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Abstract. We study the scalar curvature measure for sets belonging to o-minimal structures
(e.g. semialgebraic or subanalytic sets) from the viewpoint of metric di¤erential geometry.
Theorem: Let S be a compact connected definable pseudo-manifold with curvature bounded
from above, then the singular part of the scalar curvature measure is non-positive. The topo-
logical restrictions cannot be removed, as is shown in examples.

1 Introduction

1.1 Plan of the paper and main results. One of the most important and most di‰cult
problems in subanalytic geometry is to understand the induced length metric of sub-
analytic sets. For instance, the behavior of geodesics remains completely mysterious.
Apart from a theoretical interest, this question has applications even outside mathe-
matics, e.g. in robotics. This paper is devoted to the study of subanalytic sets by
means of integral geometry and metric di¤erential geometry.

In a preceding paper ([2]), we defined a scalar curvature measure for singular
spaces. More precisely, we associated to each compact connected set belonging to
some o-minimal structure (e.g. semialgebraic or subanalytic sets) a signed measure,
called scalar curvature measure, which shares many of the properties of the usual sca-
lar curvature of Riemannian manifolds. One of the main results of [2] was to relate
the scalar curvature measure to curvature bounds in the sense of metric di¤erential
geometry. It has been shown that a lower bound k on the curvature of a compact
connected definable set of dimension m implies the lower bound kmðm� 1Þ volð�Þ
for the scalar curvature measure. This theorem generalizes in a non-trivial way the
easy fact from di¤erential geometry that positive sectional curvature implies positive
scalar curvature.

In this paper, we carry on the study of scalar curvature measure of definable sets.
We will show that the analogous result in the case of negative sectional curvature is
valid under some minor topological restrictions.

The main theorem is the following (see 1.2 for definitions):

Theorem 1.1 (Main Theorem). Let S be a compact connected definable pseudo-manifold

with curvature bounded from above, then the singular part of scalðS;�Þ is non-positive.



Remarks. If the dimension of S is m and the upper curvature bound k, then we get an
inequality between signed measures:

scalðS;�Þc kmðm� 1Þ volðS;�Þ:

This generalizes the classical upper bound for the scalar curvature sc kmðm� 1Þ on
m-dimensional Riemannian manifolds with sectional curvature bounded from above
by k.

If S is a pseudo-manifold, then there exists a stratification with the property that
each m� 1-stratum is contained in the boundary of exactly two m-strata. This is
what we really need.

The topological assumption made in the theorem is in general necessary. For
instance, take the closed unit ball in Euclidean space. Being convex, it has non-positive
curvature in the metric sense, but its total scalar curvature is strictly positive because
of the boundary contribution. Another example will be presented in Section 4.

Since everything is done locally, the theorem remains true for closed connected
definable sets S. In this case, scalðS;�Þ is still a di¤erence of non-negative Borel
measures and scalðS;U Þ is well-defined for precompact U .

The paper is organized as follows. After giving the basic definitions, we will show
some results about geodesics on definable spaces, which are of independent interest,
see Section 2. The proof of the main theorem is contained in Section 3. It consists of
two steps, one for strata of codimension 1, one for strata of codimension 2. The proofs
in these cases are di¤erent, although they share some common features, as the use of
the triangle inequality for angles and the extension property for geodesics. A conse-
quence of one of the obtained formulas is the invariance of the scalar curvature mea-
sure under isometries. Such a result (actually a more general version) was conjectured
by J. