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Abstract. We find all minimal blocking sets of size 3
2 ðpþ 1Þ in PGð2; pÞ for p < 41. There is

one new sporadic example, for p ¼ 13. We find all maximal partial spreads of size 45 in
PGð3; 7Þ.

1 Minimal nontrivial blocking sets in PG(2, p)

A blocking set in a projective plane is a set of points meeting all lines. It is called
nontrivial when it does not contain a line. An m-secant of a set is a line meeting the
set in precisely m points.

Blokhuis [2] shows that in a Desarguesian projective plane PGð2; pÞ of prime
order p, a nontrivial blocking set has size at least 3

2
ðpþ 1Þ, and, moreover, that

in case of equality each point of the blocking set lies on precisely 1
2
ðp� 1Þ tangents

(1-secants).
Nontrivial blocking sets of size 3

2
ðpþ 1Þ exist for all p. Indeed, an example is given

by the projective triangle: the set consisting of the points ð0; 1;�s2Þ, ð1;�s2; 0Þ,
ð�s2; 0; 1Þ with s A Fp.

No nontrivial blocking set of size qþm in PGð2; qÞ can have a k-secant for k > m,
and in particular such a set of size 3

2
ðpþ 1Þ in PGð2; pÞ cannot have a k-secant with

k > 1
2
ðpþ 3Þ. The triangle has three 1

2
ðpþ 3Þ-secants. Conversely, Lovász and

Schrijver [10] show that any nontrivial blocking set of size 3
2
ðpþ 1Þ with a 1

2
ðpþ 3Þ-

secant must be projectively equivalent to the triangle. (They put the given secant at
infinity and show that the remaining p a‰ne points can be taken to be the points
ða; aðpþ1Þ=2Þ for a A Fp.)

A blocking set S in PGð2; qÞ is called of Rédei type when there is a line L such that
jSnLj ¼ q. Thus, we know the blocking sets of Rédei type meeting the Blokhuis bound
in PGð2; pÞ, p prime. Let us call a nontrivial blocking set in PGð2; pÞ that meets the
Blokhuis bound sporadic if it is not of Rédei type. A single sporadic blocking set
(in PGð2; 7Þ) was known. Here we find a second sporadic blocking set (in PGð2; 13Þ)
and show that no other sporadic blocking sets exist in PGð2; pÞ, p < 41.



2 The Blokhuis bound

Theorem 2.1 ([2]). Let S be a nontrivial blocking set in PGð2; pÞ, p prime. Then

jSjd 3
2
ðpþ 1Þ. If equality holds, then each point of S lies on precisely 1

2
ðp� 1Þ

tangents.

Proof. Let S ¼ fðai; bi; ciÞ j i ¼ 1; . . . ; qþmg be a minimal blocking set in
PGð2; qÞ, where q is a power of the prime p. The polynomial F ðX ;Y ;ZÞ ¼Q

iðaiX þ biY þ ciZÞ vanishes in all points ðx; y; zÞ, hence can be written as

F ðX ;Y ;ZÞ ¼ AðX ;Y ;ZÞðX q � XÞ þ BðX ;Y ;ZÞðY q � Y Þ þ CðX ;Y ;ZÞðZq � ZÞ.

Since FðX ;Y ;ZÞ is homogeneous, all low degree terms cancel, and we have
F ðX ;Y ;ZÞ ¼ A0ðX ;Y ;ZÞX q þ B0ðX ;Y ;ZÞY q þ C0ðX ;Y ;ZÞZq, where F has de-
gree qþm and A0;B0;C0 have degree m. Assume that jSj < 2q, so that no cancella-
tion takes place between the terms on the right hand side.

