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Abstract. With the exception of Hering’s plane of order 27, all known odd order flag-transitive
a‰ne planes are one of two types: admitting a cyclic transitive action on the line at infinity,
or admitting a transitive action on the line at infinity with two equal-sized cyclic orbits. In
this paper we show that when the dimension over the kernel for these planes is three, then the
known examples are the only possibilities for either of these two types. Moreover, subject to a
relatively mild gcd condition, one of these two actions must occur. Hence, subject to this gcd
condition, all odd order three-dimensional flag-transitive a‰ne planes have been classified.

1 Introduction

Let q ¼ pe be an odd prime power. In [9] it is shown that if gcd 1
2 ðqn þ 1Þ; ne
� �

¼ 1,
then with the exception of Hering’s plane of order 27 any non-Desarguesian flag-
transitive a‰ne plane of order qn whose kernel contains GFðqÞ must admit a (cyclic)
Singer subgroup action which is either regular on the line at infinity or has two
equal-sized orbits on the line at infinity. In the latter case these two orbits are joined
by some other element in the translation complement, but there is no cyclic reg-
ular action on the line at infinity. This result holds in all known odd order non-
Desarguesian flag-transitive a‰ne planes, except Hering’s, whether or not the above
gcd condition is satisfied. Flag-transitive a‰ne planes of the first type will be called
C-planes, and those of the second type will be called H-planes.

By a celebrated result of Wagner [16] any finite flag-transitive a‰ne plane will
necessarily be a translation plane, and thus can be constructed from some ðn� 1Þ-
spread of PGð2n� 1; qÞ. We call the spread of type C or H accordingly as the asso-
ciated plane is of type C or H, respectively, as defined above. When n ¼ 2, it can be
shown that there are no type C 1-spreads of PGð3; qÞ, and the type H 1-spreads have
been completely classified (see [3]). When n ¼ 3, type C and type H 2-spreads of
PGð5; qÞ are known to exist, and the type C 2-spreads of PGð5; qÞ have been clas-
sified (see [1], [2], [4]). The purpose of this paper is to classify the type H 2-spreads
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of PGð5; qÞ, and hence classify all odd order three-dimensional flag-transitive a‰ne
planes, subject to the above gcd condition.

It should be remarked that in any dimension type H flag-transitive a‰ne planes
cannot exist for even q, since qn þ 1 must be even for such planes to exist. Moreover,
type C flag-transitive a‰ne planes are only known to exist for odd n, independent of
q, although their existence for even n > 2 remains an open question.

2 Singer orbits

Let S ¼ PGð2n� 1; qÞ denote the ð2n� 1Þ-dimensional projective space over the finite
field GFðqÞ, where q is an odd prime power and nd 3 is an odd integer. We model S
using the finite field K ¼ GFðq2nÞ. Let b be a primitive element for K. Hence, the field
elements

1; b; b2; . . . ; bðq
2n�1Þ=ðq�1Þ�1

represent the distinct projective points of S. The collineation y induced by multipli-
cation by b is a Singer cycle of S, and we consider the fibration F whose elements are
the point orbits under the cyclic collineation group G generated by yN , where
N ¼ qn�1

q�1 . Thus F has N members, each of size M ¼ qn þ 1. More precisely,

F ¼ fWi : i ¼ 0; 1; 2; . . . ;N � 1g, where Wi ¼ b iW0 and W0 ¼ fb sN : s ¼ 0; 1; 2; . . . ;
M � 1g.

We start by examining how a line of S can meet the fibration F. The arguments
are very similar to those found in [8].

Lemma 1. Let A, B, and C be three distinct collinear points of Wt for some t. Then the

line containing A, B, and C is completely contained in Wt. Moreover, this is the only

line through A which is contained in Wt.

Proof. We may assume without loss of generality that the three collinear points
are in W0, and that A is represented by the field element b 0 ¼ 1. Then B and C are
represented by field elements of the form b iN and b jN , respectively, where 1c i <
jcM � 1. The three points are collinear if and only if 1þ ab iN ¼ bb jN , for some
a; b A GFðqÞ�.

