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A group-free characterization of the P-geometry for Co2
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Abstract. It is shown under minor extra assumptions that a P-geometry which has as its point
residue the rank three P-geometry for the group M22 is the rank four P-geometry which has
Co2 as its group of automorphisms.
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1 Introduction

A P-geometry is a geometry that belongs to the diagram

�
2

�
2

� � � �
2

�
2

P �
1
;

where the edge �
2

P �
1

denotes the geometry of edges and vertices of the Petersen

graph. Flag-transitive P-geometries were classified in a series of papers by Ivanov
and Shpectorov. A survey of this classification can be found in [6]. It was shown that
there exist exactly eight such geometries, all of them related to sporadic simple groups
or non-split extensions of sporadic groups with one of their modules over GFð3Þ.
In fact, this relation between P-geometries and sporadic simple groups was the
principal motivation for the study of P-geometries: the classification of flag-transitive
P-geometries was meant to be a contribution to the geometric theory of finite simple
groups.

The classification of [6] makes heavy use of the flag-transitivity condition, that
is, it is essentially group-theoretic. This is, of course, very far from a purely geo-
metric theory. From this point of view, it is desirable to develop methods to study
P-geometries in a ‘‘group-free’’ way. Ideally, the classification of P-geometries must
be reproved under purely geometric assumptions. However, this goal seems to be too
ambitious at present. The principal complication is that if the flag-transitivity condi-
tion is dropped then the number of examples increases astronomically. To illustrate
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this point, let us consider one of the flag-transitive P-geometries, a rank four geo-
metry with the full automorphism group 323 � Co2. Factorizing this geometry over
the action of any subgroup of the normal subgroup 323, one always gets again a P-
geometry. Needless to say, the number of examples obtained in this way is huge.
In rank five, there is another P-geometry with the automorphism group 34371 � BM,
leading to even more impressive numbers.

One possible solution of the above problem would be to classify only the 2-simply
connected P-geometries. They can be considered as the generic examples, because,
arguably, every P-geometry can be obtained from some 2-simply connected P-
geometry by factorizing it over a suitable subgroup of the automorphism group. Only
five known P-geometries are 2-simply connected, so this looks like a meaningful proj-
ect. However, at present it is unclear how the condition of 2-simple connectedness
can be utilized, and so new ideas are needed.

Of course, even though a complete classification is beyond reach, we can try and
characterize particular examples of P-geometries by some geometric conditions. Of
particular interest is a series of three P-geometries of ranks 3, 4 and 5 related to
groups M22, Co2 and BM. A purely geometric characterization of the geometry of
M22 was obtained by Hall and Shpectorov [4], who proved the following.

Theorem 1. Suppose that G is a rank three P-geometry such that

(1) any two lines intersect in at most one point, and

(2) any three pairwise collinear points belong to a plane.

Then G is either the geometry of M22 or its triple cover, the geometry of 3 � M22.

(Here points, lines and planes are the types corresponding to the first three nodes in
the diagram above.) In the present paper we do the second step and obtain the fol-
lowing characterization of the geometry of Co2.

Theorem 2. Suppose that G is a rank four P-geometry such that

(1) any two lines intersect in at most one point,

(2) any three pairwise collinear points belong to a plane, and

(3) the residue of every point is the geometry of M22.

Then G is the geometry of Co2.

Notice that it is the condition (3) that eliminates the geometry of 323 � Co2 and its
numerous quotients. Incidentally, (3) also eliminates the flag-transitive rank four
P-geometry of the group J4. The fourth (and last) example of flag-transitive P-
geometries of rank four, the geometry of M23, is eliminated by the condition (1).

Our proof of Theorem 2 proceeds in several stages. First we study the collinearity
graph G of G and establish its distance-distribution diagram (not surprisingly, the
same diagram describes the collinearity graph of the geometry of Co2). This gives us
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a wealth of information about G, in particular, the total number of points and the
possible relations between points. At stage two we recover two classes of subgeome-
tries in G, symplecta (or symps) related to Spð6; 2Þ and subgeometries isomorphic to
the dual polar space of U6ð2Þ. We call the latter subgeometries unita. The unita, num-
bered 2300, become at stage three the vertices of a new graph S. We study the local
structure of S and show that it is the same as that of the well-known rank three graph
on 2300 points with the automorphism group Co2. The latter graph was characterized
by its local structure by Cuypers [3], so we can invoke his result to identify S. It re-
mains, at stage four, to recover G and G from the known S.

For an introduction to diagram geometries we recommend [7]. In [5] one can find a
wealth of information about the known P-geometries and a related class of sporadic
geometries, called tilde geometries.

2 The collinearity graph of G(M22)

Let H be the rank three P-geometry of M22 and let D be the collinearity graph of H.
In this section we collect a number of results on D.

First, we review the construction of the geometry H. Recall that the Witt design
W ¼ Sð3; 6; 22Þ is a block design ðP;BÞ, where P ¼ f1; 2; . . . ; 22g is the point set
of W and B is the set of blocks, that is, subsets of P. We will refer to the elements
of P as to the Witt points. Every block consists of six Witt points, which explains
why the blocks of W are called hexads. The property that makes W unique up to
isomorphism among all block designs on 22 points is the following: any three Witt
points are contained in a unique hexad. The automorphism group of W coincides
with Aut M22.

The points of H (or H-points) are the 231 pairs of Witt points. The lines of H (H-
lines) can be described as follows. Every line consists of three points (i.e., three pairs
of Witt points) that are pairwise disjoint and whose union is a hexad. Thus, two
points are collinear whenever they are disjoint as pairs of Witt points and the 4-set
they form is contained in a hexad. It follows from this description that the geometry
H is a partial linear space, that is, any two collinear points belong to a unique line.
Indeed, any three Witt points are contained in a unique hexad and hence any four
Witt points are contained in at most one hexad.

Let D be the collinearity graph of H. The graph D is locally the 2-clique extension
(see the definition in the next section) of the line graph of the Petersen graph. In par-
ticular, every point x is collinear with 30 other points. The points outside x? (as usual,
x? denotes the set of points collinear with x, including x itself ) split into two groups.
Let D1

2ðxÞ be the set of points y such that x and y share a Witt point. Let D2
2ðxÞ

denote the set of points y B x? such that x and y are disjoint as pairs of Witt points.
We have that jD1

2ðxÞj ¼ 2 � 20 ¼ 40 and hence jD2
2ðxÞj ¼ 231 � 1 � 30 � 40 ¼ 160.

Figure 1 shows the decomposition of D with respect to a point, including infor-
mation about the embedding of lines. The information about lines is encoded in the
diagram in the following way. Suppose fy; u; vg is a line on a point y. If the edge
fy; ug is represented by a valency n next to the box for y then fy; vg is represented
either by the same n (in which case n must be even), or by n.
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Maximal sets of pairwise collinear points of H are called planes (or H-planes).
Every plane consists of seven points. The seven pairs of Witt points that are the
points of a plane partition the complement of an octad. Octads are certain 8-element
subsets of P inherited from the largest Witt design Sð5; 8; 24Þ. (Octads are the blocks
of the latter design that fall into the point set of W.) Planes bijectively correspond to
octads. Every plane is closed with respect to lines, that is, a line that contains two
points of a plane is fully contained in it. It follows that a plane of H contains exactly
seven lines, which turn it into a projective plane of order two, a Fano plane. Figure 2
shows the decomposition of D with respect to a plane.

The geometry H contains quads. Those are point-line subgeometries of H iso-
morphic to the generalized quadrangle of order ð2; 2Þ. We will often identify the quad
with the the subgraph in D induced on the points of the quad. Figure 3 represents the
decomposition of (the collinearity graph of ) a quad with respect to one of its points.

The quads are in a one-to-one correspondence with the hexads. The quad S cor-
responding to a hexad X consists of all points (i.e., pairs of Witt points) that are con-
tained in X and all lines (i.e., triples of pairs of Witt points) that partition X . Notice
that quads are closed with respect to lines, and every line is contained in a unique
quad. In fact, since two hexads meet in at most two Witt points (in fact, zero or two

Figure 1. Decomposition of D with respect to a point

Figure 2. Decomposition of D from a plane

Figure 3. Decomposition of a quad from a point
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Witt points), two quads are either disjoint or they meet in just one point. Therefore,
two points are contained in at most one quad. If x and y, x0 y, are contained in a
quad then that quad will be denoted by Qðx; yÞ.

Two edges of the Petersen graph are called opposite if they are at maximal dis-
tance, three. If x is a point of a quad Q then the three lines on x in Q are opposite in
the residue of x. (Recall that the lines on x correspond to the edges and planes on x

correspond to the vertices of the Petersen graph.) Reversely, if x is a point and L1;L2

and L3 are three lines on x pairwise opposite in the residue of x then there is a quad Q

containing the lines Li.
If y A D1

2ðxÞ then xU y is a set of three Witt points. Since every triple of points is
contained in a hexad, Qðx; yÞ is defined for such x and y. Reversely, if x and y are
two non-collinear points in a quad S ¼ Qðx; yÞ then y A D1

2ðxÞ. Comparing Figure 3
with Figure 1, we see that quads are geodesically closed subgraphs. In Figure 4 we
present the decomposition of D with respect to a quad.

