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Switching of generalized quadrangles of order s
and applications
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Dedicated to A. Barlotti at the occasion of his 80th birthday

Abstract. Let S ¼ ðP;B; IÞ be a generalized quadrangle of order s, s0 1, having a flag ðx;LÞ
with x and L regular. Then a generalized quadrangle S 0 ¼ ðP 0;B 0; I 0Þ of order s can be con-
structed. We say that S 0 is obtained by switching from S with respect to ðx;LÞ. Examples are
given where SZS 0; e.g., starting from a T2ðOÞ of Tits, with O an oval of PGð2; qÞ, q even,
with nucleus n, the GQT2ððO� fxgÞU fngÞ with x A O can be obtained by switching from
T2ðOÞ. Applications to translation generalized quadrangles of order s, s even, and generalized
quadrangles of order ðs; s2Þ, s even, satisfying Property (G), are given.

1 Introduction

A (finite) generalized quadrangle (GQ) is an incidence structure S ¼ ðP;B; IÞ in
which P and B are disjoint (nonempty) sets of objects called points and lines, respec-
tively, and for which IJ ðP� BÞU ðB� PÞ is a symmetric point-line incidence rela-

tion satisfying the following axioms.

(i) Each point is incident with 1þ t lines ðtd 1Þ and two distinct points are incident
with at most one line.

(ii) Each line is incident with 1þ s points ðsd 1Þ and two distinct lines are incident
with at most one point.

(iii) If x is a point and L is a line not incident with x, then there is a unique pair
ðy;MÞ A P� B for which x IM I y IL.

Generalized quadrangles were introduced by Tits [15] in his celebrated work on
triality.

The integers s and t are the parameters of the GQ and S is said to have order ðs; tÞ;
if s ¼ t, then S is said to have order s. There is a point-line duality for GQ (of order
ðs; tÞ) for which in any definition or theorem the words ‘‘point’’ and ‘‘line’’ are inter-
changed and the parameters s and t are interchanged. Hence, we assume without fur-
ther notice that the dual of a given theorem or definition has also been given.

Let S ¼ ðP;B; IÞ be a (finite) GQ of order ðs; tÞ. Then S has v ¼ jPj ¼



ð1þ sÞð1þ stÞ points and b ¼ jBj ¼ ð1þ tÞð1þ stÞ lines; see 1.2.1 of Payne and Thas
[8]. Also, sþ t divides stð1þ sÞð1þ tÞ, and, for s0 10 t, we have tc s2, and, dually,
sc t2; see 1.2.2 and 1.2.3 of Payne and Thas [8].

Given two (not necessarily distinct) points x; y of S, we write x@ y and say that x
and y are collinear, provided that there is some line L for which x IL I y. And xS y

means that x and y are not collinear. Dually, for L;M A B, we write L@M or LSM

according as L and M are concurrent or non-concurrent, respectively. The line which
is incident with distinct collinear points x; y is denoted by xy; the point which is
incident with distinct concurrent lines L;M is denoted by either LM or LVM.

For x A P, put x? ¼ fy A P j y@ xg, and note that x A x?. If AJP, then A? ¼
7fx? j x A Ag. Hence, for x; y A P, x0 y, we have fx; yg? ¼ x? V y?; we have

jfx; yg?j ¼ sþ 1 or tþ 1 according as x@ y or xS y. Further, fx; yg?? ¼ fu A P j
u A z? for all z A x? V y?g; we have jfx; yg??j ¼ sþ 1 or jfx; yg??jc tþ 1 accord-

ing as x@ y or xS y. The sets fx; yg? and fx; yg?? are respectively called the trace
and the span of the pair fx; yg.

2 Regularity and nets

Let S ¼ ðP;B; IÞ be a finite GQ of order ðs; tÞ. If x@ x 0, x0 x 0, or if xS x 0 and
jfx; x 0g??j ¼ tþ 1, where x; x 0 A P, we say the pair fx; x 0g is regular. The point x
is regular provided fx; x 0g is regular for all x 0 A P, x 0 0 x. Regularity for lines is
defined dually. A point x is coregular provided each line incident with x is regular.
If 1 < s < t, then one can show that no pair of distinct points is regular; see 1.3.6 of
Payne and Thas [8]. If the GQS has even order s and the point x is coregular, then
x is regular; see 1.5.2 (iv) of Payne and Thas [8]. A flag ðx;LÞ, hence x I L, is called
regular if x and L are regular; for s0 10 t this implies that s ¼ t.