Now ð1þ ab iNÞq
nþ1 ¼ ðbb jNÞq

nþ1, where ðbb jNÞq
nþ1 ¼ b2b jNM A GFðqÞ, and

ð1þ ab iNÞq
nþ1 ¼ ð1þ ab iNÞð1þ ab iNÞq

n

¼ 1þ ab iN þ ab iNqn þ a2b iNM :

Since a2b iNM A GFðqÞ, we have b iN þ b iNqn

A GFðqÞ.
Hence f ðxÞ ¼ ðx� b iNÞðx� b iNqnÞ is a quadratic polynomial over GFðqÞ having

b iN as a root. Thus b iN is in GFðq2Þ, which further implies that b jN A GFðq2Þ by
the above dependency relation. Hence the three given collinear points lie on the line
represented by the subfield GFðq2Þ.
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To show that this line is completely contained in W0, we observe that ðqþ 1Þ jM
since n is odd. Hence, as bNM=ðqþ1Þ is a primitive element of GFðq2Þ, all points on
the line represented by GFðq2Þ lie in W0 by definition of W0. The fact that there is
only one line through A completely in W0 follows from the uniqueness of the sub-
field GFðq2Þ. r

It should be noted that the ‘‘ruling lines’’ completely contained in the G-orbits Wt

form a geometric 1-spread of PGð2n� 1; qÞ whenever n is odd, and there are no such
ruling lines when n is even.

We now define ls to be the line joining the points b 0 and b sN of W0. From the proof
of the previous lemma, ls is completely contained in W0 if and only if s is a multiple
of M

qþ1 .

Theorem 2. Suppose s is not a multiple of M
qþ1 , so that ls is not contained in W0.

1. If s is odd, then ls is secant to exactly
qþ1
2 elements of F and is disjoint from all other

members of F.

2. If s is even, then ls is tangent to exactly 2 elements ofF and is secant to
q�1
2 elements

of F. Moreover, the points of tangency correspond to b sNG b sNM=2.

Proof. Since s is not a multiple of M
qþ1 , we know from Lemma 1 that ls meets W0

in only two points. The argument now follows exactly as in the proof of Theorem 4
in [8]. r

Hence, from Theorem 2, we know that there are four possible ways in which a line
can meet F, as listed below. We have shown that lines of the first three types exist.
Direct counting shows that lines of the fourth type also must exist for any odd integer
nd 3.

Ruling lines—lines completely contained in an element of F. In particular, there are
q4 þ q2 þ 1 such lines when n ¼ 3.

Secant Lines—lines which meet exactly
qþ1
2 elements of F in two distinct points

and are disjoint from the remaining N � qþ1
2 elements of F. There are 1

2 qðq� 1Þ �
ðq2 þ qþ 1Þðq3 þ 1Þ such lines when n ¼ 3.

Tangent Type Lines—lines which meet exactly 2 elements of F in one point, meet
exactly

q�1
2 elements of F in two distinct points, and are disjoint from the

remaining N � qþ3
2 elements of F. There are 1

2 qðqþ 1Þðq2 þ qþ 1Þðq3 þ 1Þ such
lines when n ¼ 3.

Purely Tangent Lines—lines which meet exactly qþ 1 elements of F in a unique
point and are disjoint from the remaining N � ðqþ 1Þ elements of F. There are
qðq4 þ q2 þ 1Þðq3 þ 1Þ such lines when n ¼ 3.

3 The fibration in PG(5,q)

We now apply the theory from the last section to the special case when n ¼ 3; that
is, S ¼ PGð5; qÞ. Hence our fibration F has exactly N ¼ q2 þ qþ 1 elements, each
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containing M ¼ q3 þ 1 distinct points. As discussed in [7], there is a special collec-
tion of q2 þ qþ 1 elliptic quadrics of S, each of which is partitioned into qþ 1 dis-
tinct elements of F. Moreover, each member Wi of F is contained in qþ 1 of these
quadrics, any two of which intersect precisely in Wi. In short, if we call the elements
of F ‘‘points’’ and the associated quadrics ‘‘lines’’, the induced incidence structure
is a projective plane of order q.

We now define H to be the unique Singer subgroup of index two in G. That is, H is
generated by the collineation y2N . This is the subgroup associated with type H flag-
transitive a‰ne planes, as discussed in Section 1. To that end, let p be a projective
plane of S which meets each H-orbit in at most one point. Then p meets each of the
G-orbits (i.e. elements of F) in at most two points, as each G-orbit is a union of two
H-orbits.