In the remainder of this section we record some properties of D, related to Figures
1, 2 and 4. Recall that Dðx; yÞ is the set of vertices of D adjacent to x and y (i.e.,
points collinear with x and y). If x and y are non-adjacent then the subgraph induced
on Dðx; yÞ is called a m-graph of D.

Lemma 2.1. (1) If y A D1
2ðxÞ then Dðx; yÞ is a coclique of size three. It is fully contained

in Qðx; yÞ.

(2) If y; z A D1
2ðxÞ and y and z are collinear then Qðx; yÞ ¼ Qðx; zÞ.

(3) If y A D2
2ðxÞ then Dðx; yÞ is a line.

Proof. For (1), let x ¼ fa; bg and y ¼ fa; cg and let X be the hexad containing a; b
and c. Suppose z ¼ fd; eg is a point collinear with x and y and let X1 and X2 be the
hexads containing xU z and yU z, respectively. Notice that both X1 and X2 contain
a; d and e. Hence X1 ¼ X2 ¼ X and (1) follows.

Similarly, if z is a point collinear with y and z A D1
2ðxÞ then z ¼ fb; dg for some

Witt point d. Again the hexad containing y and z contains a; b and c, and hence it
coincides with X . This implies (2). Notice that (1) and (2) confirm two of the valen-
cies shown in Figure 1.

For (3), observe that x is contained in 10 planes, every one of those planes contains
four lines L not containing x, and each of those lines is contained in a unique second
plane which, in turn, contains four points not on L. Thus, there are 10 � 4 � 4 points
y A D2ðxÞ such that Dðx; yÞ contains a line. Together with Figure 1 and (1), this
proves (3). r

Figure 4. Decomposition of D from a quad
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Recall that a geometric hyperplane is a set of points such that every line of the
geometry is either contained in the set, or meets it in exactly one point.

Lemma 2.2. If Y is a plane or a quad then the set of points collinear with a point of

Y (this includes the points of Y itself ) is a geometric hyperplane of H. In particular,
every line of H contains a point that is either contained in Y or is collinear with a point

of Y.

Proof. Follows from Figures 2 and 4. r

Corollary 2.3. If Y1 and Y2 are two planes, or two quads, or a plane and a quad, then
Y1 UY2 induces a connected subgraph of D.

Proof. Indeed, Y2 contains a line, and so it is at distance at most one from Y1. r

Recall that an ovoid is a set of points such that every line contains exactly one
point from this set.

Lemma 2.4. Suppose Y is a quad in D.

(1) If x is a point collinear with a point of Y then x is collinear with exactly three

points from Y, and these three points form a line.

(2) If x is a point not collinear with a point of Y then there are exactly five points y in

Y such that y A D1
2ðxÞ. The points y form a coclique (an ovoid ) in Y.

Proof. Let X be the hexad corresponding to the quad Y, and let x ¼ fa; bg be a point,
not in Y. (Thus, fa; bgQX .) Suppose first that X and fa; bg are disjoint. For c A X

let Y be the hexad containing a; b and c. Since X VY 0q, we have jX VY j ¼ 2,
say, X VY ¼ fc; dg. Clearly, y ¼ fc; dg is a point of Y adjacent to x. Since c was
arbitrary, we obtain that x is adjacent to three points from Y. Furthermore, the
corresponding three pairs of Witt points partition X and so the three points form a
line.

Suppose now that a (but not b) is contained in X . Let Y be an arbitrary hexad
containing fa; bg. Then jX VY jd 1 and hence jX VY j ¼ 2, say, X VY ¼ fa; cg.
This shows, first, that x is not adjacent to a point from Y. Secondly, since for every
c A Xnfag, the set fa; b; cg is contained in a hexad, we also obtain that the points of
Y that are contained in a common quad with x are exactly the five points fa; cg,
c A Xnfag. Clearly, these five points form a coclique in Y, in fact, an ovoid. r

3 Local structure

For a graph X, its k-clique extension k:X is defined as the graph on the set fðx; iÞ j
x A X; i A f1; . . . ; kgg, where distinct vertices ðx; iÞ and ðy; jÞ are adjacent whenever
x and y are adjacent or equal. Let p be the mapping from k:X to X defined by the
projection ðx; iÞ 7! x. Then every fiber of p is a k-clique. Two such k-cliques induce a
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2k-clique or a disjoint union of two k-cliques, depending on whether or not the two
vertices of X form an edge.

For two graphs G and X we say that G is locally X if for every vertex x A G the
neighborhood GðxÞ of x in G induces a subgraph isomorphic to X. In particular, the
valency of G must be jXj.

Recall that D is the collinearity graph of the rank three P-geometry H for the
group M22.

Proposition 3.1. If G is a geometry satisfying the assumptions of Theorem 2, then its

collinearity graph G is locally the 2-clique extension of D. Conversely, every graph G
that is locally the 2-clique extension of D is the collinearity graph of some P-geometry

G satisfying the assumptions of Theorem 2.

Proof. First suppose G is a geometry satisfying the assumptions of Theorem 2 and let
G be its collinearity graph. Let x A G be a point. By assumption, the residue of x is
isomorphic to H, and the lines on x play the role of the points of H (H-points;
similarly, we will be using the terminology ‘H-lines’ and ‘H-planes’ wherever ambi-
guity may otherwise arise). If y A G is a point collinear with x then define pðyÞ to be
the H-point corresponding to the line xy. This line is unique due to Assumption (1)
in Theorem 2, and so p is well-defined. Furthermore, Assumption (2) of Theorem 2
implies that two neighbors y and z of x in G are collinear if and only if the lines
xy and xz are coplanar, that is, if and only if pðyÞ and pðzÞ are equal or collinear.
Clearly, every fiber of p consists of two points, since each line of G has three points.
Thus, G is locally 2:D.

Let now G be an arbitrary graph that is locally 2:D. For a vertex x A G let px
denote the mapping from GðxÞ onto D that exists due to the assumption that G is
locally 2:D. Recall that all maximal cliques of D are of size 7 and they correspond to
the H-planes. Two H-planes intersect in a H-line, or in a single H-point, or in an
empty set. Define a geometry G related to G as follows. The points of G will be the
vertices of G; other elements of G on a point x will be defined as the full preimages
under px of non-empty intersections of maximal cliques from D. Thus, besides points,
we will have in G elements of size 3 ¼ 1 þ 2 � 1, which we will call lines, of size 7 ¼
1 þ 2 � 3, which we will call planes, and of size 15 ¼ 1 þ 2 � 7, which we will call 3-
spaces. Notice that lines, planes and 3-spaces are defined symmetrically with regard
to the points contained in them. Indeed, 3-spaces are simply all maximal cliques of G,
while all other elements are non-empty intersections of maximal cliques.

Incidence on G is defined by inclusion. Notice that every edge of G is contained in a
unique line, and fx; y; zg is a line if and only if pxðyÞ ¼ pxðzÞ. Since G is connected,
so is G. Clearly, G has a linear (string) diagram. Furthermore, it follows from the def-
inition of G that the residue of a point is isomorphic to H. Thus, in order to establish
that G is a P-geometry it remains to show that the points and lines in a plane of G
form a Fano plane. However, this is immediate, since planes consist of seven points,
lines have size three, and any two points in a plane are contained in a unique line. We
have shown that G has the diagram of a P-geometry. Since G is connected and all its
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residues of rank at least two are connected, too, we conclude that G is a geometry,
indeed, a P-geometry.

Manifestly, G is the collinearity graph of G. We have already shown that every
edge of G is contained in a unique line, so that the condition (1) from Theorem 2 is
satisfied. Since G is locally 2:D, two points, y and z, both collinear with x, are col-
linear with each other if and only if x; y and z are contained in a plane. r

Proposition 3.1 shows that Theorem 2 is equivalent to the following.

Theorem 3.2. If G is a connected graph that is locally 2:D then G is isomorphic to the

collinearity graph of GðCo2Þ.

In the remainder of this paper G is a connected graph that is locally 2:D. When we
prefer to use geometric terminology we view it as the collinearity graph of a geometry
G satisfying the assumptions of Theorem 2.

4 The diagram of G

In this section we see how G decomposes with respect to a point. Since G is locally
2:D, for every point x there is a mapping px sending points collinear to x onto H-
points, as described in the previous section. We can also view px as a mapping send-
ing the lines on x onto the H-points.

Let us now fix a point x of G. Since the local structure of G is known we can imme-
diately start with the points in G2ðxÞ. By a 2-string in G we understand a 2-path yzt

such that y and t are not adjacent. We say that a 2-string yzt is of type 1 if pzðyÞ and
pzðtÞ are contained in a quad in D (that is, pzðtÞ A D1

2ðpzðyÞÞ), and we say that yzt is
of type 2 otherwise. Recall that, for z A G2ðxÞ, the m-graph of x and z is defined as the
subgraph induced on Gðx; zÞ ¼ GðxÞVGðzÞ.