Let the line Z ¼ 0 contain l points of S, and assume that ð1; 0; 0Þ A S. Now divide
by X and substitute X ¼ 0, Y ¼ 1 to get f ðZÞ ¼ bðZÞ þ cðZÞZq where f has degree
qþm� l and factors completely, and c has degree m� l and b has degree at most
m� 1. Write f ðZÞ ¼ sðZÞ � rðZÞ where s contains every irreducible factor of f just
once, and r contains the repeated factors. Then s j ðbþ cZqÞ and s j ðZq � ZÞ so
s j ðbþ cZÞ. And r j f 0 ¼ b 0 þ c 0Zq, so that f ¼ rs j ðbþ cZÞðb 0 þ c 0ZqÞ, and hence
f j ðbþ cZÞðb 0c� bc 0Þ.
If the factors on the right are nonzero, it follows that qþm� lc 2ðm� 1Þþ

m� l � 1 that is, md ðqþ 3Þ=2. And in case of equality the degree of s equals the
degree of bþ cZ so that ð1; 0; 0Þ lies on precisely ðq� 1Þ=2 tangents.

If bþ cZ ¼ 0 then f ¼ c � ðZq � ZÞ and it follows that ð1; 0; 0Þ does not lie on a
tangent, i.e., S is not minimal, contradiction.

If b 0c� bc 0 ¼ 0 then b and c di¤er by a p-th power. In the particular case q ¼ p

(and m < q) it follows that they di¤er by a constant factor, say bðZÞ ¼ a � cðZÞ, and
f ðZÞ ¼ cðZÞ � ðaþ ZÞq so that S contains (and hence is) a line.

3 Lacunary polynomials

We see that the blocking set problem leads one to search for polynomials f ðxÞ, gðxÞ,
hðxÞ, where f factors completely into linear factors and g and h have degree at most
1
2
ðqþ 1Þ such that f ¼ xqgþ h.
(Indeed, in the proof above we found such an f given a small blocking set S, a

point P inside, and a line L passing through that point. An e-fold linear factor of f

corresponds to a line on P distinct from L meeting S in eþ 1 points. The line L meets
S in jSj � degreeð f Þ points. Below we take jSj ¼ 3

2
ðqþ 1Þ.)

This equation has solutions that need not correspond to blocking sets. We give a
few examples.

a) (For odd q, say q ¼ 2rþ 1.) Take f ðxÞ ¼ x
Q
ðx� aÞ3 where the product is over

the nonzero squares a. Then f satisfies f ðxÞ ¼ xðxr � 1Þ3 ¼ xqgþ h with gðxÞ ¼
xr � 3, hðxÞ ¼ 3xrþ1 � x. This would correspond to line intersections (with frequen-
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cies written as exponents) 1r224 r. For q ¼ 7 this is the function for the blocking set
ð1; 0; 0Þ, ð0; 1; 0Þ, ð0; 0; 1Þ, ða; b; 1Þ with a; b A f1; 2; 4g.

b) (For q ¼ 4tþ 1.) Take f ðxÞ ¼ x
Q
ðx� aÞ

Q
ðx� bÞ4 where the product is over

the nonzero squares a and fourth powers b. Here f ðxÞ ¼ xðx2t � 1Þðxt � 1Þ4 ¼
xqgþ h with gðxÞ ¼ x2t � 4xt þ 5 and hðxÞ ¼ �5x2tþ1 þ 4xtþ1 � x. This would cor-
respond to line intersections 12t2 tþ26 t.

c) (For q ¼ 4tþ 1.) Take f ðxÞ ¼ xtþ1
Q
ðx� aÞ

Q
ðx� bÞ2 where the product is over

the nonzero squares a and fourth powers b. Here f ðxÞ ¼ xtþ1ðx2t � 1Þðxt � 1Þ2 ¼
xqgþ h with gðxÞ ¼ xt � 2 and hðxÞ ¼ 2x2tþ1 � xtþ1. This would correspond to line
intersections 12t2 t4 tðtþ 2Þ2. For q ¼ 13 this is a function for the blocking set ð1; 0; 0Þ,
ð0; 1; 0Þ, ð0; 0; 1Þ, ð1; a; 0Þ, ð0; 1; aÞ, ða; 0; 1Þ, ðb; c; 1Þ with a3 ¼ �1, b3 ¼ c3 ¼ 1.

d) (For q ¼ 13.) Take f ðxÞ ¼ x
Q
ðx� aÞ4

Q
x� 1

2
a

� �
where the product is over

all a with a3 ¼ 1. Here f ðxÞ ¼ xðx3 � 1Þ4 x3 � 1
8

� �
¼ xqgþ h with gðxÞ ¼ x3 þ 4

and hðxÞ ¼ 5x7 � 5x4 � 5x. This would correspond to line intersections 162454, and
indeed this occurs.