Lemma 3. The plane p contains no tangent type lines.

Proof. Suppose the plane p contained a tangent type line, which we may assume is ls
for some s. From Theorem 2 we know that s is even. But then the field elements b0

and b sN induce distinct points which are in the same orbit under the group H, con-
tradicting the definition of p. r

We have thus determined that the plane p can only contain secant lines and purely
tangent lines, as defined at the end of the previous section.

Theorem 4. The plane p is tangent to each of the q2 þ qþ 1 elements of F.

Proof. For contradiction, suppose that p meets an element of F, say Wj, in two points
P and Q. Then, by Lemma 3, the line l containing P and Q is a secant line. Now, if p
contained another secant line, say m, then l and m must meet in a common point, say
R, contained in some element of F, say Wk. It follows that p meets Wk in 3 distinct
points, a contradiction. Hence, p contains only one secant line, namely l, and there
are exactly

qþ1
2 elements of F meeting p in exactly two points.

Recall that Wj may be expressed as the intersection of two elliptic quadrics of S, as
discussed above, and any two such quadrics determine an algebraic pencil of quadrics
in S. Moreover, the plane p intersects this pencil in a planar pencil P of quadrics.
From the classification of planar pencils of quadrics [11], we know that one of the
quadrics in P is a pair of distinct lines. From the discussion at the beginning of this
section, this pair of lines covering 2qþ 1 points meets exactly qþ 1 elements of F.
Hence the plane p must meet at least q elements of F in two distinct points, contra-
dicting our computation in the previous paragraph. That is, p cannot meet any ele-
ment of F in two distinct points, and the result follows. r

4 Type H spreads in PG(5,q)

Let S be a type H 2-spread in S ¼ PGð5; qÞ, where q is an odd prime power. In
particular, S consists of q3 þ 1 mutually disjoint planes, necessarily partitioning the
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points of S. Since Singer subgroups are unique up to conjugation, we may use the
Singer subgroups H and G of the previous section. By definition of type H spreads
and the fact that the only short orbit on planes of the full Singer group is a regular 2-
spread (see [10], for instance), we know that S ¼ pH

1 U pH
2 , where p1 and p2 are two

skew planes of S. Moreover, S is not a single plane orbit under G. Since the planes
in S are mutually disjoint, p1 (and similarly, p2) meets each point orbit under H in
at most one point. This implies by Theorem 4 that p1 (and similarly, p2) necessarily
meets each of the q2 þ qþ 1 point orbits under G in exactly one point, and thus is a
‘‘purely tangent plane’’ with respect to the fibration F of G-orbits.

Since p1 is a purely tangent plane with respect to F, the classification of type
C spreads in [2] and [4] implies that p1 is projectively equivalent (in fact, by a
Singer shift) to a plane represented by a GFðqÞ-subspace of the form Sb ¼ fzþ bzq :
z A GFðq3Þg, for some b A K ¼ GFðq6Þ such that bq3 ¼ �b. Thus the fundamental
issue is determining how many compatible half-spreads pH

2 exist for a given half-
spread pH

1 .

Theorem 5. Let pH be some cyclic half-spread in PGð5; qÞ, where q is an odd prime

power. Then, unless pH is contained in a regular spread, there is precisely one way of

completing pH to a type H spread and precisely one way of completing pH to a type C
spread. If pH is contained in a regular spread, then there is only one way of completing

pH to either a type H or type C spread, and that completion is the unique regular

spread containing pH .

Proof. As shown above, p is necessarily a purely tangent plane with respect to the fi-
bration F of G-orbits, and thus pG is a type C spread completing the half-spread pH .
Moreover, we know the plane p is a Singer shift of one represented by some subspace
Sb, where b

q3 ¼ �b. Thus from the work in [12] and [14] we know there is at least one
way of completing pH to a spread of type H, as long as b0 0.

