Ovoids of the Hermitian surface in odd characteristic

Luca Giuzzi and Gábor Korchmáros*

Dedicated to Professor Adriano Barlotti on the occasion of his 80th birthday

Abstract. We construct a new ovoid of the polar space arising from the Hermitian surface of $PG(3, q^2)$ with $q \ge 5$ odd. The automorphism group Γ of such an ovoid has a normal cyclic subgroup Φ of order $\frac{1}{2}(q+1)$ such that $\Gamma/\Phi \cong PGL(2,q)$. Furthermore, Γ has three orbits on the ovoid, one of size q+1 and two of size $\frac{1}{2}q(q-1)(q+1)$.

Key words. Ovoid, Hermitian surface, polar space, automorphism group.

2000 Mathematics Subject Classification. Primary: 51E20, Secondary: 51A50

1 Introduction

The concept of ovoid and its generalisations have played an important role in finite geometry since the fifties. By a beautiful result of A. Barlotti [2] and G. Panella [10], every ovoid in PG(3, q) with q odd is an elliptic quadric. This is a generalisation of Segre's famous theorem [11] stating that every oval in PG(2, q), with q odd, is a conic. Ovoids of finite classical polar spaces have been intensively investigated, especially in the last two decades, see [1], [3], [4], [5], [9], [12], [13], [14] and the recent survey paper [15]. In this paper we are concerned with ovoids of the polar space determined by a non-degenerate Hermitian surface $\mathcal{H}(3, q^2)$ of PG(3, q^2).

An ovoid \mathcal{O} of the polar space arising from $\mathscr{H}(3, q^2)$ is a set of $q^3 + 1$ points in $\mathscr{H}(3, q^2)$ which meets every generator (that is, every line contained in $\mathscr{H}(3, q^2)$) in exactly one point. The intersection of $\mathscr{H}(3, q^2)$ with any non-tangent plane provides an ovoid—namely, the *classical* ovoid of $\mathscr{H}(3, q^2)$. Existence of non-classical ovoids of $\mathscr{H}(3, q^2)$ was pointed out by Payne and Thas [16], who constructed a non-classical ovoid \mathcal{O}' from the classical one \mathcal{O} by replacing the q + 1 points of \mathcal{O} lying in a chord ℓ by the common points of $\mathscr{H}(3, q^2)$ with the polar line ℓ' of ℓ . A straightforward generalisation of this procedure consists in replacing a number of chords of \mathcal{O} , each with its own polar line. The condition for the resulting set to be an ovoid is easily

^{*}The present research was performed within the activity of G.N.S.A.G.A. of the Italian INDAM with the financial support of the Italian Ministry M.I.U.R., project "Strutture geometriche, combinatorica e loro applicazioni", 2001–02.

stated: the replaced chords must pairwise intersect outside of O. The above procedure will be called *derivation* or *multiple derivation* according to one or more chords being replaced.

In this paper, we construct an ovoid \mathcal{O} of $\mathscr{H}(3,q^2)$ for every odd $q \ge 5$ which cannot be obtained either by derivation or by multiple derivation. We also determine the automorphism group of \mathcal{O} , as given by the subgroup of PGU(4, q^2) preserving \mathcal{O} .

2 Preliminary results on ovoids of the Hermitian surface

Let $\mathscr{H}(3,q^2)$ be a non-degenerate Hermitian surface in PG $(3,q^2)$. It is well known, see [6, Chapter 19], that $\mathscr{H}(3,q^2)$ can be reduced by a non-singular linear transformation to the canonical form $X_0^q X_3 + X_0 X_3^q + u X_1^{q+1} + v X_2^{q+1} = 0$, where $u, v \in \mathbb{F}_q$ are non-zero elements. The linear collineation group of PG $(3,q^2)$ preserving $\mathscr{H}(3,q^2)$ is PGU $(4,q^2)$. See [8] for a classification of the subgroups of PGU $(4,q^2)$. We shall rely only upon an existence theorem for subgroups of homologies, as stated in the following lemma.

Lemma 2.1. Let α be a non-tangent plane to $\mathscr{H}(3,q^2)$ and A its pole under the unitary polarity associated with $\mathscr{H}(3,q^2)$. Then the (α, A) homology group of PGU $(3,q^2)$, that is, the maximal subgroup of PGU $(3,q^2)$ consisting of homologies with axis α and centre A, is a cyclic group of order q + 1.

We shall also need a characterisation of ovoids which can be obtained by multiple derivation.