A (finite) net of order k ðd2Þ and degree r ðd2Þ is an incidence structure N ¼
ðP;B; IÞ satisfying

(i) each point is incident with r lines and two distinct points are incident with at
most one line;

(ii) each line is incident with k points and two distinct lines are incident with at most
one point;

(iii) if x is a point and L is a line not incident with x, then there is a unique line M

incident with x and not concurrent with L.

For a net of order k and degree r we have jPj ¼ k2 and jBj ¼ kr. Also, rc k þ 1,
with r ¼ k þ 1 if and only if the net is an a‰ne plane; see Dembowski [2].

Theorem 2.1 (1.3.1 of Payne and Thas [8]). Let x be a regular point of the GQS ¼
ðP;B; IÞ of order ðs; tÞ, sd 2. Then the incidence structure with point set x? � fxg,
with line set the set of all spans fy; zg??, where y; z A x? � fxg, yS z, and with the

natural incidence, is the dual of a net of order s and degree tþ 1. If in particular

s ¼ t > 1, there arises a dual a‰ne plane of order s. Also, in the case s ¼ t > 1 the
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incidence structure px with point set x?, with line set the set of all spans fy; zg??,
where y; z A x?, y0 z, and with the natural incidence, is a projective plane of

order s.

3 Switching of generalized quadrangles

Let S ¼ ðP;B; IÞ be a GQ of order s, with s0 1, for which the flag ðx;LÞ is regular.
Let L0;L1;L2; . . . ;Ls be the lines incident with x, where L ¼ L0.

Define as follows the incidence structure PðS; xÞ ¼ ðPx;Bx; IxÞ. Points of PðS; xÞ
are the points of P� x?. Lines of PðS; xÞ are the lines of B not incident with x and
the spans fx; yg??, with yS x. If z A Px and M A Bx with M A B, then z Ix M if and
only if z IM; if z A Px and N ¼ fx; yg??, yS x, then z IN if and only if z A N. Then
by Payne, see 3.1.4 of Payne and Thas [8], PðS; xÞ is a GQ of order ðs� 1; sþ 1Þ.

A spread of PðS; xÞ is a set S of s2 lines in Bx such that each point of Px is incident
(for IxÞ with exactly one element of S. Spreads of PðS; xÞ are the set Sx of all lines
of type fx; yg??, yS x, and any set Si consisting of all lines of S concurrent with Li

but not incident with x, with i ¼ 0; 1; . . . ; s. Clearly Bx ¼ Sx US0 US1 U � � �USs.
Let x1; x2; . . . ; xs; x be the points incident with L and let Sx; i be the set of all

spans fx; yg??, with y@ xi, yS x. Then Sx ¼ Sx;1 USx;2 U � � �USx; s. Further, for
i A f1; 2; . . . ; sg, let Si; j , with j ¼ 1; 2; . . . ; s, be the sets fLi;Ng? � fLg, with N@L,
x I�N. Then Si ¼ Si;1 USi;2 U � � �USi; s. It is clear that the sets Sx;S0; . . . ;Ss and Sx; j;
S1; j; . . . ;Ss; j, with j ¼ 1; 2; . . . ; s, satisfy the conditions of Theorem 1.1 in Payne [4],
and so by Payne [4] a GQSðx;LÞ of order s may be constructed as follows.

Points of Sðx;LÞ are of three kinds: points of type (i) are just the points of PðS; xÞ;
points of type (ii) are the s2 þ s sets Sx; j;S1; j; . . . ;Ss; j, with j ¼ 1; 2; . . . ; s; there is a
unique point of type (iii) denoted by x 0. Lines are of two types: lines of type (a) are
the lines of PðS; xÞ not in the spread S0; lines of type (b) are the spreads Sx;S1; . . . ;Ss.
The incidence is as follows. A point of type (i) is incident with a line of type (a) if and
only if the two are incident in PðS; xÞ. A point of type (i) is incident with no line of
type (b). A point of type (ii) is incident with each line of type (a) which belongs to it
and with the unique line of type (b) of which it is a subset. The unique point of type
(iii) is incident with no line of type (a) and all lines of type (b).