Lemma 4.1. Suppose xyz is a 2-string and let Y be the connected component of Gðx; zÞ
containing y. Then the following holds:

(1) If xyz is of type 1 then px establishes an isomorphism between Y and a quad in D.
Furthermore, if y 0 A Y then xy 0z is of type 1.

(2) If xyz is of type 2 then Y is a plane, and every xy 0z with y 0 A Y is of type 2.

Proof. First notice that, as follows from Lemma 2.1 (1) and (3), if xyz is of type 1
then fygUYðyÞ is a union of three lines on y and the lines are pairwise non-coplanar,
while if xyz is of type 2 then fygUYðyÞ is a plane. In particular, if xyz is of type 2
and y 0 A YðyÞ then xy 0z is also of type 2, and (2) follows by connectivity.

Suppose now that xyz is of type 1. By connectivity, if y 0 A Y then xy 0z is again of
type 1. Thus, locally Y is a union of three lines. Let the three lines on y be L1;L2 and
L3, and let Pi be the plane containing x and Li. Let L be the line through x and y.
Since the geometry G associated with G is a P-geometry, the planes and the 3-spaces
containing L correspond to edges and vertices of the Petersen graph, respectively. In
the residue of y we observe that pyðPinfygÞ are three H-lines forming the neighbor-
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hood of pyðxÞ in a quad. This means that Pi’s correspond in the residue of L to three
pairwise opposite edges of the Petersen graph. (See the discussion in Section 2.) The
same logic used in reverse and applied to x instead of y, allows us now to conclude
that pxðLiÞ ¼ pxðPinfxgÞ are three H-lines on pxðyÞ, all contained in some quad.
Since this is true for every vertex y of Y and since every H-line is contained in a
unique quad, we conclude that pxðYÞ is a quad in D, establishing (1). r

Lemma 4.2. Every m-graph Gðx; zÞ in G is connected.

Proof. Suppose Y1 and Y2 are two connected components of Gðx; zÞ. Then pxðYiÞ is
either a quad or an H-plane. Now the claim follows from Lemma 2.3. r

Lemmas 4.1 and 4.2 imply that there are two kinds of points in G2ðxÞ. We define
G1

2 ðxÞ (respectively, G2
2 ðxÞ) as the set of those points z in G2ðxÞ such that the m-graph

Gðx; zÞ is a copy of a quad (respectively, a plane). Clearly, z A G i
2ðxÞ if and only if for

an arbitrary point y A Gðx; zÞ the 2-string xyz is of type i.
For a vertex y in GðxÞ we have 2 � 40 (cf. Figure 1) extensions of xy to a 2-string of

type 1, and 2 � 160 extensions to a 2-string of type 2. Thus jG1
2 ðxÞj ¼ 462�80

15 ¼ 2464 and
jG2

2 ðxÞj ¼ 462�320
7 ¼ 21120.

Lemma 4.3. If z is in G1
2 ðxÞ then z has 15 neighbors in GðxÞ, 15 neighbors in G1

2 ðxÞ,
2 � 120 neighbors in G2

2 ðxÞ, and 2 � 96 neighbors in G3ðxÞ.

Remark. We use the same bar notation as in the diagrams of graphs to indicate the
embedding of lines.

Proof. Since z A G1
2 ðxÞ we have that pxðGðx; zÞÞ is a quad. If y A Gðx; zÞ and t is the

third point on the line yz then clearly t A G1
2 ðxÞ. This accounts for fifteen lines on z.

According to Figure 4, there are further 120 lines fz; u; vg such that u and v are col-
linear with some (in fact, three—cf. Lemma 2.4(1)) points from Gðx; zÞ. Clearly this
implies that u and v are at distance two from x. We contend that u; v A G2

2 ðxÞ. Indeed,
let y A Gðx; zÞ be a point collinear with u and v. Consider Figure 1 as describing the
decomposition of D with respect to pyðxÞ. Then pyðzÞ must be in D1

2ðpyðxÞÞ, since xyz

is of type 1. As follows from Figure 1, every H-line on pyðzÞ containing no H-point
collinear with pyðxÞ has two H-points in D2

2ðpyðxÞÞ. This means that u and v are in
G2

2 ðxÞ.
We claim that the remaining 96 lines on z have two points at distance three from x.

Indeed, suppose fz; u; vg is one of those 96 lines. Clearly, the distance between x and
u is at least two. Suppose it is two. Since z and u have no common neighbors in GðxÞ
(this follows from Figure 4), the m-graphs Gðx; zÞ and Gðx; uÞ must be disjoint. In
particular, pzðuÞ is not adjacent to the quad pzðGðx; zÞÞ. By Lemma 2.4(2), we have
that uzt is of type 1 for exactly five points t A Gðx; zÞ, and these five points form an
ovoid in Gðx; zÞ. On the other hand, Gðx; uÞ has a point w at distance one from
Gðx; zÞ. By Lemma 2.4(1), w is collinear with three points a; b, and c, forming a line
in Gðx; zÞ. Since w and z are non-collinear, uza; uzb, and uzc must be of type 1, which
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places a; b and c in an ovoid in Gðx; zÞ. This contradiction completes the proof of the
lemma. r

Lemma 4.4. If z is in G2
2 ðxÞ then z has 7 neighbors in GðxÞ, 28 neighbors in G1

2 ðxÞ,
7 þ 28 þ 2 � 84 neighbors in G2

2 ðxÞ, and 2 � 112 neighbors in G3ðxÞ.

Proof. Recall that Gðx; zÞ is a plane, i.e., jGðx; zÞj ¼ 7. If fz; u; vg is a line with
u A Gðx; zÞ then, clearly, v A G2

2 ðxÞ. This takes care of the sets of neighbors shown
above as 7 and 7. Consider Figure 2 as describing the decomposition of D with
respect to the H-plane pzðGðx; zÞÞ. We see that for 28 þ 84 lines fz; u; vg not meeting
Gðx; zÞ the points u and v are collinear with some points from Gðx; zÞ. More in par-
ticular, for the lines in the box 28 we have that u and v are adjacent with three points
(clearly, forming a line) from Gðx; zÞ, while for the lines in the box 84 we have that
u and v are collinear with a unique point from Gðx; zÞ.

It follows from Lemma 4.3 that there are exactly jG1
2 ðxÞj � 120 lines fz; u; vg with

u A G1
2 ðxÞ and z A G2

2 ðxÞ. For each such line we have that v A G2
2 ðxÞ. It follows from

Figure 4 that z; u and v have three common neighbors in GðxÞ. Hence all such lines
fall (with respect to z) into the box 28. Since jG2

2 ðxÞj � 28 is equal to jG1
2 ðxÞj � 120 � 2,

we conclude that all the lines from the box 28 are of the above type. It now follows
also that if fz; u; vg is from the box 84 then both u and v must be in G2

2 ðxÞ.
Finally, suppose fz; u; vg is one of the 112 lines, for which u and v have no neigh-

bors in Gðx; zÞ. It follows from Figure 2 that z; u and v are collinear with a point w in
G1

2 ðxÞ. Then pw sends fz; u; vg to an H-line with one point, pwðzÞ, in the box 120 (see
Figure 4) and the other two points, pwðuÞ and pwðvÞ, in the box 96. Indeed, suppose
that pwðuÞ is in the box 120. Let a and b be points in Gðx;wÞ which are adjacent to
z and u, respectively. Notice that z and u have no common neighbors in GðxÞ by our
assumption. Hence a0 b. Since Gðx;wÞ is isomorphic to a quad (say, via pw) and
since, by Lemma 2.4(1), z is collinear with three points on a line in Gðx;wÞ, we can
choose a and b to be collinear. Notice that a and u (and likewise, b and z) are not
collinear. Hence pwðaÞ, pwðbÞ, pwðzÞ and pwðuÞ are all contained in a common quad
Y. (This follows from Lemma 2.1(3) and (1).) However, this means that the quads
Y and pwðGðx;wÞÞ meet in two points, namely, pwðaÞ and pwðbÞ. This contradiction
proves that pwðuÞ (and similarly, pwðvÞ) is in the box 96. Lemma 4.3 now yields that
u and v are in G3ðxÞ. r

We now switch to the points at distance three from x.

Lemma 4.5. If z A G3ðxÞ then z has 21 neighbors in G1
2 ðxÞ, 210 neighbors in G2

2 ðxÞ, and
21 þ 210 neighbors in G3ðxÞ.

Proof. It follows from Lemmas 4.3 and 4.4 that if fz; u; vg is a line and u A G2ðxÞ then
v A G3ðxÞ. This means that pz isomorphically maps Y ¼ G2ðxÞVGðzÞ onto an induced
subgraph of D. We will see that that subgraph is in fact the entire D.

