element of \mathscr{S}_+ . A point of \mathscr{S}_+ at 'finite' distance from \widehat{J}_0 is given by (11) with $g(\alpha^i, \alpha^i) = 0$ for i = 1, 2 and $g(\alpha^1, \alpha^2) = 0$. This implies that a = d = 0 and b = -c. It follows that the space of (1, 0)-forms of J has a basis

$$\begin{cases} \alpha^{1} = \omega^{1} + b\overline{\omega}^{2}, \\ \alpha^{2} = -b\overline{\omega}^{1} + \omega^{2}, \\ \alpha^{3} = \omega^{3} + x\overline{\omega}^{1} + y\overline{\omega}^{2} - b^{2}\overline{\omega}^{3}. \end{cases}$$
(14)

Thus $\{\lambda, \mu\} = \{-|b|^2\}$, and |b| < 1.

Corollary 3.3. $\{\hat{J} : J \in \mathcal{C}_+\} \cap \mathcal{S}_+$ is an open hemisphere.

Proof. From (14), an element $\hat{J} \in \mathscr{S}_+$ has (1,0)-forms

$$\begin{cases} \alpha^{1} = e^{1} + ie^{2} + be^{3} - ibe^{4}, \\ \alpha^{2} = -be^{1} + ibe^{2} + e^{3} + ie^{4}. \end{cases}$$

Setting

$$A = \frac{1 - |b|^2}{1 + |b|^2}, \quad B = i\frac{\overline{b} - b}{1 + |b|^2}, \quad C = -\frac{b + \overline{b}}{1 + |b|^2}$$

gives $A^2 + B^2 + C^2 = 1$ and

$$\frac{\alpha^{1} - \bar{b}\alpha^{2}}{1 + |b|^{2}} = e^{1} + i(Ae^{2} + Be^{3} + Ce^{4}).$$

In the notation (7) with plus signs, the fundamental 2-form of \hat{J} equals

$$e^1 \wedge (Ae^2 + Be^3 + Ce^4) + \cdots = A\omega_1 + B\omega_2 + C\omega_3$$

The condition |b| < 1 translates into A > 0, that describes a hemisphere in \mathcal{S}_+ . \Box

Example. The almost complex structure I on \mathbb{D} with space of (1,0)-forms

$$\langle e^1 + ie^3, e^4 + ie^2 \rangle = \langle \omega^1 + i\overline{\omega}^2, \omega^2 - i\overline{\omega}^1 \rangle$$

has b = i in (14) and is a point on the equator A = 0 of \mathscr{G}_+ . If *I* were to equal \hat{J} with $J \in \mathscr{C}_+$, then *J* has a (1,0)-form of type

$$\alpha^3 = \omega^3 + x\omega^1 + y\omega^2 + \overline{\omega}^3,$$

with the final coefficient +1 necessary to satisfy the integrability condition. But then $\alpha^{12} \wedge \bar{\alpha}^{12} \wedge \alpha^3 \wedge \bar{\alpha}^3 = 0$, which is impossible.

4 Study of C_

We have remarked (Theorem 1.3) that the imposition of the standard metric implies that J_0 is the only orthogonal structure in its component \mathscr{C}_+ . Whilst J_0 is convenient for the study of \mathscr{C}_+ , it is less so for \mathscr{C}_- . For example, all the points of \mathscr{Z}'_- belong to \mathscr{C}_0^∞ , making calculations difficult in the coordinates of (10). We shall therefore reformulate Definition 2.2 with respect to one particular element in \mathscr{Z}'_- .

Definition 4.1. Let $J_1 \in \mathscr{C}_-$ denote the complex structure for which $\eta = \omega^1 \wedge \overline{\omega}^2 \wedge \overline{\omega}^3$ is a (3,0)-form, \mathscr{C}_1^{\bullet} be the open subset of $\mathscr{C}^+(\mathfrak{g})$ consisting of complex structures admitting a basis $\{\beta^1, \beta^2, \beta^3\}$ of (1,0)-forms for which $\beta^{123} \wedge \overline{\eta} \neq 0$, and \mathscr{C}_1^{∞} be the complement $\mathscr{C}^+(\mathfrak{g}) \setminus \mathscr{C}_1^{\bullet}$.

The analogue of Proposition 2.3 is

Proposition 4.2. If $J \in \mathscr{C}_1^{\bullet}$ then β^i may be chosen so that

$$\begin{cases} \beta^{1} = \omega^{1} + a\overline{\omega}^{1} + b\omega^{2}, \\ \beta^{2} = \overline{\omega}^{2} + c\overline{\omega}^{1} + d\omega^{2}, \\ \beta^{3} = \overline{\omega}^{3} + x\overline{\omega}^{1} + y\omega^{2} + v\omega^{3}, \end{cases}$$
(15)

where $a, b, c, d, x, y, v \in \mathbb{C}$ and d = -av.