It is an easy excercise to show that the flag ðx 0;SxÞ of Sðx;LÞ is regular. Note that
Sðx;LÞ GSðL;xÞ and that ðSðx;LÞÞðx 0;SxÞ GS. We say that Sðx;LÞ is obtained by switch-

ing from S (with respect to ðx;LÞ) and that S and Sðx;LÞ are switching equivalent.
We emphasize that the construction of Sðx;LÞ from S is a combination of ideas

of Payne.
Up to isomorphism the GQSðx;LÞ can also be described as follows. Let S 0 ¼

ðP 0;B 0; I 0Þ be the following incidence structure. Points ðP 0Þ are of four types:

(i) the s3 points of P not in x?;

(ii) the s2 spans fL;Ng??, with LSN;

(iii) the s points x1; x2; . . . ; xs incident (for I) with L, but distinct from x;

(iv) the point x.
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Lines ðB 0Þ are of four types:

(a) the s3 lines of B not in L?;

(b) the s2 spans fx; yg??, with xS y;

(c) the s lines L1;L2; . . . ;Ls incident (for I) with x, but distinct from L;

(d) the line L.

Incidence ðI 0Þ is defined as follows:

A point of type (i) is incident with the s lines of type (a) incident (for I) with it and
with the unique line of type (b) containing it. A point fL;Ng?? of type (ii) is incident
with the s lines of type (a) contained in it, and with the unique line Li A fL;Ng?. A
point xi of type (iii) is incident with the line L and with the s lines of type (b) con-
tained in x?

i . The point x of type (iv) is incident with the sþ 1 lines L;L1; . . . ;Ls.

Then it is easily checked that S 0 GSðx;LÞ.

The projective plane px defined by the regular point x of S is isomorphic to the
dual of the projective plane p 0

L defined by the regular line L of S 0; the projective
plane pL defined by the regular line L of S is isomorphic to the dual of the projective
plane p 0

x defined by the regular point x of S 0.

Example. Let O ¼ fp0; p1; . . . ; pqng be a pseudo-oval of PGð3n� 1; qÞ, that is, a set of
qn þ 1 ðn� 1Þ-dimensional subspaces of PGð3n� 1; qÞ every three of which generate
PGð3n� 1; qÞ. Then O defines a GQTðOÞ of order qn; see 8.7 in Payne and Thas
[8]. For n ¼ 1 the GQTðOÞ is the Tits quadrangle T2ðOÞ arising from the oval O of
PGð2; qÞ. The lines p0; p1; . . . ; pqn of type (b) of TðOÞ are regular, and so, for q even,
the point ðyÞ of type (iii) is also regular. For q even the tangent spaces of O all con-
tain a common ðn� 1Þ-dimensional space p, called the kernel or nucleus of O; see
Section 4.9 of Thas [9].

Assume that q is even. Then it is easily checked that TðOÞððyÞ;piÞ GTðOiÞ, with
Oi ¼ ðO� fpigÞU fpg, i ¼ 0; 1; . . . ; qn. The projective plane defined by the regular
point ðyÞ of TðOÞ is isomorphic to the dual of the projective plane defined by the
regular line p of TðOiÞ, and the projective plane defined by the regular point ðyÞi of
TðOiÞ is isomorphic to the dual of the projective plane defined by the regular line pi
of TðOÞ.

4 Application to translation generalized quadrangles

Let S ¼ ðP;B; IÞ be a GQ of order ðs; tÞ, s0 1, t0 1. A collineation y of S is a
whorl about the point p provided y fixes each line incident with p. Let y be a whorl
about p. If y ¼ id or if y fixes no point of P� p?, then y is an elation about p. If
there is a group G of elations about p acting regularly on P� p?, we say that S is an
elation generalized quadrangle (EGQ) with elation group G and base point p. Briefly,
we say that ðSðpÞ;GÞ or SðpÞ is an EGQ. Most known examples of GQ or their duals
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are EGQ, the notable exceptions being those of order ðs� 1; sþ 1Þ and their duals. If
the group G is abelian, then we say that the EGQ ðSðpÞ;GÞ is a translation generalized
quadrangle (TGQ) with translation group G and base point p.