Suppose u A YVG1
2 ðxÞ. We claim that u has 30 neighbors in Y (recall that the

valency of D is 30) and that they are all in YVG2
2 ðxÞ. Indeed, let fz; u 0; v 0g be one of
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the 30 lines on z that are coplanar with zu. (Equivalently, pz sends u 0 and v 0 to an
H-point collinear with pzðuÞ.) It follows from Figure 4 that pu sends the line zu 0 onto
a line in D having two points in the box 96 and one point, puðu 0Þ or puðv 0Þ, in the box
120. Thus, according to Lemma 4.3, either u 0, or v 0 is in G2

2 ðxÞ; the claim follows.
Suppose now that u A YVG2

2 ðxÞ. Then we claim that again u has 30 neighbors in
Y, out of which 3 are in G1

2 ðxÞ and the remaining 27 are in G2
2 ðxÞ. Indeed, according

to Figure 2, there are, respectively, three and twelve lines on u that are coplanar with
zu and that fall under pu into the boxes, respectively, 28 and 84. According to Lemma
4.4, these fifteen lines produce 30 neighbors of u and z, that are in G2ðxÞ. (Hence they
are in Y.) More in particular, 3 of these neighbors are in G1

2 ðxÞ, while the remaining
3 þ 24 of them are in G2

2 ðxÞ. We have proved the claim.
Since D is connected of valency 30, we now have that pz maps Y isomorphically

onto D. Since every point in YVG1
2 ðxÞ is adjacent to 30 points in YVG2

2 ðxÞ, while
every point from YVG2

2 ðxÞ is adjacent to 3 points from YVG1
2 ðxÞ, we obtain that

the points from Y split between G1
2 ðxÞ and G2

2 ðxÞ in the proportion one to ten. Since
jDj ¼ 231, we finally obtain that jYVG1

2 ðxÞj ¼ 21 and jYVG2
2 ðxÞj ¼ 210. r

Remark. It was shown in this proof that GðzÞVG1
2 ðxÞ is a coclique.

As an immediate consequence of (4.5) we have

Corollary 4.6. G<3ðxÞ ¼ fxgUGðxÞUG1
2 ðxÞUG2

2 ðxÞ is a geometric hyperplane of G.

It follows from Lemmas 4.3 and 4.5 that jG3ðxÞj ¼ jG1
2 ðxÞj�2�96

21 ¼ 22528. Since every
neighbor of z A G3ðxÞ is shown to be in G2ðxÞUG3ðxÞ, G has diameter three. The total
number of points in G is therefore 1 þ 462 þ 2464 þ 21120 þ 22528 ¼ 46575. We col-
lect most of the information at hand in the diagram in Figure 5. Not coincidentally,
this diagram coincides with the diagram of the collinearity graph of the P-geometry
for Co2.

Since x was an arbitrary point from G;G1
2 ;G

2
2 and G3 can be understood as binary

relations on G. It easily follows from the definition of these relations that they are
symmetric.

Figure 5. Decomposition of G from a point
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5 Subgeometries

In this section we establish the existence and some properties of two kinds of sub-
geometries in G.

By a symplecton (or a symp, for short) we mean a point-line subgeometry in G iso-
morphic to the (rank three) polar space for Spð6; 2Þ, as well as the subgraph in G in-
duced on the points of the subgeometry. The diagram of a symp is shown in Figure 6.

The existence of symps in G can be derived from Cooperstein’s lemma [1].

Lemma 5.1. The geodesic closure of any two points in relation G1
2 is a symp. Two non-

collinear points that are contained in a common symp are necessarily in relation G1
2 .

Proof. Observe that every m-graph in G is either a clique, or it is (isomorphic to) a
quad. Notice that the 3-cliques in the 15-point m-graphs are true lines, and so the
assumptions of Cooperstein’s lemma [1] are satisfied. Hence the conclusion of that
lemma must hold, that is, the geodesic closure of any pair of points in relation G1

2 is a
subgeometry isomorphic to a non-degenerate polar space of rank three. Since the m-
graphs in the collinearity graph of that polar space are isomorphic to quads, we con-
clude that that subgeometry is a symp. The second claim also follows. r

The symp defined by two points x and y in relation G1
2 will be denoted Sðx; yÞ.

Notice that symps are subspaces, i.e., they are closed with respect to lines. We will
make two further comments: First, it follows from Lemma 5.1 that every symp coin-
cides with the geodesic closure of any pair of its non-collinear points. Second, sup-
pose S is a symp and x A S. Then pxðSðxÞÞ is a quad. Vise versa, every quad Y in D
arises as pxðSðxÞÞ for some (unique) symp S on x. Indeed, if y and z are chosen in
GðxÞ so that pxðyÞ and pxðzÞ are non-collinear H-points in Y then y and z are in rela-
tion G1

2 and S must be chosen as Sðy; zÞ.
We now prove two lemmas outlining some properties of symps.

Lemma 5.2. Every plane is contained in a unique symp. In particular, the intersection of

two symps is empty, or it is a point, or a line.

Proof. Suppose P is a plane and x A P. Since pxðPnfxgÞ is a line, it is contained in a
unique quad. This implies the first claim. Clearly, the intersection of two symps can-
not contain non-collinear points. Since symps are subspaces, the intersection is either
empty, or a point, or a line. r

Lemma 5.3. If y and z are in G1
2 ðxÞ and y and z are adjacent then Sðx; yÞ ¼ Sðx; zÞ.

Figure 6. Decomposition of a symp from a point
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Proof. Comparing Figures 5 and 6, we see that all neighbors of y in G1
2 ðxÞ are con-

tained in Sðx; yÞ. r

Recall that a subspace is a set of points that is closed with respect to lines. That
is, it contains every line that it meets in two points. For example, symps are sub-
spaces. Also, every geometric hyperplane is a subspace. If W is a set of points then
hWi denotes the subspace generated by W, i.e., the smallest subspace containing W.
The following lemma introduces a new class of subgeometries.

Lemma 5.4. Let S be a symp, x and y be non-collinear points of S, and O ¼
fu1; u2; . . . ; u5g be an ovoid in Sðx; yÞ. Then hx; y;Oi is a subgeometry of S isomor-

phic to the generalized quadrangle for O�
6 ð2Þ.

Proof. The automorphism group of S, Spð6; 2Þ, is transitive on pairs of non-collinear
points. The stabilizer of two such points (say, x and y) is isomorphic to Spð4; 2ÞG S6.
It acts transitively on the set of all ovoids in Sðx; yÞ. Hence Spð6; 2Þ acts transitively
on pairs ðfx 0; y 0g;OÞ, where x 0 and y 0 are non-collinear and O is an ovoid in Sðx 0; y 0Þ.
So it su‰ces to show that one such pair generates an O�

6 ð2Þ generalized quadrangle.
Observe now that S does contain an O�

6 ð2Þ generalized quadrangle as a geometric
hyperplane. Let S0 be such a subspace. Let x 0 and y 0 be non-collinear points of S0.
Then x 0 and y 0 have five common neighbors in S0 (see the diagram of the collinearity
graph of S0 in Figure 7), and these five points form a coclique in Sðx 0; y 0Þ, hence an
ovoid O. The 16 points in S0 that are non-collinear with x 0 form a connected sub-
graph. Hence the seven points fx 0; y 0gUO generate the entire S0. r

The following lemma will be useful.

Lemma 5.5. Let S be a symp and Y be an O�
6 ð2Þ subgeometry in it. Let u be a point of

Y and let uvi be the five lines in Y on u. Then the following hold.

(1) The five H-points puðviÞ share a Witt point a.

(2) If w is a neighbor of u outside Y, such that puðwÞ contains a, then w is in relation G1
2

to all the points of Y that are collinear with u, and in relation G3 to all the points of

Y that are not collinear with u.

(3) The point u is the only neighbor of w in S.

Proof. Claim (1) holds because the points vi are pairwise in relation G1
2 (since they are

in a symp). The first part of (2) holds by the choice of w. Let t be a point of Y that
is not collinear with u. Since t A G1

2 ðuÞ, we have that puðGðu; tÞÞ is a quad (say, F)

Figure 7. Decomposition of the O�
6 ð2Þ generalized quadrangle from a point
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and, furthermore, the union of the pairs puðviÞ is the hexad X that corresponds to
that quad F. By the definition of w, the pair puðwÞ meets X in just a. This means (see
Lemma 2.4 and its proof ) that puðwÞ is at distance two from F. Now Lemma 4.3
yields that w A G3ðtÞ, proving (2). Since puðwÞ meets the hexad X in just one Witt
point, we observe that w is not adjacent to any vertex of S adjacent to u. Also, since
S is geodesically closed, w cannot be adjacent to any vertex of S that is not adjacent
to u. Hence (3) holds. r

By a uniton in G we mean a point-line subgeometry that is closed with respect to
lines (i.e., it is a subspace) and isomorphic to the dual polar space for U6ð2Þ. It will be
convenient to view a uniton as the subgraph of G induced on the points of the sub-
geometry. Since the m-graphs in a uniton are disconnected, two points at distance two
in a uniton are necessarily in relation G1

2 . However, as one can see from the diagram
of a uniton (Figure 8) m-graphs in the uniton are not the full m-graphs in G. So unita
are not geodesically closed. It means we will have to work harder in order to con-
struct them.