These lacunary polynomials are just weighted subsets of the projective line, and
in particular PGLð2; qÞ acts. For example, x 7! 1

x
sends xqgþ h to xq~hhþ ~gg where

~kkðxÞ ¼ xðqþ1Þ=2kðx�1Þ.
For completeness we describe the lacunary polynomials that correspond to the

Rédei type blocking set:
e) Take f ðxÞ ¼ xq � xðqþ1Þ=2 ¼ xðqþ1Þ=2 Qðx� aÞ where the product is over the

nonzero squares a.
f ) Take f ðxÞ ¼ xq � 2xðqþ1Þ=2 þ x ¼ x

Q
ðx� aÞ2 where the product is over the

nonzero squares a.

4 Search setup

We search for lacunary polynomials as described above over the prime field Fp by
exploiting the equation

f ¼ xpgþ h ¼ aðxgþ hÞðgh 0 � g 0hÞ

for some constant a, where f factors into linear factors, and xgþ h factors into dis-
tinct linear factors, and g and h have degree at most 1

2
ðpþ 1Þ.

If we guess xgþ h and the constant of proportionality a and the constant term of g
then this relation gives a recurrence that allows us to compute all other coe‰cients of
g, and thus to find f . If we take l ¼ 1, then xgþ h is a product of m ¼ ðpþ 3Þ=2
distinct linear factors, and there are

�
p
m

�
possible choices for the set of roots of

xgþ h. We tried all possibilities for p < 41, where PGLð2; pÞ was used to divide
the computation time by roughly p3. This yields all possibilities for f , and in partic-
ular the multiplicities of the roots of f , so that we know the sizes of the intersection
of lines on some arbitrary point ð1; 0; 0Þ with S. This su‰ces to classify the pos-
sible solutions. In fact, except for example d) in the previous section we only find
solutions if xgþ h ¼ xðqþ1Þ=2 � x. In a seperate section we will completely classify this
special case.
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Looking at p ¼ 31 took 80 minutes CPU time on an old Pentium running Linux,
and p ¼ 37 took four days.

5 Results

The results are as follows. First of all there are possibilities with a factor of multi-
plicity 1

2
ðpþ 1Þ, i.e., a 1

2
ðpþ 3Þ-secant, and we have a Rédei example, unique by

Lovász and Schrijver.
For the primes p ¼ 7; 11; 19; 23; 31 there is a unique non-Rédei intersection pattern,

namely 1ð p�1Þ=2224ðp�1Þ=2 (corresponding to the lacunary polynomial found under a)
above). Counting the total number of lines on these points we see that this can be a
blocking set only for p ¼ 7. It remains to investigate the cases p ¼ 7; 13; 17; 29; 37.

5.1 pF 7. For p ¼ 7 there is a unique intersection pattern 132243 (and no computer
search is required to see that). It gives rise to a unique sporadic blocking set (of size
12) (see also [4]).

It arises as follows. The a‰ne plane AGð2; 3Þ can be embedded into PGð2; qÞ if
and only if q ¼ 0; 1 ðmod3Þ, as one easily checks by assigning coordinates to the 9
points of AGð2; 3Þ (for more details see [9] and [1]). This embedding is unique up to
isomorphism. The three lines in a parallel class of AGð2; 3Þ are concurrent in PGð2; qÞ
if and only if q ¼ 0 ðmod 3Þ. For q ¼ 1 ðmod3Þ this 9-set can be found as the set of
inflections of a nondegenerate cubic. Dualizing we find a dual a‰ne plane DAGð2; 3Þ
with 12 points, 9 4-lines (3 on each point) and 12 2-lines (2 on each point) embedded
in PGð2; qÞ for q ¼ 1 ðmod 3Þ. It has ðq2 þ qþ 1Þ � 12ðqþ 1� 5Þ � 9� 12 ¼
ðq� 4Þðq� 7Þ 0-secants, and hence is a blocking set for q ¼ 4; 7 and for q ¼ 4 even a
2-fold blocking set.