Lemma 2.2. Let \mathcal{O}' be an ovoid of $\mathscr{H}(3, q^2)$. A necessary and sufficient condition for \mathcal{O}' to be obtainable from a classical ovoid \mathcal{O} of $\mathscr{H}(3, q^2)$ through multiple derivation is that \mathcal{O}' is preserved by the (α, A) homology group of PGU $(3, q^2)$ for a non-tangent plane α and its pole A.

Proof. Choose a pair (α, A) consisting of a non-tangent plane α to $\mathscr{H}(3, q^2)$ and the pole A of α under the unitary polarity associated with $\mathscr{H}(3, q^2)$. Let \mathcal{O} be the classical ovoid given by all common points of $\mathscr{H}(3, q^2)$ and α . Denote by Ψ the homology group of PGU $(3, q^2)$ with axis α and centre A. It is easily verified that if an ovoid \mathcal{O}' arises from \mathcal{O} by (multiple) derivation, then Ψ preserves \mathcal{O}' . Conversely, we prove that if Ψ preserves an ovoid \mathcal{O}' different from \mathcal{O} , then \mathcal{O}' can be obtained from \mathcal{O} by (multiple) derivation. Let $P \in \mathcal{O}'$ be a point not on α . Then the orbit of P under Ψ consists of the common points of $\mathscr{H}(3, q^2)$ and the line ℓ' joining A and P. Hence, $\mathscr{H}(3, q^2) \cap \ell'$ is contained in \mathcal{O}' . Let now ℓ'_1, \ldots, ℓ'_m be the lines through A which meet \mathcal{O}' outside α , and let ℓ_1, \ldots, ℓ_m be their corresponding polar lines. The latter lines are chords of the Hermitian curve $\mathscr{H}(2, q^2) = \mathcal{O}$, cut out on $\mathscr{H}(3, q^2)$ by the plane α , and any two of them intersect outside $\mathscr{H}(2, q^2)$. This proves that \mathcal{O}' arises from \mathcal{O} by multiple derivation.

3 The construction

We assume $q \ge 5$ to be odd and write the equation of the Hermitian surface $\mathscr{H}(3, q^2)$ in its canonical form

$$X_3^q X_0 + X_3 X_0^q + 2X_2^{q+1} - X_1^{q+1} = 0. ag{3.1}$$

The starting point of our construction is the following lemma.

Lemma 3.1. Let (x, y) satisfy the relation

$$y^{q} + y + x^{(q+1)/2} = 0. (3.2)$$

Then the point $(1, x, y, y^2)$ lies on $\mathscr{H}(3, q^2)$.

Proof. If (x, y) satisfies (3.2), then the polynomial identity

$$(Y^{q} + Y - X^{(q+1)/2})(Y^{q} + Y + X^{(q+1)/2}) = Y^{2q} + 2Y^{q+1} + Y^{2} - X^{q+1}$$

implies that $y^{2q} + 2y^{q+1} + y^2 - x^{q+1} = 0$. The geometric interpretation of this equation is that the point $(1, x, y, y^2)$ lies on $\mathscr{H}(3, q^2)$.

Lemma 3.2. Let $x \in \mathbb{F}_{q^2}^*$. Then Equation (3.2) has either q or 0 solutions in $y \in \mathbb{F}_{q^2}$, according as x is a square or a non-square in \mathbb{F}_{q^2} .

Proof. We first prove that if (x, y), with $x, y \in \mathbb{F}_{q^2}$, satisfies (3.2), then x is the square of an element of \mathbb{F}_{q^2} . The assertion holds trivially for x = 0; hence, we may assume that $x \neq 0$. Since $y^q + y \in \mathbb{F}_q$, we have $-x^{(q+1)/2} \in \mathbb{F}_q$, whence $(x^{(q+1)/2})^{q-1} = 1$. On the other hand, $x \neq 0$ is a square in \mathbb{F}_{q^2} if and only if $x^{(q^2-1)/2} = 1$, which proves the assertion. Conversely, let x be a square element of \mathbb{F}_{q^2} , and take $\xi \in \mathbb{F}_{q^2}$ such that $x = \xi^2$. By [7, 1.19], the equation $y^q + y = \xi^{q+1}$ has exactly q solutions in \mathbb{F}_{q^2} . Hence, $y^q + y = x^{(q+1)/2}$ holds for exactly q values $y \in \mathbb{F}_{q^2}$. This completes the proof.