For points x and z with z A G3ðxÞ set Pðx; zÞ ¼ GðxÞVG1
2 ðzÞ. According to Figure

5, the size of Pðx; zÞ is 21. Moreover, we remarked after Lemma 4.5 that this set of
21 points is a coclique. Also, define Wðx; zÞ ¼ fx; zgUPðx; zÞUPðz; xÞ and Dðx; zÞ ¼
hWðx; zÞi. It is immediate from the definition that Dðx; zÞ ¼ Dðz; xÞ.

Proposition 5.6. Suppose x and z are points with z A G3ðxÞ. Then Dðx; zÞ is a uniton.

We will prove this proposition in a series of lemmas. First we will study the set
Wðx; zÞ. For a point y A Pðz; xÞ we will denote by LðyÞ the set Pðx; zÞVGðyÞ.

Lemma 5.7. If y A Pðz; xÞ then LðyÞ ¼ Sðx; yÞVPðx; zÞ is of size five. Furthermore,
pxðLðyÞÞ is an ovoid in the quad pxðGðx; yÞÞ.

Proof. Let Y ¼ pyðGðx; yÞÞ. Observe that pyðzÞ cannot be collinear with an H-point
from Y. Indeed, if it is, then z is adjacent to a point from Gðx; yÞ, which means that
the distance between x and z is at most two, a contradiction. Now the claim of the
lemma follows from Lemma 2.4(2). r

Lemma 5.8. The set of points Pðx; zÞ endowed with the lines LðyÞ, y A Pðz; xÞ, is a pro-

jective plane of order 4.

Proof. We claim that any two points u and v in Pðx; zÞ have at most one common
neighbor in Pðz; xÞ. Indeed, suppose y;w A Pðz; xÞ are collinear with both u and v.

Figure 8. Decomposition of a uniton from a point
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Then Sðx; yÞ ¼ S ¼ Sðx;wÞ, where S ¼ Sðu; vÞ. However this means that both y and
w are in S, which implies that z A S, since S is geodesically closed. This is a contra-
diction since the distance between x and z is three. Thus, u and v have at most one
common neighbor in Pðz; xÞ.

We now have that the geometry in question is a partial linear space. Since it has 21
points, each incident to five lines, and 21 lines, each incident to five points, we obtain
that our geometry is a projective plane. r

For a Witt point a let Ca denote the set of 21 H-points fa; bg, b0 a. Notice that
Ca is a coclique in D, in which any two H-points are in relation D1

2.

Lemma 5.9. The coclique Pðx; zÞ is bijectively mapped by px onto Ca for some Witt

point a.

Proof. Let u; v A Pðx; zÞ. It follows from Lemmas 5.7 and 5.8 that u and v are in rela-
tion G1

2 . This means that the H-points pxðuÞ and pxðvÞ share a common Witt point.
Since this is true for all u; v A Pðx; zÞ, the claim of the lemma follows. r

We will construct the subgraph Dðx; zÞ ‘‘layer-by-layer’’. Let D1ðx; zÞ ¼
hx;Pðx; zÞi. For a point w and a Witt point b, let Cðw; bÞ be the union of 21 lines on
w, whose points (other than w) are mapped by pw into Cb. We will call Cðw; bÞ a line

claw.

Lemma 5.10. The subspace D1ðx; zÞ is the union of the 21 lines xu, u A Pðx; zÞ. That is,
D1ðx; zÞ is the line claw Cðx; aÞ, where a is as in Lemma 5.9.

Proof. According to Lemma 5.9, Pðx; zÞ is mapped by px onto Ca, and it is a co-
clique, so the claim follows. r

It follows that D1ðx; zÞ has size 1 þ 21 � 2 ¼ 43. Clearly, D1ðx; zÞHDðx; zÞ. We
will see later that D1ðx; zÞ contains, in fact, the entire neighborhood of x in Dðx; zÞ.

For a line claw D1 ¼ Cðx; aÞ, we will call a symp S on x compatible with D1 if the
hexad corresponding to the quad pxðSðxÞÞ, contains a. There are exactly 21 symps
compatible with D1, and each of them contains exactly five lines from D1. (If we view
the lines in D1 as points, and the intersections of D1 with compatible symps as lines,
then the geometry that results is a projective plane of order four, cf. Lemma 5.8.)

Next, we extend D1ðx; zÞ to a larger subgraph D2ðx; zÞ. For y A Pðz; xÞ define
O�ðx; yÞ ¼ hx; y;LðyÞi. According to Lemma 5.7, LðyÞ is an ovoid in Gðx; yÞ and
hence, by Lemma 5.4, O�ðx; yÞ is an O�

6 ð2Þ subgeometry in the symp Sðx; yÞ. The
latter symp is one of the 21 symps compatible with D1ðx; zÞ. Define D2ðx; zÞ as the
union of the twenty one subgraphs O�ðx; yÞ, y A Pðz; xÞ. Since symps are geodesi-
cally closed, Sðx; yÞ0Sðx; y 0Þ whenever y; y 0 A Pðz; xÞ, y0 y 0. (Indeed, z is a com-
mon neighbor of y and y 0, and z A G3ðxÞ.) Hence Sðx; yÞVSðx; y 0Þ is a line, namely,
one of the lines in D1ðx; zÞ (cf. Lemmas 5.2 and 5.8). Thus, the intersection of Sðx; yÞ
with D2ðx; yÞ coincides with O�ðx; yÞ. Clearly, O�ðx; yÞ and O�ðx; y 0Þ meet in the
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same line Sðx; yÞVSðx; y 0Þ. It follows that D2ðx; zÞ contains, besides D1ðx; zÞ, exactly
21 � 16 ¼ 336 points and all these points belong to G1

2 ðxÞ.

Lemma 5.11. Suppose y A Pðz; xÞ and let z 0 be the third point on the line zy. Then

Pðx; z 0ÞVPðx; zÞ ¼ LðyÞ. Furthermore, D1ðx; z 0Þ ¼ D1ðx; zÞ and D2ðx; z 0Þ ¼ D2ðx; zÞ.

Proof. First of all, LðyÞ is contained in Pðx; z 0ÞVPðx; zÞ. This means that the line
claws D1ðx; z 0Þ and D1ðx; zÞ share five lines, yielding D1ðx; z 0Þ ¼ D1ðx; zÞ. In partic-
ular, the same 21 symps are compatible with D1ðx; z 0Þ and D1ðx; zÞ. Let S be one of
those symps and let t (respectively, t 0) be the neighbor of z (respectively, z 0) in S. Let
T ¼ Pðx; z 0ÞVGðt 0Þ and Y ¼ hx; t 0;Ti. To prove that D2ðx; z 0Þ ¼ D2ðx; zÞ it su‰ces
to show that Y ¼ O�ðx; tÞ. If t ¼ y then also t 0 ¼ y and T ¼ LðyÞ, so Y ¼ O�ðx; tÞ.
Suppose now that t0 y. Let u be the unique point in LðyÞVLðtÞ. Since u A LðyÞ, we
have that u A Pðx; z 0Þ. It now follows that t 0 is collinear with u. We claim that fur-
thermore t 0 is the third point on the line ut. Indeed, let S 0 ¼ Sðu; zÞ. Notice that
y A S 0 and hence also z 0 A S 0, because z 0 is on the line zy. Since z 0 A S 0, also t 0 A S 0.
On the other hand, t 0 A S. Thus, t 0 is contained in S VS 0 which coincides with the line
ut. (Notice also that t0 t 0 because every point of ut is collinear with a unique point
on zy. This can be seen in the symp S 0.) Thus indeed, t 0 is the third point on the line
ut. This shows that t 0 A O�ðx; tÞ. Since also T cD1ðx; z 0ÞVScO�ðx; tÞ, we con-
clude that YcO�ðx; tÞ, yielding equality because of the equal size. We have proved
that D2ðx; z 0Þ ¼ D2ðx; zÞ.

Finally, the fact that t 0 is the third point on ut implies that u is the only common
point in T and LðtÞ. This shows that Pðx; z 0Þ and Pðx; zÞ have no common points
outside LðyÞ. r

We can now establish that D2ðx; zÞ is a subspace.

Lemma 5.12. The following hold.

(1) D2ðx; zÞ is a subspace, and hence D2ðx; zÞ ¼ hx;Pðx; zÞ;Pðz; xÞi.

(2) If u A D1ðx; zÞ then u is on exactly 21 lines in D2ðx; zÞ and these lines form a line

claw Cðu; aÞ for some Witt point a.