The projective triangle in PGð2; 7Þ can also be viewed as a modification of AGð2; 3Þ:
it arises by taking the 9 points of AGð2; 3Þ and adding the 3 points of intersection of
the lines of one parallel class.

There are no other possibilities: Suppose the blocking set S has ni i-secants,
1c ic 4. Then

P
ni ¼ 57,

P
ini ¼ 96,

P�
i
2

�
ni ¼ 66 by standard counting. And

n1 ¼ 36 since we have equality in the Blokhuis bound. Hence n2 ¼ 12, n3 ¼ 0, n4 ¼ 9.
If there are mi i-secants on a fixed point s A S, then

P
mi ¼ 8,

P
ði � 1Þmi ¼ 11,

m1 ¼ 3 so that m2 ¼ 2, m4 ¼ 3. This yields the DAGð2; 3Þ structure.
More generally, Gács et al. showed in [6] that if a nontrivial blocking set S of size

3
2
ðpþ 1Þ in PGð2; pÞ has a k-secant for kd 1

2
ðpþ 1Þ then it is of Rédei type, unless

p ¼ 7 and we have this dual a‰ne plane.

5.2 pF 11. We already saw that for p ¼ 11 nothing of interest happens. More gen-
erally, Gács [5] showed that a k-secant with k ¼ 1

2
ðp� 1Þ only occurs for sets of Rédei

type, and simple counting then shows that for p ¼ 11 the set S must be of Rédei type.

5.3 pF 13. For p ¼ 13 there is a nice example again that is not of Rédei type. Let
q ¼ 1 ðmod 3Þ and take in PGð2; qÞ the 9 points of an embedded AGð2; 3Þ together
with the 12 points of intersection of lines that are parallel in AGð2; 3Þ. This yields a

Aart Blokhuis, Andries E. Brouwer and Henny A. WilbrinkS248



self-dual configuration. Indeed, these 21 points together with the 21 lines that contain
more than two of the points have a structure that is that of PGð2; 4Þ in which the
incidences between the 9 points of a unital (AGð2; 3Þ) and the tangent at these points
has been removed. There are 12 5-secants, 9 4-secants, 36 2-secants, 21ðqþ 1� 8Þ 1-
secants and ðq2 þ qþ 1Þ � 21ðqþ 1� 8Þ � 36� 9� 12 ¼ ðq� 7Þðq� 13Þ 0-secants,
so that this is a blocking set for q ¼ 7; 13, and for q ¼ 7 even a 2-fold blocking set.

For p ¼ 13 we have jSj ¼ 21. The search shows that there are four possible inter-
section patterns: a) 162246, b) 162563, c) 16234352, d) 162454. Let there be Na points
of type a, etc., and ni i-secants.

If Nb > 0, then there is a 6-secant, and it meets another 12 6-secants, so 13c n6 ¼
3Nb=6 and Nb > jSj, contradiction.

SoNb ¼ 0. If alsoNa ¼ 0 thenNc þNd ¼ 21, n1 ¼ 126, n2 ¼ 3
2
Nc þ 2Nd , n4 ¼ 3

4
Nc,

n5 ¼ 2
5
Nc þ 4

5
Nd ,

P
ni ¼ 132 þ 13þ 1 ¼ 183, with unique solution Nc ¼ 12, Nd ¼ 9,

n2 ¼ 36, n4 ¼ 9, n5 ¼ 12. Each 4-secant meets the remaining eight, that is, the 4-
secants meet pairwise (in points of type c)), and the points of type c) form a
DAGð2; 3Þ. A 5-secant meets the DAGð2; 3Þ in at most two points, so has at least
three points of type d), and the points of type d) together with the 5-secants form an
AGð2; 3Þ. Now everything is determined, and this indeed yields a solution.