Let Σ denote the set of all pairs (x, y) with $x, y \in \mathbb{F}_{q^2}$ satisfying (3.2).

Lemma 3.3. The set Σ has size $\frac{1}{2}q(q^2+1)$.

Proof. The number of squares in \mathbb{F}_{q^2} , zero included, is $(q^2 + 1)/2$. Thus, the assertion follows from Lemma 3.2 together with a counting argument.

We embed Σ in PG(3, q^2) by means of the map $\varphi : (1, x, y) \mapsto (1, x, y, y^2)$. Some properties of the embedded set are collected in the following two lemmas.

Lemma 3.4. Let Δ be the set of all points $(1, x, y, y^2)$ of $PG(3, q^2)$ with $(x, y) \in \Sigma$, together with the point (0, 0, 0, 1). Then

- I) Δ has size $\frac{1}{2}(q^3 + q + 2)$;
- II) The plane π with equation $X_1 = 0$ intersects Δ in a set Δ_1 of size q + 1. The set Δ_1 is the complete intersection in π of the conic \mathscr{C} with equation $X_0X_3 X_2^2 = 0$ and the Hermitian curve $\mathscr{H}(2, q^2)$ with equation $X_0^q X_3 + X_0 X_3^q + 2X_2^{q+1} = 0$;
- III) The Baer involution $\beta := (X_0, X_2, X_3) \mapsto (X_0^q, -X_2^q, X_3^q)$ of π preserves both \mathscr{C} and $\mathscr{H}(2, q^2)$. The associated Baer subplane π_0 of π meets $\mathscr{H}(2, q^2)$ in Δ_1 ;
- IV) Δ_1 lies in π_0 and consists of all the points of a conic \mathscr{C}_0 of π_0 .

Proof. The lemma is a consequence of straightforward computations.

Lemma 3.5. The point U = (0, 1, 0, 0) is not in Δ . Furthermore,

- i) A line through U meets Δ in either ¹/₂(q + 1) or 1 or 0 points. More precisely, there are exactly q² q lines through U sharing ¹/₂(q + 1) points with Δ, and q + 1 lines having just one point in Δ. The former lines meet the plane π in the points of the conic C not lying on Δ₁; the latter in the points of Δ₁;
- ii) A plane through U meets Δ in either q + 1 or $\frac{1}{2}(q + 1)$ or 0 points;
- iii) A plane missing U meets Δ in at most $q^2 + 1$ points.

Proof. In order to prove ii), take a point $P(1, x, y, y^2)$ in Δ and consider the line ℓ through U and P. The point $P_t(1, x + t, y, y^2)$, for $t \in \mathbb{F}_{q^2}$, is a common point of ℓ and Δ if and only if $y^q + y + (x + t)^{(q+1)/2} = 0$. By (3.2) this occurs when $(x + t)^{(q+1)/2} = x^{(q+1)/2}$. For x = 0, this implies t = 0. Hence, in this case, P is the only common point of ℓ and Δ . In particular, $P \in \Delta_1$. For $x \neq 0$, we obtain $(1 + t/x)^{(q+1)/2} = 1$. Since all the $\frac{1}{2}(q + 1)$ -st roots of unity are contained in \mathbb{F}_{q^2} and they are pairwise distinct, ℓ contains exactly $\frac{1}{2}(q + 1)$ points from Δ . The common point of ℓ and π is the point $(1, 0, y, y^2)$ which lies on \mathscr{C} , but does not belong to Δ_1 . Let now α be the plane through U with equation $u_0X_0 + u_2X_2 + u_3X_3 = 0$; a point $P(1, x, y, y^2)$ of Δ lies in α if and only if $u_0 + u_2y + u_3y^2 = 0$. Since for every $y \in \mathbb{F}_{q^2}$, Equation (3.2) has exactly $\frac{1}{2}(q + 1)$ solutions in $x \in \mathbb{F}_{q^2}$, statement ii) follows. To prove iii), consider a plane β which meets any line through U in exactly one point. By statement i), there are at most $q^2 + 1$ lines through U containing a point of Δ . Hence, $q^2 + 1$ is an upper bound for the number of points in common between β and Δ . This proves statement iii).

We need some more notation. For $q \equiv 1 \pmod{4}$, denote by Δ' the set of all points in $\mathscr{H}(2,q^2) \setminus \Delta_1$ which are covered by chords of \mathscr{C}_0 . For $q \equiv 3 \pmod{4}$, Δ' will denote the set of all points in $\mathscr{H}(2,q^2)$ which are covered by external lines to \mathscr{C}_0 in π_0 . Clearly, Δ' has size $\frac{1}{2}q(q+1)(q-1)$. Several properties of $\Delta \cup \Delta'$ can be deduced from Lemma 3.5. However, we just state one which will be used in Section 5.