Proof. This follows from Theorem 1.1 and the equation $d\beta^3 \wedge \beta^{123} = 0$.

Because of the equation d = -av, v is unconstrained if a happens to vanish, and this contrasts with the situation in the previous section. Let \mathscr{A}_1^{\bullet} be the set of almost complex structures on \mathbb{D} with a basis of (1,0)-forms consisting of

$$\begin{cases} \beta^1 = \omega^1 + a\overline{\omega}^1 + b\omega^2, \\ \beta^2 = \overline{\omega}^2 + c\overline{\omega}^1 + d\omega^2, \end{cases}$$
(16)

for some $a, b, c, d \in \mathbb{C}$. The almost complex structure \widehat{J}_1 corresponds to a = b = c = d = 0.

Example. Recall that the projection $J \mapsto \hat{J}$ maps \mathscr{Z}'_{-} onto \mathscr{S}_{-} . Elements of \mathscr{S}_{-} have the form (16) with a = d = 0 and b = -c, except that $-\hat{J}_{1}$ corresponds to b and c infinite. Thus, any element of $\mathscr{S}_{-} \setminus \{-\hat{J}_{1}\}$ equals \hat{J} for some $J \in \mathscr{C}_{1}^{\bullet}$ (compare Corollary 3.3).

With respect to the basis $\{e^1, e^2, e^3, e^4\}$ of \mathbb{D} , the element \widehat{J}_1 is represented by the matrix

$$Q_1 = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \in \operatorname{SO}(4).$$

We can then identify \mathscr{A}_{-} with the orbit $\{X^{-1}Q_1X : X \in \mathrm{GL}^+(4, \mathbb{R})\}$, any element of which admits a polar decomposition

$$X^{-1}Q_1X = SP, (17)$$

where *S* is symmetric positive-definite and $P \in SO(4)$.

Lemma 4.3. With the above notation, $P^2 = -1$, and the resulting mapping $r: \mathcal{A}_- \to \mathcal{S}_-$ defined by $SP \mapsto P$ is a retraction.

Proof. By first diagonalizing S, we may find a symmetric matrix σ for which

$$S = e^{\sigma} = \sum_{k=0}^{\infty} \frac{1}{k!} \sigma^k.$$

We claim that $e^{t\sigma}P \in \mathscr{A}_{-}$ for all $t \in [0,1]$. Since $(SP)^2 = -1$,

$$SP = -P^{-1}S^{-1} = (P^{-1}S^{-1}P)(-P^{-1}),$$

in which $P^{-1}S^{-1}P = P^TS^{-1}P$ is positive-definite symmetric. Uniqueness of the polar decomposition implies that $S = P^{-1}S^{-1}P$ and $P = -P^{-1}$, so $P^2 = -1$. It follows also that $\sigma = -P^{-1}\sigma P$ and

$$e^{t\sigma}P = (P^{-1}e^{-t\sigma}P)P = -P^{-1}(e^{t\sigma})^{-1} = -(e^{t\sigma}P)^{-1},$$

as required.

Proposition 4.4. $r^{-1}(Q_1) \cap {\{\hat{J} : J \in \mathscr{C}_1^\infty\}} = \emptyset$.

Proof. Given an element SQ_1 of $r^{-1}(Q_1) \cap \mathscr{A}_1^{\bullet}$ with (1,0)-forms as in (16), we claim that b = c. Identifying almost complex structures with 4×4 matrices, $1 + iSQ_1$ annihilates the (1,0)-forms β^1, β^2 of (16). Extending the standard metric g on \mathbb{D} to a complex bilinear form,

$$0 = g((1 + iSQ_1)\beta^1, Q_1\beta^2) - g(Q_1\beta^1, (1 + iSQ_1)\beta^2)$$

= $2g(\beta^1, Q_1\beta^2)$
= $2i(b - c)$,

as stated.

In analogy to Proposition 2.5, we have

$$\beta^{12} \wedge \bar{\beta}^{12} = -4(1-\lambda)(1-\mu)e^{1234},\tag{18}$$

where λ, μ are the eigenvalues of $Y\overline{Y}$ with $Y = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$. Since $Y\overline{Y}$ is Hermitian, λ, μ are non-negative. Equation (18) forces λ, μ to lie in the interval [0, 1), and Y is bounded. Thus, $r^{-1}(Q_1) \subset \mathscr{A}_1^{\bullet}$. Finally suppose that $SQ_1 = \hat{J}$ with $J \in \mathscr{C}_1^{\infty}$. From (15), it must be the case that J has a (1,0)-form β^3 belonging to the span of $\overline{\omega}^1, \omega^2, \omega^3$. But this is impossible, given that $J \in \mathscr{C}^+(\mathfrak{g})$.