If Na > 0 then at most two points do not lie on a 4-secant, so Nd c 2. If Nc ¼
Nd ¼ 0, then Na ¼ 21 and n4 ¼ 6Na=4 is not integral. Contradiction. So, n5 ¼
2
5
Nc þ 4

5
Nd > 0. We have n4 ¼ 6

4
Na þ 3

4
Nc, so Nc is even, and 4 j n5. Each 5-secant

meets at least five more, so n5 d 8, i.e., Nc þ 2Nd d 20, Nc þNd d 18, Na c 3. If
n5 d 12 then Nc þ 2Nd d 30, Nc þNd d 28, contradiction. So n5 ¼ 8. Now n4 ¼
6
4
Na þ 3

4
Nc ¼ 3

2
ðNa þNc þNdÞ � 3

4
ðNc þ 2NdÞ ¼ 3

2
� 21� 3

4
� 20 is not integral. Con-

tradiction.
So, up to isomorphism there is a unique minimal blocking set in PGð2; 13Þ of size

21 that is not of Rédei type.

5.4 pF 17. For p ¼ 17 we have jSj ¼ 27. There are three possible intersection pat-
terns: a) 182248, b) 182664, c) 18244462.

We have Na þNb þNc ¼ 27 and n1 ¼ 8 � 27 ¼ 216, and n2 ¼ Na þ 3Nb þ 2Nc,
n4 ¼ 2Na þNc, so n2 þ n4 ¼ 3 � 27 ¼ 81 and n6 ¼ 172 þ 17þ 1� 216� 81 ¼ 10.
2Nb þNc ¼ 3n6 ¼ 30, soNb d 3. Now three points of type b) see twelve 6-secants, but
there are only ten, so there is a 6-secant with at least two points of type b). But such a
6-secant meets at least 3þ 3þ 1þ 1þ 1þ 1 ¼ 10 other 6-secants, contradiction.

So, no non-Rédei sets occur for p ¼ 17.

5.5 pF 29. For p ¼ 29 we have jSj ¼ 45. There are three possible intersection pat-
terns: a) 11422414, b) 1142967, c) 114274792.

If type c) occurs then there are 9-secants, and each 9-secant meets another nine, so
10c n9 ¼ 2Nc=9 and Nc d 45 so that all points are of type c). But then n4 ¼ 7Nc=4
is not integral. Contradiction.

So Nc ¼ 0. There are 14Na=4 4-secants, so Na is even. There are 7Nb=6 6-secants,
so Nb is even. But Na þNb ¼ 45. Contradiction.

So, no non-Rédei sets occur for p ¼ 29.
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5.6 pF 37 and larger p. For p ¼ 37 we have jSj ¼ 57. There are three possible
intersection patterns: a) 11822418, b) 11821169, c) 1182949112, and as before no non-
Rédei set can exist.

Let us prove more generally that no sporadic blocking set exists in PGð2; pÞ,
p ¼ 4tþ 1d 37, when only the three patterns a) 12t2242t, b) 12t2 tþ26 t and c)
12t2 t4 tðtþ 2Þ2 do occur. We have jSj ¼ 6tþ 3.

If type c) occurs then there are ðtþ 2Þ-secants, and each meets tþ 2 more,
so tþ 3c ntþ2 ¼ 2Nc=ðtþ 2Þc 2jSj=ðtþ 2Þ < 12, contradiction. So Nc ¼ 0. Now
Na þNb ¼ jSj and n1 þ n2 þ n4 þ n6 ¼ p2 þ pþ 1 determines all values: Na ¼ 12,
Nb ¼ 6t� 9, n1 ¼ 12t2 þ 6t, n2 ¼ 3t2 þ 3

2
tþ 3, n4 ¼ 6t, n6 ¼ t2 � 3

2
t. Now a 4-line

meets 4ð2t� 1Þ other 4-lines, contradicting n4 ¼ 6t.
So, for a new sporadic blocking set we need a new factorizing lacunary polynomial.