Lemma 3.6. With the notation above,

- i) The plane X₁ = 0 meets Δ ∪ Δ' in ½(q³ + q + 2) points; any other plane of PG(3, q²) has at most q² + q + 2 points in common with Δ ∪ Δ';
- ii) A line through U meets $\Delta \cup \Delta'$ in either $\frac{1}{2}(q+1)$ or 1 or 0 points. More precisely, there are exactly $q^2 - q$ lines through U sharing $\frac{1}{2}(q+1)$ points with $\Delta \cup \Delta'$, and $\frac{1}{2}(q^3 + q + 2)$ having just one point in $\Delta \cup \Delta'$. The former lines meet π in the points of the conic \mathscr{C} which are not in Δ_1 ; the latter meet π in the points of $\Delta_1 \cup \Delta'$.

The main result of this paper is the following.

Theorem 3.7. The set $\Delta \cup \Delta'$ is an ovoid of $\mathscr{H}(3, q^2)$ which cannot be obtained from a *Hermitian curve by means of multiple derivation*.

The proof of Theorem 3.7 is postponed till Section 5. Meanwhile, we state and prove some properties of the collineation group of $\Delta \cup \Delta'$ which will play a role in its proof.

4 The subgroup of PGU(4, q^2) preserving $\Delta \cup \Delta'$

The linear collineation group of PG(3, q^2) preserving $\mathscr{H}(3, q^2)$ is PGU(4, q^2). First, we determine the subgroup of PGU(4, q^2) which preserves Δ . In doing so, we shall be dealing with several collineations from PGU(4, q^2).

For any $a \in \mathbb{F}_{q^2}$, with $a^q + a = 0$, and for any square μ in \mathbb{F}_{q^2} , let

$$T_a := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ a & 0 & 1 & 0 \\ a^2 & 0 & 2a & 1 \end{pmatrix}; \quad M_\mu := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \mu & 0 & 0 \\ 0 & 0 & \mu^{(q+1)/2} & 0 \\ 0 & 0 & 0 & \mu^{(q+1)} \end{pmatrix}.$$

Denote by $[T_a]$ and $[M_\mu]$ the linear collineations associated with the matrices T_a and M_μ , respectively.

It is easily verified that $\mathbf{T} = \{[T_a] | a \in \mathbb{F}_{q^2}\}$ is an elementary Abelian group of order q, while $\mathbf{M} = \{[M_\mu] | \mu \in \mathbb{F}_{q^2}\}$ is a cyclic group of order $\frac{1}{2}(q^2 - 1)$. Furthermore, the group generated by \mathbf{T} and \mathbf{M} is the semidirect product $\mathbf{T} \rtimes \mathbf{M}$.

For any non-zero square λ in \mathbb{F}_q^* , let

$$L_{\lambda} := egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & \lambda & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Again, $[L_{\lambda}]$ is the linear collineation associated to the matrix L_{λ} . Clearly, $\mathbf{L} = \{[L_{\lambda}] | \lambda \in \mathbb{F}_{q}^{*}\}$ is a cyclic group of order (q+1)/2. Finally, let

$$N := \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

and [N] be the associated linear collineation; the collineation group N generated by [N] has order 2.

Lemma 4.1. Let Γ be the group generated by all of the above linear collineations. *Then*

- i) Γ preserves both $\mathscr{H}(3, q^2)$ and Δ ;
- ii) Γ has two orbits on Δ . One is Δ_1 and the other, say Δ_2 , has size $\frac{1}{2}q(q-1)(q+1)$;
- iii) Γ acts on Δ_1 as a sharply 3-transitive permutation group;
- iv) The subgroup Φ of Γ fixing Δ_1 pointwise is a cyclic group of order $\frac{1}{2}(q+1)$ and $\Gamma/\Phi \cong PGL(2,q)$;
- v) Γ has order $\frac{1}{2}q(q-1)(q+1)^2$.