Suppose now that pH
1 and pH

2 are two completions of the half-spread pH to a
spread that is either of type H or of type C. Then by the same argument as that given
above, we know that p1 and p2 must be purely tangent planes with respect to the
fibration F. By translating appropriately and shifting our point of view, we may
assume both p1 and p2 pass through the point represented by b 0, and hence each is

represented by a subspace of the form 1
1þb

Sb ¼ xþbxq

1þb
: x A GFðq3Þ

n o
, for some b A K

with bq3 ¼ �b. Note that the collineation induced by multiplication by ð1þ bÞ�1 is
a power of the Singer cycle, and the shifted plane ð1þ bÞ�1

Sb is a purely tangent
plane passing through b 0. With a bit of computation, which will soon become ap-
parent, one can show that distinct values of b determine distinct planes ð1þ bÞ�1

Sb,
and hence we get as a byproduct that there are exactly q3 purely tangent planes
through a given point, such as b 0, for any odd prime power q.

Let B ¼ fb : b A K ; bq3 ¼ �bg. Now the existence of the above two completions
of pH implies the existence of b1; b2 A B such that ð1þ b1Þ�1

Sb1 and ð1þ b2Þ�1
Sb2

represent planes, namely p1 and p2, that meet the same point orbits under H. Since

H ¼ hy2ðq2þqþ1Þi, this means that for each x A GFðq3Þ, there exists some y A GFðq3Þ
such that
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xþ b1x
q

1þ b1

� �q3þ1

¼ g
yþ b2y

q

1þ b2

� �q3þ1

for some nonzero square g in GFðqÞ. Moreover, we may chose an appropriate non-
zero GFðqÞ-multiple of y so that g ¼ 1. Thus, for every x A GFðq3Þ, there exists some
y in GFðq3Þ such that

x2 � b21x
2q

1� b21
¼ y2 � b22y

2q

1� b22
; ð1Þ

where b1 and b2 are fixed elements of B.
For each b A B, consider the mapping Tb : GFðq3Þ ! GFðq3Þ via Tb : z ! z�b2zq

1�b2 .
Since b2 is either 0 or a nonsquare in GFðq3Þ, Tb is a nonsingular linear transforma-
tion of the vector space GFðq3Þ over GFðqÞ, and hence Tb is a permutation polyno-
mial of the field GFðq3Þ. Moreover, each Tb fixes each of the elements 0 and 1. Hence
the composition Tb1 � T�1

b2
is a GFðqÞ-linear permutation polynomial with the pre-

viously mentioned properties that also maps squares to squares by Equation (1), and
thus preserves quadratic character. By the main theorem in Carlitz [6] Tb1 � T�1

b2
is

necessarily one of the following three maps: z ! z, z ! zq, or z ! zq
2

. In particular,
this implies that x2 ¼ y2, x2 ¼ y2q, or x2 ¼ y2q

2

in Equation (1) above. Now take an
appropriate linear combination to solve for x2, say 1

ð1�b2
1
Þ q2þq

times Equation (1) plus
b2
1

ð1�b2
1
Þq2þ1

times the q-th power of (1) plus
b
2ðqþ1Þ
1

ð1�b2
1
Þqþ1 times the q2-th power of (1), and

simplify. One obtains the equation

1� b
2ðq2þqþ1Þ
1

ð1� b21Þ
q2þqþ1

x2 ¼ 1� b
2ðq2þqþ1Þ
1

ð1� b
2q
1 Þð1� b

2q2

1 Þð1� b22Þ
þ b

2ðqþ1Þ
1 N

 !
y2

þNqy2q þ b21N
q2

y2q
2

;

where N ¼ b
2q2

1

ð1�b2
2
Þð1�b

2q
1
Þð1�b

2q2

1
Þ
� b

2q2

2

ð1�b
2q2

2
Þð1�b

2q
1
Þð1�b2

1
Þ
. By the Carlitz result above, we

must have N ¼ 0 and thus x2

1�b2
1

¼ y2

1�b2
2

. Since Tb1 � T�1
b2

fixes the element 1, we must

have x2 ¼ 1 if and only if y2 ¼ 1, and thus b1 ¼Gb2.
This implies that there are precisely two ways of completing the half-spread pH

to a full spread of type C or type H, provided b1 0 0. Namely, if we think of p1
as py q2þqþ1

, then choosing b2 ¼ b1 will yield the type C completion pH U pH
1 , while

choosing b2 ¼ �b1 will yield the type H completion pH U pH
2 as described in [12] and