6 The special case xgB hF x(pB1)/2 C x

In this section we consider the modular di¤erential equation

xpgþ h ¼ aðxgþ hÞðg 0h� h 0gÞ;

where xgþ h factors into distinct linear factors, and g; h A Fp½x� are both of degree at
most ðpþ 1Þ=2, not both zero, and a is a nonzero constant. Write s :¼ xgþ h and
t :¼ ðxp � xÞ=s. Then h ¼ s� xg and s 0tþ st 0 ¼ �1. Rewrite the original equation as

ðxp � xÞg ¼ sðag 0s� ags 0 þ ag2 � 1Þ:

Division by s gives

tg ¼ ag 0s� ags 0 þ ag2 � 1 ¼ ag 0s� ags 0 þ ag2 þ st 0 þ s 0t:

This may be rewritten as

sðag 0 þ t 0Þ ¼ �ðag� tÞðg� s 0Þ:

We now consider the special case s ¼ xnþ1 � x, where n :¼ ðp� 1Þ=2. Then
t ¼ xn þ 1, and our equation simplifies to

ðxn � 1Þ xag 0 � 1

2
xn

� �
¼ ðxn þ 1� agÞ gþ 1� 1

2
xn

� �
:

If u is a square in F�
p (so that un � 1 ¼ 0) then gðuÞ A � 1

2
; 2
a

� �
. Comparing degrees

we see that g has degree at most n. Modulo xn this equation reduces further to

xg 0 ¼ g� 1

a

� �
ðgþ 1Þ mod xn:
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Note that gð0Þ � 1
a

� �
ðgð0Þ þ 1Þ ¼ 0.

Consider more generally the equation xg 0 ¼ ðg� bÞðg� cÞ mod xn, say with
gð0Þ ¼ b. Then we get g ¼ cþ ðb� cÞ=ð1� Cxb�cÞ mod xn for some constant C.

(Indeed, the equation xg 0 ¼ ðg� bÞðg� cÞ su‰ces to determine all coe‰cients of
g in terms of earlier coe‰cients, except the coe‰cient of xi where i ¼ b� c.)

In the above, 1=ð1� CxdÞ was to be interpreted in F½½x��. We get a solution in
polynomial form by replacing it by ð1� CmxdmÞ=ð1� CxdÞ, for some m such that
dmd n.

Thus, in our case,

g ¼ cþ d
1� Cmxdm

1� Cxd
þ exn;

for certain constants c; d; e, where either d ¼ 0 and the middle term is absent, or
C0 0, 0 < d < p, md 2, dðm� 1Þ < nc dm.

Since g takes at most two values on nonzero squares, the same holds for
1�Cmxdm

1�Cxd
(when d0 0). Thus, there are constants A;B such that xn � 1 divides

ð1� Cmxdm � Að1� CxdÞÞð1� Cmxdm � Bð1� CxdÞÞ. This remains true if we re-
place xdm by xdm�n, so either nc 2d, m ¼ 2, d ¼ n=2, or the right hand side vanishes
and A ¼ 0, dm ¼ n, Cm ¼ 1.

In the former case we have (with new constants) g ¼ cþ dxn=2 þ exn with
c ¼ �1 or c ¼ 1=a. Substitution and comparison of coe‰cients gives ða; c; d; eÞ ¼
ð�2;�1; 0; 1=2Þ or ða; c; d; eÞ ¼ ð�2;�1; 0; 0Þ or ða; c; d; eÞ ¼ ð�4=3;�1;G1=2; 0Þ or
ða; c; d; eÞ ¼ ð�2;�1=2; 0; 0Þ or ða; c; d; eÞ ¼ ð�4=3;�3=4; 0; 1=4Þ or ða; c; d; eÞ ¼
ð�4=5;�5=4;G1;�1=4Þ, and these correspond to the examples f ), e), c), f ), a), b),
respectively.

In the latter case we have g ¼ cþ d 1�xn

1�Cxd
þ exn, where n ¼ dm, Cm ¼ 1 and with-

out loss of generality md 3. The two values taken by g on the set of nonzero squares
di¤er by 2

a
þ 1

2
¼Gn ¼H1

2
, so that a ¼ �2 and cþ e ¼ �1=2. Comparing leading

coe‰cients we find e A f0;�1=4g. Comparing constants we find cþ d A f�1;�1=2g.
The four possible values of d turn out to be 0; n=2; n; 3n=2, and we already handled
those.

Altogether the conclusion is that if xpgþ h ¼ aðxgþ hÞðg 0h� h 0gÞ and xgþ h ¼
xnþ1 � x, with g; h both of degree at most nþ 1, then we have one of the examples
from Section 3.