Proof. Suppose u; v A D2ðx; zÞ and they are collinear. We claim that u and v must
belong to the same O�ðx; yÞ. Suppose not. Then in view of Lemma 5.10 either u or
v is not in D1ðx; yÞ. Without loss of generality, u B D1ðx; yÞ. Then u A O�ðx; yÞ for
a unique y A Pðz; xÞ. If v A Sðx; yÞ then v A O�ðx; yÞ (indeed, Sðx; yÞVD2ðx; zÞ ¼
O�ðx; yÞ), a contradiction. So v B Sðx; yÞ. If v A D1ðx; zÞ then Lemma 5.5(2) implies
that u and v are in relation G3, a contradiction. Hence also v B D1ðx; zÞ and Lemma
5.3 yields a contradiction, proving our claim and (1).

Turning to (2), let u A D1ðx; zÞ. In the case u ¼ x the Claim (2) follows from
Lemma 5.9, so suppose u0 x. If u is not in Pðx; zÞ then choose y A Pðz; xÞ that is
noncollinear with u and substitute z with the third point z 0 on the line zy. According
to Lemma 5.11, u A Pðx; z 0Þ and D2ðx; z 0Þ ¼ D2ðx; zÞ. Thus, without loss of generality
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we may assume that u A Pðx; zÞ. Observe that u is contained in O�ðx; yÞ for five
points y A Pðz; xÞ (see Lemma 5.8). Hence u is on 1 þ 5 � 4 ¼ 21 lines in D2ðx; zÞ. Let
us take a closer look at these 21 lines. One of them is the line ux and five more of
them are the lines uy, y A Pðz; xÞVGðuÞ. According to Lemma 5.9, the points y form
a coclique (hence, an ovoid) in the quad Gðu; zÞ. This means that the H-points puðyÞ
are in Ca for some (unique) Witt point a. Since x A G1

2 ðyÞ for all y A Pðz; xÞVGðuÞ,
we have that also puðxÞ A Ca. Each O�ðx; yÞ gives us three more lines uv on u. Since
v is in relation G1

2 to both x and y, we obtain that all H-points puðvÞ are contained in
the same Ca, and (2) follows. r

Lemma 5.13. We have that z B G2
2 ðtÞ for all t A D2ðx; zÞ.

Proof. Clearly, t A Y ¼ O�ðx; yÞ for some y A Pðz; xÞ. Observe that the points in

LðyÞ are pairwise in relation G1
2 . Also, z is in relation G1

2 with all the points from
LðyÞ (since LðyÞHPðx; zÞ). Therefore, pyðLðyÞU fzgÞ is contained in Ca for some
Witt point a. Now the claim follows from Lemma 5.5(2). r

Let us now introduce two equivalence relations on G3ðxÞ. For z; z 0 A G3ðxÞ and
i A f1; 2g we write z@i z

0 if and only if Diðx; zÞ ¼ Diðx; z 0Þ. Let S be a symp compat-
ible with D1. For a point y A S2ðxÞ, let LðyÞ ¼ D1 VGðyÞ. This extends the notation
introduced before Lemma 5.7. The set LðyÞ consists of five points and is a coclique.
Since LðyÞHS, the points in LðyÞ are pairwise in relation G1

2 . Hence pyðLðyÞÞ is con-
tained in Cb for some unique b, i.e., LðyÞ is contained in a line claw Cðy; bÞ. This
unique b will be denoted by by.

We can now characterize the equivalence classes defined by @i, i ¼ 1; 2. Let ½z�i
denote the@i equivalence class containing z.

Lemma 5.14. Let D1 ¼ D1ðx; zÞ and let S be a compatible symp. Then z 0 A ½z�1 if an

only if z 0 is collinear with a point y A S2ðxÞ and z 0 A Cðy; byÞnS. In particular, every
equivalence class of@1 consists of 1024 points.

Proof. If z 0 A ½z�1 then S ¼ Sðx; yÞ for some y A Pðz 0; xÞ. Furthermore, the points in
LðyÞ are in relation G1

2 to z 0. Hence z 0 A Cðy; byÞ. Clearly, z 0 B S, since z 0 A G3ðxÞ.
Reversely, let y be an arbitrary point from S2ðxÞ. (There are 32 such points y.) Let

z 0 be one of the 32 points from Cðy; byÞnS. It follows from Lemma 5.4 that x; y and
the five points in LðyÞ generate an O�

6 ð2Þ subgeometry Y in S. By Lemma 5.5 we
have that z 0 A G3ðxÞ. Notice now that D1ðx; z 0Þ contains the five lines xu, u A LðyÞ,
and hence D1 ¼ D1ðx; z 0Þ. Therefore, z 0 A ½z�1.

Now a counting gives us that ½z�1 consists of 32 � 32 ¼ 1024 points (compare
Lemma 5.5(3)). r

We now turn to the second equivalence,@2.

Lemma 5.15. Let D2 ¼ D2ðx; zÞ, and let Y be one of the O�
6 ð2Þ generalized quadrangle

subgeometries forming D2. Then z 0 A ½z�2 if an only if z 0 is collinear with a point
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y A Y2ðxÞ and z 0 A Cðy; byÞnY. In particular, every equivalence class of@2 consists of

512 points.

Proof. Let D1 ¼ D1ðx; zÞ and let S be the symp containing Y. Then S is compatible
with D1.

If z 0 A ½z�2 then, clearly, z 0 is collinear with a point y A Y (which must be in Y2ðxÞ,
because z 0 A G3ðxÞ). We have that LðyÞHG1

2 ðz 0Þ, which implies that z 0 A Cðy; byÞ.
Manifestly, z 0 B Y.

Reversely, let y A Y2ðxÞ, and let z 0 A Cðy; byÞnY. Observe that SVCðy; byÞHY.
Hence, z 0 A G3ðxÞ and D1ðx; z 0Þ ¼ D1 (cf. Lemma 5.14). Furthermore, y A Pðz 0; xÞ
and Y is contained in D2ðx; z 0Þ. Let S 0 be any other symp compatible with D1. Let
F ¼ D2 VS 0 and F 0 ¼ D2ðx; z 0ÞVS 0. To establish that D2ðx; z 0Þ ¼ D2 it su‰ces to
show that F ¼ F 0. Let xu be the line that is the intersection of S with S 0. By Lemma
5.12(2), we have that u together with its neighborhood in D2 forms a line claw
Cðu; aÞ, and similarly for D2ðx; z 0Þ we get a second line claw Cðu; bÞ. Since these two
line claws share the five lines in Y, we have a ¼ b. Thus F and F 0 share a point w at
distance two from x. Since D1 ¼ D1ðx; z 0Þ we now conclude that F ¼ hx;w;LðwÞi ¼
F 0. Thus, D2ðx; z 0Þ ¼ D2, that is, z 0 A ½z�2.

For the last claim, observe that jY2ðxÞj ¼ 16 and that jCðy; byÞnYj ¼ 32 for
y A Y2ðxÞ, since SVCðy; byÞ is fully contained in Y. r

Corollary 5.16. Every@1 class is a union of two@2 classes.

Proof. Clearly, @2 is a refinement of @1. The rest follows from Lemmas 5.14 and
5.15. r

Lemma 5.17. The set D2ðx; zÞU ½z�2 is a subspace.

Proof. Let D ¼ D2ðx; zÞU ½z�2. Suppose u and v are collinear points in D. Since
D2ðx; zÞ is a subspace (see Lemma 5.12), we will assume that u B D2ðx; zÞ. If v A
D2ðx; zÞ then according to Lemma 5.15, the entire line uv is contained in D. Thus,
we will also assume that v B D2ðx; zÞ. This means that u; v A G3ðxÞ and D2ðx; uÞ ¼
D2ðx; vÞ. In particular, by Lemma 5.13, no point of D2ðx; uÞ is contained in G2

2 ðvÞ.
Consider now the 21 lines uy on u, where y runs through Pðu; xÞ. If uv is one of

those lines then, clearly, the claim of the lemma holds true. So suppose the third point
on uv is not in Pðu; xÞ. According to Lemma 5.9, the 21 H-points puðyÞ, y A Pðu; xÞ,
share a Witt point a. Consequently, puðvÞ does not contain a, say, puðvÞ ¼ fb; cg.
It remains to notice that the H-point fa; dg is in D2

2ðfb; cgÞ, whenever d is chosen
outside the hexad containing a; b and c. Therefore, for some y A Pðx; uÞ we have
y A G2

2 ðvÞ. This contradiction completes the proof of the lemma. r

Finally, we can determine Dðx; zÞ.

Lemma 5.18. Dðx; zÞ ¼ D2ðx; zÞU ½z�2.
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Proof. Let D1 ¼ D1ðx; zÞ, D2 ¼ D2ðx; zÞ and D ¼ Dðx; zÞ. Since D2 U ½z�2 is a sub-
space, we clearly have that DHD2 U ½z�2. So it remains to show that ½z�2 HD.