Proof. A straightforward computation shows that each of the above linear collineations preserves both $\mathscr{H}(3,q^2)$ and Δ . This proves the first assertion. Next, take any square $x \in \mathbb{F}_{q^2}$. Following Lemma 3.4, let $\Delta(x)$ be the set of the q points $P_{y} =$ $(1, x, y, y^2)$, satisfying $y^q + y = x^{(q+1)/2}$, $y \in \mathbb{F}_{q^2}$. Then $\Delta_1 = \Delta(0) \cup P_{\infty}(0, 0, 0, 1)$. Further, let $\Delta_2 = \bigcup \Delta(x)$, where the union is over the set of non-zero squares of \mathbb{F}_{q^2} . Then $|\Delta_2| = \frac{1}{2}q(q^2 - 1)$ and $\Delta = \Delta_1 \cup \Delta_2$. To prove that Δ_2 is a full orbit under Γ , take any two points in Δ_2 , say $P = (1, x, y, y^2)$ and $Q = (1, x', y', y'^2)$. Since both x and x' are non-zero squares in \mathbb{F}_{q^2} , their ratio $\mu = x/x'$ is also a non-zero square element of \mathbb{F}_{q^2} . The collineation $[M_{\mu}]$ maps Q onto a point $R = (1, x, \overline{y}, \overline{y}^2) \in \Delta_2$. For $a = y - \overline{y}$, the collineation $[T_a]$ takes R onto P. This proves the assertion. We now show that Γ induces on Δ_1 a 3-transitive permutation group. This depends on the following remarks: the group T fixes P_{∞} and acts transitively on the remaining q points in Δ_1 , whereas **M** fixes both P_0 and P_{∞} and acts transitively on the remaining q-1 points in Δ_1 . Hence, $\mathbf{T} \rtimes \mathbf{M}$ acts on $\Delta_1 \setminus \{P_\infty\}$ as a sharply 2-transitive permutation group whose one-point stabiliser is cyclic. Furthermore, [N] interchanges P_0 and P_{∞} . Following the notation of Lemma 3.4, let Φ be the normal subgroup of Γ which fixes π pointwise. Any collineation of Φ is associated with a diagonal matrix of type

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \rho & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

with $\rho \in \mathbb{F}_{q^2}^*$; such collineation preserves Δ if and only if $\rho^{(q+1)/2} = 1$. This shows that $\Phi = \mathbf{L}$. Hence, Φ is a cyclic group of order (q+1)/2. Let $G = \Gamma/\Phi$ be the linear

collineation group induced by Γ on π . Then *G* is the linear collineation group of π which preserves Δ_1 . Actually, *G* also preserves the Baer subplane π_0 as defined in III) of Lemma 3.4, since the associated Baer involution β centralises *G*. By IV) of Lemma 3.4, *G* is a linear collineation group of π_0 which acts 3-transitively on a conic \mathscr{C}_0 of π_0 . Thus, $G \cong PGL(2, q)$ acts on \mathscr{C}_0 as PGL(2, q) in its unique sharply 3-transitive permutation representation. In particular, *G* has order q(q-1)(q+1), and hence v) holds.

In the previous proof, we have also shown that Γ coincides with the subgroup of PGU(4, q^2) which preserves both Δ_1 and Δ_2 . Actually, this result can be improved with little more effort.

Lemma 4.2. The group Γ is the subgroup of PGU(4, q^2) which preserves Δ .

Proof. Assume, to the contrary, that the subgroup of PGU(4, q^2) which preserves Δ acts transitively on Δ . Then the size of Δ should divide the order of PGU(3, q^2), that is, $\frac{1}{2}(q+1)(q^2-q+2)$ should divide $q^6(q+1)^3(q-1)^2(q^2-q+1)$. Let d be a prime divisor of $q^2 - q + 2$. Thus d divides $(q-1)^2(q+1)^3$ too. This is possible only for d = 2. Hence, $q^2 + q - 2 = 2^m$ for an integer $m \ge 1$. We show that this cannot occur for $q \ge 5$. First, assume that m = 2n is even and write $q^2 - q + 2 = 2^{2n}$ in the equivalent form $(2^{n+1} + (2q-1))(2^{n+1} - (2q-1)) = 7$, whence $2^{n+1} + 2q - 1 = 7$ and $2^{n+1} - (2q-1) = 1$. This only occurs for q = 2, n = 1. For the case m = 2n + 1, write $q^2 - q + 2 = 2^{2n+1}$ as $q(q-1) = 2(2^n + 1)(2^n - 1)$. This yields $kq = 2^n \pm 1$ and $\frac{1}{2k}(q-1) = 2^n \mp 1$ for a divisor k of q-1. Then $kq - \frac{1}{2k}(q-1) = 2$, which is only possible for q = 3, n = 1 and k = 1, since $kq - \frac{1}{2k}(q-1) > (q-1)(k - \frac{1}{k}) > \frac{1}{2}k(q-1)$.