7 Partial spreads in PG(3, 7)

A spread in a point-line geometry is a partition of the point set into lines. A partial

spread is a collection of pairwise disjoint lines. Given a partial spread in a point-line
geometry, we shall call a point not covered by one of its lines a hole.

Hirschfeld [8] (Section 17.6) shows that PGð3; qÞ has a maximal partial spread of
size q2 � qþ 2 for q > 3 (and a maximal partial spread of size 7 for q ¼ 3). No larger
maximal partial spreads (that are not spreads) are known, except for q ¼ 7, where
Heden [7] constructed a maximal partial spread of size 45.
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The relation with blocking sets in PGð2; qÞ is as follows: Given a maximal partial

spread of size q2 þ 1� d in PGð3; qÞ, where d > 0, we find a nontrivial blocking set of

size qþ d in PGð2; qÞ.
(Indeed, we find such a blocking set by taking the set of holes in a plane that does

not contain a line of the partial spread.)
Since nontrivial blocking sets in PGð2; 7Þ have size at least 12, it follows that a

partial spread in PGð3; 7Þ that is not a full spread has at most 45 lines, that is, has at
least 40 holes.

We did a complete search for partial spreads with 40 holes and find that there are
precisely 879 nonisomorphic such partial spreads. The table below gives group order,
number of isomorphism classes and total number of partial spreads.

order # total

1 174 4 510 080
2 383 4 963 680
3 7 60 480
4 175 1 134 000
6 35 151 200
8 39 126 360

10 9 23 328
12 40 86 400
20 1 1 296
24 11 11 880
60 1 432

120 4 864

total 879 11 070 000

Soicher [11] had already determined the partial spreads with 40 holes and an auto-
morphism group of order 5.

The geometry of the setH of 40 holes (complement of the union of a maximal partial
spread S of size 45) is uniquely determined, as was already remarked by Heden.
Indeed, each plane must meet H in either 5 or 12 points (depending on whether it
contains a line of S or not), and the holes form a blocking set in each plane p with
12 holes. (Otherwise there would be a line L in p disjoint from H, and looking at the
8 planes on L they must all have precisely 5 points of H, contradiction.) Thus, the
planes with 12 holes are either of the triangle or of the DAGð2; 3Þ type.

Now all planes with 12 holes must be of the same type. Indeed, let an m-line be a
line with m holes. A plane of triangle type does not have 4-lines, while a plane of
DAGð2; 3Þ type does not have 5-lines. In particular, a 4-line cannot meet a 5-line.
Each hole in a plane of DAGð2; 3Þ type is on some 4-line, so no such hole can be on
a 5-line. On a 4-line there are 8 planes, four of DAGð2; 3Þ type, and we find at least
36 holes on a 4-line, no room for a 5-line.

Not all planes can be of triangle type. Indeed, suppose this is the case. Each 3-line
is on three planes with 12 holes and in each of these planes each of the three holes of
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the 3-line lies on a unique 5-line. It follows that each hole is on precisely three 5-lines
(so that there are 24 5-lines in all). On the other hand, the projective transformations
that fix the set of non-holes on a 5-line have two orbits on the 5 holes, so that the two
‘corners’ on that line in a triangle do not depend on the choice of triangle, so that
these corners would be on six 5-lines, contradiction.

Thus, all planes are dual a‰ne planes. We have a geometry with points and 4-lines,
where two intersecting 4-lines determine a plane, and each plane is dual a‰ne of order
3. By Cuypers [3] this is the geometry of points and hyperbolic lines and dual a‰ne
planes of the Spð4; 3Þ geometry. This is again a self-dual configuration that lives in
PGð3; qÞ for all prime powers q ¼ 1 ðmod 3Þ. (For example, in PGð3; 4Þ it lives as the
nonisotropic points of a Uð4; 2Þ geometry.) Explicit coordinates: take the 4 points
ð1; 0; 0; 0Þ and the 36 points ð0; 1; a;�bÞ where a3 ¼ b3 ¼ 1 and the coordinates may
be permuted cyclically.
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