[14]. If b1 ¼ 0, then necessarily b2 ¼ 0 and the only possible completion is the regular
spread (see [12]). This completes the proof. r

Corollary 6. All odd order three-dimensional flag-transitive a‰ne planes of type H or

C are known. If the order is q3, so that the kernel is GFðqÞ, the number of isomorphism

Ronald D. Baker, C. Culbert, Gary L. Ebert and Keith E. MellingerS220



classes of each type is at least ðq� 1Þ=2e, where q ¼ pe and p is an odd prime. Fur-
thermore, if q is a prime, then the number of isomorphism classes of each type is exactly

ðq� 1Þ=2. Finally, if gcd 1
2 ðq3 þ 1Þ; 3e
� �

¼ 1, then with the exception of Hering’s plane

of order 27 every non-Desarguesian flag-transitive a‰ne plane of order q3 with kernel

GFðqÞ is necessarily of type C or type H, and hence is known.

Proof. The classification of type C flag-transitive a‰ne planes of odd order q3 follows
from the work in [1], [2], and [4] as discussed above, while the classification in the
type H case follows from the previous theorem. The isomorphism counts are
given in [12] and [14] (see also [2]). The final statement is a special case of Lemma 1
in [9]. r

Thus, modulo the gcd condition stated in the above corollary, the only possible
flag-transitive a‰ne planes of odd order q3 are those constructed by Kantor and
Suetake in [12] and [14], together with Hering’s plane of order 27. When q ¼ 5, the
gcd condition is not satisfied, and yet exhaustive searching in [15] shows that there
are no other flag-transitive a‰ne planes of order 125. Perhaps the gcd condition is
superfluous.

5 Concluding remarks

The key to classifying the type H flag-transitive a‰ne planes of odd order q3 is show-
ing that if pH is a half-spread, then p must be tangent to each of the G-orbits in the
fibration F. Once this is known, a short proof of the classification in both the type C
and type H cases could be given if one could prove directly that there are precisely q3

purely tangent planes with respect to F that pass through a given point, say b 0. This
would eliminate the reduction to Baer subplane partitions in [1], the very involved use
of linearized polynomials in [2], and the messy cyclotomic lemma in [4]. Unfortu-
nately, we have so far been unable to do this counting directly.

When q is even, computer searches using MAGMA [5] show that for small values
of q there are precisely ðq2 þ 1Þðqþ 1Þ purely tangent planes with respect to the fibra-
tion F that pass through a given point, say b0. Again, if one could directly prove
that this result always holds, one would essentially have a classification of the flag-
transitive a‰ne planes of type C with even order q3 (there are none of type H).
Namely, based on the known construction (succinctly described in [13]), one can
show that there are at least ðq2 þ 1Þðqþ 1Þ purely tangent planes passing through b0

when q is even, and hence all would be known.
In higher dimensions the problem is trickier. Consider a type H flag-transitive

a‰ne plane of order qn, where q is necessarily odd, and let pH be one of the asso-
ciated cyclic half-spreads of PGð2n� 1; qÞ. If n is odd, in all known examples p meets
each G-orbit in exactly one point and thus is ‘‘purely tangent’’ with respect to the
fibration F. Hence there is a companion type C flag-transitive a‰ne plane with asso-
ciated spread pG. When n ¼ 3, we used (in Section 3) the classification of pencils of
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quadrics in PGð2; qÞ to show that such an intersection pattern must happen. Proving
that this pattern must hold for all odd n > 3 would be a big step toward a higher-
dimensional classification. Perhaps this could be done without the complete classifi-
cation of pencils of quadrics in higher dimensions, which is as yet unknown.

When n is even, all known examples of type H flag-transitive a‰ne planes with
associated spread pH

1 U pH
2 are such that p1 meets half the G-orbits of F in two points

each (from di¤erent H-orbits), while p2 meets the other half of the G-orbits in two
points each. When n ¼ 2, p1 and p2 are lines and it is straightforward to show that
this must be the case (see [8]). For even nd 4, it is unclear at present why (or if ) this
pattern must hold. In particular, it would be nice to know (for q odd or q even) if
there exists a purely tangent ðn� 1Þ-space with respect to F for even nd 4, other
than the example where the resulting cyclic spread is regular and hence the plane is
Desarguesian.
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