We now turn our attention to Δ' .

Lemma 4.3. The group Γ preserves Δ' . More precisely, Δ' is an orbit under Γ .

Proof. Using the notation of Lemma 3.4, Γ preserves the plane π and induces on π a linear collineation group $G \cong \text{PGL}(2, q)$ that leaves both \mathscr{C}_0 and $\mathscr{H}(2, q^2)$ invariant. In particular, Γ preserves the set of all chords of \mathscr{C}_0 , as well as that of external lines to \mathscr{C}_0 . Hence, it leaves Δ' invariant. To prove that G is transitive on Δ' , it is enough to show that the stabiliser G_P of a point $P \in H(2, q^2) \setminus \Delta_1$ has order 2. As $P \notin \pi_0$, there is only one line of π_0 through P, say ℓ . Since tangents to \mathscr{C}_0 are also tangents to $\mathscr{H}(2, q^2)$, ℓ is either a chord of \mathscr{C}_0 or an external line to \mathscr{C}_0 . Thus, the stabiliser G_ℓ of ℓ is a dihedral group $D_{q\pm 1}$ of order $2(q \pm 1)$, where + or - occurs depending on whether ℓ is an external line or a chord. The central involution of $D_{q\pm 1}$ fixes ℓ pointwise, whereas each of the $q \pm 1$ non-central involutions of $D_{q\pm 1}$ has exactly two fixed points, both in π_0 , hence distinct from P. Choose now any element $g \in D_{q\pm 1}$ of order greater than 2. To complete the proof we have to show that $g(P) \neq P$. If ℓ is an external line to \mathscr{C}_0 , then g has no fixed point on ℓ ; when ℓ is a chord, g fixes the common points of ℓ and \mathscr{C}_0 but no other point on ℓ .

Our final result is the following theorem.

Theorem 4.4. The group Γ is the subgroup of PGU(4, q^2) which preserves $\Delta \cup \Delta'$.

Proof. By virtue of the last two Lemmas, we have only to prove that any collineation $g \in PGU(3, q^2)$ preserving $\Delta \cup \Delta'$ must also preserve Δ . By i) of Lemma 3.6, g preserves the plane π with equation $X_1 = 0$. Since U = (0, 1, 0, 0) is the pole of π with respect to the unitary polarity associated with $\mathscr{H}(3, q^2)$, it turns out that g fixes U. By ii) of Lemma 3.6, g preserves the conic \mathscr{C} of π . Since g preserves $\mathscr{H}(2, q^2) = \mathscr{H}(3, q^2) \cap \pi$ and $\Delta_1 = \mathscr{H}(2, q^2) \cap \mathscr{C} = \mathscr{C}_0$, it follows that g preserves both Δ_1 and $\mathscr{C} \setminus \Delta_1$. Again, by ii) of Lemma 3.6, the latter assertion yields that g preserves not only Δ_1 but also $\Delta \setminus \Delta_1$. This can only happen if g preserves Δ .

5 The proof of Theorem 3.7

We keep our previous notation. We first prove that $\mathcal{O} = \Delta \cup \Delta'$ is an ovoid. Since \mathcal{O} has the right size, $q^3 + 1$, it is enough to show that no two distinct points in \mathcal{O} are conjugate under the unitary polarity associated with $\mathscr{H}(3, q^2)$. As $\Delta_1 \cup \Delta_2$ lies in the plane π , which is not tangent to $\mathscr{H}(3, q^2)$, our assertion is true for any two distinct points in $\Delta_1 \cup \Delta'$. It remains to prove that no point $P \in \Delta_2 = \Delta \setminus \Delta_1$ is conjugate to another point in $\Delta \cup \Delta'$. Since, by ii) of Lemma 4.1, Γ acts transitively on Δ_2 , we may assume $P(1, 1, -\frac{1}{2}, \frac{1}{4})$. The plane α_P , tangent to $\mathscr{H}(3, q^2)$ at P, has equation $X_0 - 4X_1 - 4X_2 + 4X_3 = 0$. We have to verify that both of the following statements hold:

- i) α_P has no points in Δ except P;
- ii) α_P meets π in a line disjoint from $\Delta_1 \cup \Delta'$.