As in the proof of Lemma 5.15, let Y be one of the O�
6 ð2Þ generalized quadrangles

forming D2. Suppose z 0 A DVG3ðxÞ and y 0 is the point in Y that is collinear with z 0.
Suppose further that y 00 A Y2ðxÞ is collinear with y 0. Then we claim that there exists
z 00 A DVG3ðxÞ that is collinear with y 00. Indeed, since Y is a generalized quadrangle,
the line y 0y 00 contains a point u A D1. Consider the O�

6 ð2Þ subgeometry Y 0 in Sðu; z 0Þ,
generated by fu; z 0gU ðPðz 0; xÞVGðuÞÞ. On the one hand, Y 0 HD. On the other hand,
every line in Y 0 on z 0 is of the form z 0w for w A Pðz 0; xÞVGðuÞ. Pick w0 y 0. Then,
since y 00 A Y 0, we have that y 00 is collinear with a point z 00 on z 0w. Clearly, z 00 0w.
Thus, z 00 A G3ðxÞ and the claim follows.

Starting from the point y A Y collinear with z, and using connectivity of the sub-
graph induced on Y2ðxÞ, we can conclude that every point in Y2ðxÞ is collinear with a
point from DVG3ðxÞ.

Let now y 0 be an arbitrary point from Y2ðxÞ, and let z 0 be a point from DVG3ðxÞ
that is collinear with y 0. Since z 0 A ½z�2, Lemma 5.15 yields that z 0 A Cðy 0; by 0 Þ. (See
the definitions before Lemma 5.14.) Observe that the O�

6 ð2Þ subgeometries hu; z 0;
Pðz 0; xÞVGðuÞi, where u A Lðy 0Þ ¼ Pðx; z 0ÞVGðyÞ, are fully contained in D and their
union covers the entire line claw Cðy 0; by 0 Þ. Thus, Cðy 0; by 0 ÞHD and hence ½z�2 HD

by Lemma 5.15. r

Corollary 5.19. The subgeometry C ¼ Dðx; zÞ contains exactly 1 þ 42 þ 336 þ 512 ¼
891 points.

Next we exhibit a certain symmetry in the generation of the subgeometries Dðx; zÞ.

Lemma 5.20. Let x 0 A Dðx; zÞ. Then Dðx; zÞVG3ðx 0Þ0q. Furthermore, for every z 0 A
Dðx; zÞVG3ðx 0Þ we have that Dðx 0; z 0Þ ¼ Dðx; zÞ.

Proof. Let D ¼ Dðx; zÞ. We first deal with the case x 0 ¼ x. In this case the first claim
is obvious. Let z 0 A DVG3ðxÞ. Then z 0 A ½z�2, which implies that D2ðx; z 0Þ ¼ D2ðx; zÞ
and ½z 0�2 ¼ ½z�2. So Lemma 5.18 implies that Dðx; z 0Þ ¼ D. Notice that since x is arbi-
trary,

Dðu; vÞ ¼ Dðu;wÞ; ð*Þ

whenever v;w A G3ðuÞ and v A Dðu;wÞ.
Next suppose that x 0 A D is collinear with x. If x 0 B Pðx; zÞ then z A G3ðx 0Þ, proving

the first claim. Furthermore, we have D ¼ Dðz; xÞ ¼ Dðz; x 0Þ ¼ Dðx 0; zÞ (the second
equality due to (*)). Therefore, again by (*), Dðx 0; z 0Þ ¼ D for all z 0 A DVG3ðx 0Þ, so
the second claim holds, too. Suppose now that x 0 A Pðx; zÞ. Choose y A Pðz; xÞ such
that y is not collinear with x 0. Also choose u A Pðz; xÞVGðx 0Þ and set Y ¼ O�ðx; uÞ.
In view of Lemma 5.8, there is a point w A Pðx; zÞ that is collinear with both y and u.
Observe that x 0;w A Y (by definition of Y) and that x 0 and w are not collinear. Also
observe that, by Lemma 5.12, w and its neighbors in D form a line claw. It now fol-
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lows from Lemma 5.5 that y A G3ðx 0Þ. (In particular, the first claim of the lemma
holds for x 0.) Furthermore, by Corollary 4.6, the third point v on the line zy is in
G3ðxÞVG3ðx 0Þ. Hence, D ¼ Dðx; vÞ ¼ Dðv; xÞ ¼ Dðv; x 0Þ ¼ Dðx 0; vÞ (use (*) for the
first and third equality). Now the second claim of lemma follows for x 0 again from
(*).

Now let us fix D and vary x. Notice that x is arbitrary subject to the condition that
D ¼ Dðx; zÞ for some z A G3ðxÞ. Take any such x A D and let x 0 be its neighbor in D.
It was shown above that DVG3ðx 0Þ is nonempty and that D ¼ Dðx 0; z 0Þ for every
z 0 A DVG3ðx 0Þ. In particular, again D ¼ Dðx 0; z 0Þ for some z 0 A G3ðx 0Þ. This means
we can now look at the neighbors of x 0 in D and so on. Since D is obviously con-
nected, the claims of the lemma hold for all x 0 A D. r

Corollary 5.21. Let C ¼ Dðx; zÞ for z A G3ðxÞ. Then the following hold.

(1) If x 0 A C then Cðx 0Þ is a line claw. In particular, C has valency 42.

(2) C is an isometric subgraph of G, that is, the distance in C between two points x 0

and y 0 coincides with the distance in G between them.

(3) If x 0 A C and L is a line in C then L contains a unique point closest to x 0.

(4) If x 0; u 0 A C and dðx 0; u 0Þ ¼ 2 then the geodesic closure of x 0 and y 0 in C is iso-

morphic to the generalized quadrangle for O�
6 ð2Þ.

Proof. In view of Lemma 5.20, we can take x 0 ¼ x in all cases. Then (1) follows from
Lemma 5.10, while (2) follows from Lemma 5.18. For (3), consider a line L contained
in C. If L contains a point at distance three from x (say, z A L) then, according to (1),
L is the line zy for some y A Pðz; xÞ. Furthermore, y is the only point on L closest to
x. Suppose now that L contains a point at distance two from x, say a point y. We can
additionally assume that L is not one of the 16 lines on y which contain points in
G3ðxÞ. Hence L is one of the five lines contained in O�ðx; yÞ. Each of those lines con-
taines a unique point in GðxÞ. Finally, if L contains no points from G2ðxÞUG3ðxÞ then
L is contained in D1ðx; zÞ and therefore x A L. This proves (3). To prove (4), consider
a point y A C at distance two from x and let Y ¼ O�ðx; yÞ. Notice that CðxÞV
CðyÞ ¼ LðyÞ is of size five. In view of Lemma 5.20, the same is true for every pair
of points in C at distance two from each other. This means that Y is geodesically
closed in C. Manifestly, Y is the geodesic closure of x and y in C. r

We are now ready to complete the proof of Proposition 5.6.

Lemma 5.22. C ¼ Dðx; zÞ is a uniton.

Proof. It follows from Lemma 5.21 that C is a near-hexagon with quads. Let Y be a
quad of C, i.e., Y ¼ O�ðx 0; y 0Þ for some x 0; y 0 A C. Let w be a point of C, not con-
tained in Y. We claim that w is adjacent to a point of Y. Indeed, there is nothing to
prove if w A Cðx 0Þ. If the distance between x 0 and w is two then it follows from
Lemma 5.8 that w is adjacent to a point in Yðx 0Þ. Finally, if the distance between x 0
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and w is three then w is adjacent to a point in Y2ðx 0Þ by Lemma 5.15. This proves
that w is adjacent to a point u of Y. Invoking now Lemma 5.5(2), we obtain that u is
the only neighbor of w in Y and that Y is gated through u. (This means that for every
vertex v of Th there is a shortest path between w and v passing through u.) Thus, C is
near-classical and so by [2] it is a dual polar space. By consideration of the orders for
dual polar spaces with three points on a line it then follows that Dðx; zÞ is of type
U6ð2Þ. r

6 A graph on the set of unita

Define D ¼ fDðx; zÞ j ðx; zÞ A G3g, the set of unita. We will first study how unita can
intersect.

Lemma 6.1. Let C A D. Then the following hold.

(1) For each x A C there is a unique C 0 A D such that x A C 0 and CðxÞ ¼ C 0ðxÞ ¼
CVC 0.

(2) For each C 0 A D such that CVC 0 0q, there exists x A CVC 0 such that CðxÞ ¼
C 0ðxÞ ¼ CVC 0.

Proof. Let x A C and let z A C3ðxÞ. Then by Lemma 5.20 we have C ¼ Dðx; zÞ.
Define the equivalence relations @1 and @2 as in the preceding section. Pick a point
z 0 A ½z�1n½z�2 and define C 0 ¼ Dðx; z 0Þ. Clearly, CðxÞ ¼ C 0ðxÞ. Furthermore, it fol-
lows from Lemma 5.18 that CVC 0 contains no points at distance three from x. Sup-
pose CVC 0 contains a point y at distance two from x. Then C and C 0 share a quad
Y ¼ hx; y;CðxÞVGðyÞi. However, Lemma 5.21(1) implies that z and z 0 belong to
the line claw on y defined by the five lines on y in Y. Lemma 5.15 now forces a
contradiction with the fact that ½z 0�2 0 ½z�2. Thus, CVC 0 ¼ CðxÞ.