The following theorems are taken from Chapter 8 of Payne and Thas [8].

Theorem 4.1. If ðSðpÞ;GÞ is a TGQ then the point p is coregular and so sc t. Also, G
is the complete set of all elations about p.

Theorem 4.2. If ðSðpÞ;GÞ is a TGQ then the group G is elementary abelian, and s and t

must be powers of the same prime. If s < t, then there is a prime power q and an odd

integer a for which s ¼ qa and t ¼ qaþ1. If s (or t) is even then either s ¼ t or s2 ¼ t.

The following result is easy to prove; see Theorem 4.4 in Thas [13].

Theorem 4.3. Let ðSðpÞ;GÞ be a TGQ of order s. Then for any line L incident with p,
the projective plane pL defined by the regular line L is a translation plane for which the

translation line is the line of pL defined by the point p.

In Section 5 of Thas [13] the following characterization of TGQ of order s is
obtained.

Theorem 4.4. Let S ¼ ðP;B; IÞ be GQ of order s, s0 1, with coregular point p. If for
at least one line L incident with p the corresponding projective plane pL is a translation

plane with as translation line the set of all lines of S incident with p, then S is a TGQ
with base point p. If in particular the plane pL is Desarguesian, then S is a TGQ with

base point p, and also, for s odd, S is isomorphic to the classical GQQð4; sÞ arising
from a non-singular quadric in PGð4; sÞ.

Next theorem illustrates how switching of GQ can be applied.

Theorem 4.5. LetS ¼ ðP;B; IÞ be aGQ of order s, s even, with coregular point x. Then
S is a TGQ with base point x if and only if the projective plane px is a dual translation

plane with translation point x. If in particular the plane px is Desarguesian, then S is a

TGQ with base point x.

Proof. Let S be a TGQ of order s, s even, with base point x. Then the point x is
coregular and regular. It is easy to check that px is indeed a dual translation plane
with translation point x.

Conversely, let S ¼ ðP;B; IÞ be a GQ of order s, s even, with coregular point x and
assume that px is a dual translation plane with translation point x. Let L;L1; . . . ;Ls

be the lines incident with x. Now we consider the GQSðx;LÞ which is obtained by
switching from S with respect to the flag ðx;LÞ. Let S 0 be the GQ isomorphic with
Sðx;LÞ, described in Section 3. Then ðx;LÞ is a regular flag of S 0 and the projective
plane px is isomorphic to the dual of the projective plane p 0

L. Also, all lines L;L1;
L2; . . . ;Ls are regular for S 0, hence x is a coregular point of S 0. The plane p 0

L is a
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translation plane with fL;L1;L2; . . . ;Lsg as translation line. By Theorem 4.4 S 0 is a
TGQ with base point x. By 8.7 of Payne and Thas [8] S 0 GTðOÞ, with O a pseudo-
oval in some PGð3n� 1; qÞ. Let O ¼ fp; p1; . . . ; psg, where p corresponds to L, and
let h be the nucleus of O. By the example at the end of Section 4 the GQSGS 0

ðx;LÞ is
isomorphic to TðO 0Þ, with O 0 ¼ ðO� fpgÞU fhg. As O 0 is again a pseudo-oval the
GQTðO 0Þ is a TGQ, and so S is a TGQ with base point x. r

5 Application to generalized quadrangles satisfying Property (G)

Let S ¼ ðP;B; IÞ be a GQ of order ðs; s2Þ, s0 1. Then jfx; y; zg?j ¼ sþ 1 for any
triple fx; y; zg of pairwise non-collinear points; see 1.2.4 of Payne and Thas [8]. We
say fx; y; zg is 3-regular provided jfx; y; zg??j ¼ sþ 1. The point x is 3-regular if and
only if each triple fx; y; zg of pairwise non-collinear points is 3-regular.

Let x1; y1 be distinct collineair points. We say that the pair fx1; y1g has Property
(G), or that S has Property (G) at fx1; y1g, if every triple fx1; x2; x3g of points, with
x1; x2; x3 pairwise non-collinear and y1 A fx1; x2; x3g?, is 3-regular. The GQS has
Property (G) at the line L, or the line L has Property (G), if each pair of points fx; yg,
x0 y and x IL I y, has Property (G). If ðx;LÞ is a flag, then we say that S has Prop-
erty (G) at ðx;LÞ, or that ðx;LÞ has Property (G), if every pair fx; yg, x0 y and
y IL, has Property (G). It is clear that the point x is 3-regular if and only if ðx;LÞ has
Property (G) for each line L incident with x.