Theorem 4.5. \mathscr{C}_{-} has the homotopy type of a 2-sphere.

Proof. Let $\mathscr{V} = \{J \in \mathscr{C}_{-} : \hat{J} \in r^{-1}(Q_1)\}$. We first show that this space is contractible. As a consequence of the previous proposition, a complex structure J in \mathscr{V} has a basis of (1,0)-forms

$$\begin{cases} \beta^1 = \omega^1 + ta\overline{\omega}^1 + tb\omega^2 \\ \beta^2 = \overline{\omega}^2 + tb\overline{\omega}^1 - t^2av\omega^2 \\ \beta^3 = \overline{\omega}^3 + tx\overline{\omega}^1 + ty\omega^2 + tv\omega^3, \end{cases}$$

for some $a, b, x, y, v \in \mathbb{C}$ and (for the moment) t = 1. But if we now allow t to vary in the interval [0, 1], these forms define a complex structure in \mathscr{V} . This process defines a homotopy

$$\mathscr{V} \times [0,1] \to \mathscr{V},$$

with the property that (J, 0) maps to J_1 for all J in \mathscr{V} .

The fact that all elements of \mathscr{Z}'_{-} are equivalent under a SU(2)_ action (see the remarks at the end of §1) allows us to extend the above to all the fibres of *r* over all points of the 2-sphere \mathscr{Z}'_{-} .

Combined with the theorem in §3, we can conclude

Theorem 4.6. $\mathscr{C}^+(\mathfrak{g})$ has the same homotopy type as $\mathscr{C}^+(\mathfrak{g},g)$, where g is the inner product (4).

Acknowledgments. Thanks are due to John Rawnsley for indicating the proof of Lemma 4.3, and for help in connection with the remark in §2.

References

- E. Abbena, S. Garbiero, S. Salamon, Hermitian geometry on the Iwasawa manifold. *Boll.* Un. Mat. Ital. B (7) 11 (1997), 231–249. MR 98e:53121 Zbl 0886.53046
- [2] M. F. Atiyah, N. J. Hitchin, I. M. Singer, Self-duality in four-dimensional Riemannian geometry. *Proc. Roy. Soc. London Ser. A* 362 (1978), 425–461. MR 80d:53023 Zbl 0389.53011
- [3] S. Console, A. Fino, Dolbeault cohomology of compact nilmanifolds. *Transform. Groups* 6 (2001), 111–124. MR 2002c:53119 Zbl 01655672
- [4] L. A. Cordero, M. Fernández, A. Gray, L. Ugarte, Compact nilmanifolds with nilpotent complex structures: Dolbeault cohomology. *Trans. Amer. Math. Soc.* **352** (2000), 5405– 5433. MR 2001b:53054 Zbl 0965.32026
- [5] N. J. Hitchin, The geometry of three-forms in six and seven dimensions. J. Differ. Geom. 55 (2000), 547–576.
- [6] R. A. Horn, C. R. Johnson, *Matrix analysis*. Cambridge Univ. Press 1985. MR 87e:15001 Zbl 0576.15001
- [7] A. I. Malcev, On a class of homogeneous spaces. *Amer. Math. Soc. Translation* 9 (1962), 276–307. MR 10,507d Zbl 0034.01701
- [8] I. Nakamura, Complex parallelisable manifolds and their small deformations. J. Differ. Geom. 10 (1975), 85–112. MR 52 #14389 Zbl 0297.32019
- K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups. Ann. of Math. (2) 59 (1954), 531–538. MR 16,219c Zbl 0058.02202
- [10] G. Grantcharov, C. MacLaughlin, H. Pedersen, Y. S. Poon, Lie Groups, Kodaira manifold and Complex deformations. To appears in *Glasgow Math. J.*
- S. M. Salamon, Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157 (2001), 311–333. MR 2002g:53089 Zbl 01591105
- H. Samelson, A class of complex-analytic manifolds. *Portugaliae Math.* 12 (1953), 129–132. MR 15,505d Zbl 0052.02405
- [13] I. M. Singer, J. A. Thorpe, The curvature of 4-dimensional Einstein spaces. In: *Global Analysis (Papers in Honor of K. Kodaira)*, 355–365, Univ. Tokyo Press, Tokyo 1969. MR 41 #959 Zbl 0199.25401
- [14] H.-C. Wang, Complex parallelisable manifolds. Proc. Amer. Math. Soc. 5 (1954), 771– 776. MR 17,531a Zbl 0056.15403

Received 22 April, 2002

- G. Ketsetzis, Mathematical Institute, University of Oxford, 24–29 St Giles', Oxford, OX1 3LB, UK Email: Georgios.Ketsetzis@comlab.ox.ac.uk
- S. Salamon, Mathematics Department, Imperial College, 180 Queen's Gate, London, SW7 2AZ, UK

Email: s.salamon@ic.ac.uk