If now C 0 is an arbitrary uniton such that CVC 0 ¼ CðxÞ then, clearly, C 0 ¼
Dðx; z 0Þ where z 0 A ½z�1n½z�2. Corollary 5.16 implies the uniqueness of such a C 0,
proving (1).

For (2), let C 0 be a uniton such that CVC 0 0q, say, y A CVC 0. Observe that
the unita containing y are in a one-to-one correspondence with the equivalence
classes of @2 (where the latter is defined with respect to y—on G3ðyÞ). It follows
from Lemma 5.15 and Figure 5 that there are exactly 44 unita containing y. One of
them is C. Also, by (1), for each x A fygUCðyÞ, there is a uniton C 00 such that
CVC 00 ¼ CðxÞ. Since each of these unita contains y and since jfygUCðyÞj ¼ 43, we
obtain (2). r

For a uniton C and a point x A C let Cx denote the unique uniton such that
CVCx ¼ CðxÞ. Define a graph S on the set of unita. Two unita are adjacent in S if
and only if they have a nonempty intersection.

Lemma 6.2. Let C be a uniton. Then the subgraph induced on the neighbors of C in S is

isomorphic to the distance 1 or 2 graph of C.
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Proof. According to Lemma 6.1, the neighbors of C are the 891 unita Cx, x A C. If
x; y A C and the distance between them is at most two then, clearly, Cx and Cy have
a point in common, and hence they are adjacent in S. It remains to show that if the
distance between x and y is three then Cx and Cy are disjoint. Suppose by contra-
diction that that Cx and Cy meet, namely, Cx VCy ¼ CxðzÞ ¼ CyðzÞ is a line claw
at a certain point z. Since the distance between x and y is three, we have that CV
Cx VCy ¼ q. This in turn implies that z is at distance three from both x and y. Con-
sequently, Cx ¼ Dðx; zÞ and Cy ¼ Dðy; zÞ.

Choose a A Pðx; yÞ and b A Pðy; xÞVGðaÞ. Clearly, the symp Sðx; bÞ is compatible
with CðxÞ ¼ CxðxÞ and Sðy; aÞ is compatible with CðyÞ ¼ CyðyÞ. Consider Q1 ¼
Sðx; bÞVCx and Q2 ¼ Sðy; aÞVCy, which are O�ð6; 2Þ quads in Cx and Cy, respec-
tively. By Lemma 5.5(3), GðzÞVSðx; bÞ is a point c contained in Q1. In a similar fash-
ion, GðzÞVSðy; aÞ ¼ fdg for a point d A Q2.

Observe that c0 d. Indeed, if c ¼ d then this point is contained in Sðx; bÞV
Sðy; aÞ, and this intersection coincides with the line ab (cf. Lemma 5.2). Since ab is
contained in C, we obtain that c is contained in all three unita, C;Cx, and Cy, a
contradiction. Since c0 d, we have that d B Q1 and c B Q2.

Since c and the line ab are contained in the symp Sðx; bÞ, the line ab contains a
point e collinear with c. Notice that e is at distance two from z. According to Corol-
lary 4.6, G<3ðzÞ is a geometric hyperplane. Consequently, Sðy; aÞVG<3ðzÞ is a geo-
metric hyperplane of Sðy; aÞ, which clearly coincides with the neighborhood of d in
Sðy; aÞ. This yields that e is collinear with d.

By Lemma 5.5, e is the only point in Sðx; bÞ collinear with d and e lies in Q1. (We
use here that d A Cx.) Similarly, e lies in Q2. This means that e is contained in all
three unita C;Cx and Cy, a contradiction. r

Theorem 6.3. The graph S is isomorphic to the graph on 2300 vertices on which Co2

acts as a rank three group.

Proof. This follows from Lemma 6.2 and the result of [3]. r

Before we prove our main theorem we require one further lemma. Towards that
end we first introduce some notation. Let U be the point-line incidence geometry of
the dual polar space of type U6ð2Þ. Let P denote the collinearity graph of U and P̂P
be the graph on the set of vertices of P, where two vertices are adjacent if and only if
they are at distance one or two in P. (Notice that P is isomorphic to every uniton in
G and that the graph S is locally P̂P.)

Lemma 6.4. Let C be a maximal clique in P̂P with jCjd 43. Then jCj ¼ 43 and there is

a point a of U such that C ¼ fagUPðaÞ.

Proof. First note that C cannot be fully contained in a quad because a quad contains
only 27 points. Let Q be an arbitrary quad and let z A CnQ. Then Q contains a
unique point z 0 collinear with z and, furthermore, QVPc2ðzÞ ¼ QV ðfz 0gUPðz 0ÞÞ.
In particular, every point in C VQ is equal to z 0 or collinear with it. This vertex z 0 is
called the gate for z.
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Suppose first that there are collinear points a and b in C. Let c be the third point on
the line L ¼ ab and choose a quad Q which contains L. Let z be any point of CnQ.
Then by the above, a and b are collinear with the gate z 0 for z. This yields that z 0 A L

and, in particular, c is collinear with z 0. Consequently, c is at distance at most two
from z (which was arbitrary in CnQ) and also at distance at most two from every
element from C VQ, as all these elements are collinear with z 0. Since C is maximal,
we conclude that c A C, which means that C is closed with respect to lines. Further-
more, we see from the above that if L 0 is any line in C and t A CnL 0 then t is collinear
with a point on L 0.

Without loss of generality we may suppose that z 0 ¼ a. Set L 0 ¼ az and let Q 0 be
the quad containing L and L 0. If t A CnQ 0 then the corresponding gate t 0 must be on
both L and L 0 and hence t 0 ¼ a. It follows that every point of C is collinear with a,
which means that the conclusion of the lemma holds.

Thus, we may assume that C contains no collinear points. Choose a quad Q with a
largest possible intersection C VQ. Considering a point z A CnQ, we see that every
point in C VQ is collinear with the gate z 0. Since there are only five lines on z 0 in Q,
we have that jC VQjc 5.

Clearly, jC VQjd 2. Let R be the set of points of Q that are collinear with all
points in C VQ. It is easy to see that jRj ¼ 5 if jC VQj ¼ 2, jRjc 3 if jC VQj ¼ 3,
and jRjc 2 if jC VQj ¼ 4 or 5.

Let us now do counting. If jC VQj ¼ 2 then every one of the at least 41 points
from CnQ is collinear with a single point from R. Since jRj ¼ 5, there exists r A R

that is collinear with at least nine points from CnQ. Also r is collinear with the two
points in C VQ. Hence jC VPðrÞjd 11. Notice that the lines and the quads con-
taining r form a projective plane of order four. From this it easily follows that one
of the quads on r contains three points from C, a contradiction with maximality
of jC VQj. Therefore, jC VQj0 2. Similarly, if jC VQj ¼ 3 then some r A R is col-
linear with at least 3 þ 40

3 points from C, yielding that jC VPðrÞjd 17. This cannot
be unless one of the quads on r contains at least four points from C; a contradiction.
Hence, jC VQjd 4 and again some point r A R is collinear with at least 4 þ 38

2 ¼ 23
points from C. This is a final contradiction as the number of lines on r is only 21.

r

We can now complete our proof of Theorems 3.2 and 2.

Proof. Observe that every point x A G produces a clique ĈCðxÞ in S, consisting of the
44 unita containing x. Reversely, suppose ĈC is a clique in S of size 44. Let C be one
of the unita from ĈC. Since the subgraph induced on SðCÞ is isomorphic to P̂P and
since C ¼ ĈCnfCg is a clique of size 43 in SðCÞ, Lemma 6.4 implies that there is x A C
such that C ¼ fCy j y A fxgUCðxÞg. So clearly ĈC is the clique produced by x. There-
fore, the vertices of G are in a one-to-one correspondence with the 44-cliques from S.

It remains to see how the adjacency of vertices x and y translates in terms of ĈCðxÞ
and ĈCðyÞ. If x and y are adjacent in G then y belongs to exactly two line claws on x.
Hence y is contained in exactly four unita from ĈCðxÞ, that is, jĈCðxÞV ĈCðyÞj ¼ 4.

If y A G1
2 ðxÞ then there are exactly six line claws on x compatible with Sðx; yÞ.
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For each compatible line claw, only one of the corresponding two unita contains
y. Therefore, if y A G1

2 ðxÞ then jĈCðxÞV ĈCðyÞj ¼ 6. If y A G2
2 ðxÞ then clearly ĈCðxÞV

ĈCðyÞ ¼ q. Finally, if y A G3ðxÞ then Dðx; yÞ is the only uniton containing both x and
y. Hence in this last case jĈCðxÞV ĈCðyÞj ¼ 1. We have proved that x and y are adja-
cent if and only if jĈCðxÞV ĈCðyÞj ¼ 4. This shows that the structure of G is uniquely
determined by S, which is in turn unique by Theorem 6.3. This completes the proof.

r
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