Let F be a flock of the quadratic cone K with vertex x of PGð3; qÞ, that is, a par-
tition of K � fxg into q disjoint irreducible conics. Then, relying on work of Payne
[5, 6] and Kantor [3], Thas [10] proves that with F corresponds a GQSðFÞ of order
ðq2; qÞ. In Payne [7] it was shown that SðFÞ satisfies Property (G) at its point ðyÞ.
The following fundamental result is taken from Thas [12].

Theorem 5.1. A GQ S ¼ ðP;B; IÞ of order ðq; q2Þ, q odd and q0 1, satisfies Property
(G) at some flag ðx;LÞ if and only if S is the dual of a flock GQ.

In Thas [12] also several strong results for q even are proved. It follows that The-
orem 5.1 also holds for q A f2; 4; 16g. Further it is conjectured that a GQ of order
ðq; q2Þ, q even, satisfies Property (G) at some line L if and only if S is the dual of a
flock GQ.

Let S ¼ ðP;B; IÞ be a GQ of order ðs; s2Þ, s even, which satisfies Property (G) at
some line L. Let x0; x1; . . . ; xs be the points incident with L. Further, let fxi; y; zg
be a triple of pairwise non-collinear points for which fxi; y; zg? contains an element
incident with L, say xj, with i; j A f0; 1; . . . ; sg. Let T ¼ fxi; y; zg and let P 0 be the set
of all points incident with lines of the form uv, u A T?, and v A T??. If B 0 is the set of
all lines in B which are incident with at least two points in P 0, and if I 0 is the restriction
of I to ðP 0 � B 0ÞU ðB 0 � P 0Þ, then S 0 ¼ ðP 0;B 0; I 0Þ is a subquadrangle of S of order
s; moreover fxi; yg is a regular pair of S 0, with fxi; yg?

0
¼ T? and fxi; yg?

0?0
¼

T?? (see 2.6.2 of Payne and Thas [8]). In this way there arise s3 þ s2 subquadrangles
of order s in S; see Theorem 3.1.5 of Thas [11]. This is the maximum number of sub-
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quadrangles of order s of S containing the line L; see e.g. Lemma 2.4 of Brown and
Thas [1].

Theorem 5.2. Let S ¼ ðP;B; IÞ be a GQ of order ðs; s2Þ, s even, which satisfies Prop-

erty (G) at some line L. Then the s3 þ s2 subquadrangles of order s of S containing the

line L are TGQ with base line L.

Proof. Let S 0 be one of the subquadrangles of order s of S containing the line L.
By Theorem 3.2.1 of Thas [11] the line L is a coregular line of S 0 and a regular line
of S. By Thas and Van Maldeghem [14] the dual net N�

L defined by the regular line
L of S (see also Section 2) is isomorphic to the dual net H 3

s , with point set the set
of all points of PGð3; sÞ not on a given line M of PGð3; sÞ, with line set the set of all
lines of PGð3; sÞ skew to M, and where incidence is induced by PGð3; sÞ. The dual
a‰ne plane A defined by the regular line L of S 0 is a subgeometry of N�

L , hence is
easily seen to be isomorphic to the dual of AGð2; sÞ. Now by Theorem 4.5 the GQS 0

is a TGQ with base line L. r

We hope Theorem 5.2 is a step towards the classification of all GQ of order ðs; s2Þ,
s even, satisfying Property (G) at some line L.
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14–60. Zbl 0088.37204

Received 7 August, 2002

J. A. Thas, Department of Pure Mathematics and Computer Algebra, Ghent University,
Krijglaan 281-S22, B-9000 Gent, Belgium
Email: jat@cage.rug.ac.be

J. A. ThasS112

http://www.ams.org/mathscinet-getitem?mr=2002f:51008
http://www.emis.de/MATH-item?0989.51006
http://www.ams.org/mathscinet-getitem?mr=2000e:51011
http://www.emis.de/MATH-item?0891.51004
http://www.emis.de/MATH-item?0088.37204