Let $Q = (1, x, y, y^2) \in \Delta_2$ be a point of α_P . Then by Lemma 3.2, $x = \xi^2$ with $\xi \in \mathbb{F}_{q^2}$. In this case, both $1 - 4\xi^2 - 4y + 4y^2 = 0$ and $y^q + y + \xi^{q+1} = 0$. The former equation gives $y = \pm \frac{1}{2}(2\xi + 1)$; it follows that $(\pm \xi^q - 1)(\pm \xi - 1) = 0$. This yields $\xi = \pm 1$. Thus, x = 1 and either $y = -\frac{1}{2}$, or $y = \frac{3}{2}$. As *q* is odd, the latter condition is impossible. Hence, *Q* is the only common point of α and Δ_2 .

To verify ii), we consider the line $\ell = \alpha_P \cap \pi$ with equation $X_0 - 4X_2 + 4X_3 = 0$, and we show that ℓ is disjoint from Δ' .

We first deal with the case $q \equiv 1 \pmod{4}$. For any chord *r* of \mathscr{C}_0 , compute the coordinates of the point $R = \ell \cap r$. Let $R_1 = (1, u, u^2)$ and $R_2 = (1, v, v^2)$, with $u^q + u = 0$, $v^q + v = 0$, be the common points of *r* and \mathscr{C}_0 . Since *r* has equation $uvX_0 - (u+v)X_2 + X_3 = 0$, we have R = (4(u+v-1), 4uv - 1, 4uv - u - v). Let

$$f = 4(u+v-1)^{q}(4uv-u-v) + 4(u+v-1)(4uv-u-v)^{q} + 2(4uv-1)^{q+1}.$$

Then f = 0 if and only if $R \in \mathcal{H}(2, q^2)$. By a straightforward computation,

$$f = 4(u+v-1)^{q}(u+v-4uv) + 4(u+v-1)(u+v-4uv)^{q} + 2(4uv-1)^{q+1} = 4(1+4v^{2})u^{2} - 16vu + 4v^{2} + 1.$$

This shows that f = 0 implies that

$$u = \frac{4v + (4v^2 - 1)j}{2(1 + 4v^2)}, \quad j^2 = -1.$$
(5.1)

As $q \equiv 1 \pmod{4}$, we have $j^q = j$. Taking $u^q + u = 0$, $v^q + v = 0$ into account, we see that f = 0 yields

$$0 = u^{q} + u = \frac{4v - 1}{2(1 + 4v)}(j + j^{q}).$$

Therefore, $q \equiv 1 \pmod{4}$ implies $f \neq 0$ and ii) follows for this case.

If $q \equiv 3 \pmod{4}$, we have to consider an external line *r* to \mathscr{C}_0 . Since *r* meets \mathscr{C} in two distinct points, *r* can be regarded as the line joining the point $R_1(1, u, u^2)$, with $u^q + u \neq 0$, and its image $R_2(1, -u^q, u^{2q})$ under the Baer involution associated with π_0 , see statement III) of Lemma 3.4. Hence, *r* has equation $X_3 + (u^q - u)X_2 - u^{q+1}X_0 = 0$. The common point of *r* and ℓ is $R = (4(u^q - u + 1), 4u^{q+1} + 1, 4u^{q+1} - u^q + u)$. Let

$$f = 4(u^{q} - u + 1)^{q}(4u^{q+1} - u^{q} + u) + 4(u^{q} - u + 1)(4u^{q+1} - u^{q} + u)^{q} + 2(4u^{q+1} + 1)^{q+1}.$$

Then $R \in \mathscr{H}(2, q^2)$ if and only if f = 0. By a direct computation $f = 2[4(u^q + u)^2 + (4u^{q+1} + 1)^2]$. Therefore, f = 0 implies that $2(u^q + u) = j(4u^{q+1} + 1)$ with $j^2 = -1$, whence $4u^{q+1} + 1 \neq 0$ and

$$j = 2\frac{u^q + u}{4u^{q+1} + 1}.$$

This yields $j \in \mathbb{F}_q$, contradicting $q \equiv 3 \pmod{4}$, and completes the proof of ii).

Finally, assume by way of contradiction that \mathcal{O} is obtained by a multiple derivation. According to Lemma 2.2, there is a homology group Ψ of order q + 1 preserving \mathcal{O} . Let α be its axis; the pole A of α is the centre of the elements of Ψ . By Theorem 4.4, Ψ is a subgroup of Γ ; hence, it preserves π . However, Ψ is not a subgroup of Φ , since, by iv) of Lemma 4.1, the subgroup Φ of Γ fixing π pointwise has order $\frac{1}{2}(q+1)$. In particular, $\alpha \neq \pi$. Hence, Ψ acts faithfully on π . In other words, the linear collineation group H induced by Ψ on π has order q + 1. Actually, H is a homology group of π whose axis is the common line of α and π and whose centre is the point of intersection of π and the line joining A and U. By ii) of Lemma 3.5, H preserves the conic \mathscr{C} of π . This leads to a contradiction, as no homology of order t > 2 preserves a conic.

References

 R. D. Baker, G. L. Ebert, G. Korchmáros, T. Szőnyi, Orthogonally divergent spreads of Hermitian curves. In: *Finite geometry and combinatorics (Deinze*, 1992), volume 191 of *London Math. Soc. Lecture Note Ser.*, 17–30, Cambridge Univ. Press 1993. MR 94k:51013 Zbl 0804.51013

- [2] A. Barlotti, Un'estensione del teorema di Segre-Kustaanheimo. Boll. Un. Mat. Ital. (3) 10 (1955), 498–506. MR 17,776b Zbl 0066.38901
- [3] A. E. Brouwer, H. A. Wilbrink, Ovoids and fans in the generalized quadrangle Q(4, 2). *Geom. Dedicata* **36** (1990), 121–124. MR 91h:51007 Zbl 0716.51007
- [4] A. Cossidente, G. Korchmáros, Transitive ovoids of the Hermitian surface of $PG(3, q^2)$, with q even. J. Combin. Theory Ser. A. 101 (2003), 117–130.
- [5] A. Gunawardena, Primitive ovoids in O⁺₈(q). J. Combin. Theory Ser. A 89 (2000), 70–76. MR 2000i:51025 Zbl 0961.51007
- [6] J. W. P. Hirschfeld, *Finite projective spaces of three dimensions*. Oxford Univ. Press 1985. MR 87j:51013 Zbl 0574.51001
- J. W. P. Hirschfeld, *Projective geometries over finite fields*. Oxford Univ. Press 1998. MR 99b:51006 Zbl 0899.51002
- [8] W. M. Kantor, R. A. Liebler, The rank 3 permutation representations of the finite classical groups. *Trans. Amer. Math. Soc.* 271 (1982), 1–71. MR 84h:20040 Zbl 0514.20033
- [9] P. B. Kleidman, The 2-transitive ovoids. J. Algebra 117 (1988), 117–135. MR 89j:51008 Zbl 0652.51013
- [10] G. Panella, Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito. *Boll. Un. Mat. Ital.* (3) 10 (1955), 507–513. MR 17,776c Zbl 0066.38902
- B. Segre, Ovals in a finite projective plane. *Canad. J. Math.* 7 (1955), 414–416.
 MR 17,72g Zbl 0065.13402
- B. Segre, Forme e geometrie hermitiane, con particolare riguardo al caso finito. Ann. Mat. Pura Appl. (4) 70 (1965), 1–201. MR 35 #4802 Zbl 0146.16703
- J. A. Thas, Ovoids and spreads of finite classical polar spaces. *Geom. Dedicata* 10 (1981), 135–143. MR 82g:05031 Zbl 0458.51010
- J. A. Thas, Old and new results on spreads and ovoids of finite classical polar spaces. In: *Combinatorics* '90 (*Gaeta*, 1990), volume 52 of *Ann. Discrete Math.*, 529–544, North-Holland 1992. MR 93h:51005 Zbl 0767.51004
- [15] J. A. Thas, Ovoids, spreads and *m*-systems of finite classical polar spaces. In: *Surveys in combinatorics*, 2001 (*Sussex*), volume 288 of *London Math. Soc. Lecture Note Ser.*, 241–267, Cambridge Univ. Press 2001. MR 2003a:51003 Zbl 0986.51005
- [16] J. A. Thas, S. E. Payne, Spreads and ovoids in finite generalized quadrangles. *Geom. Dedicata* 52 (1994), 227–253. MR 95m:51005 Zbl 0804.51007

Received 30 December, 2002

- L. Giuzzi, Dipartimento di Matematica, Università degli Studi di Brescia, via Valotti 9, 25133 Brescia, Italy Email: giuzzi@ing.unibs.it, giuzzi@dmf.unicatt.it
- G. Korchmáros, Dipartimento di Matematica, Università degli Studi della Basilicata, Contrada Macchia Romana, 85100 Potenza, Italy Email: korchmaros@unibas.it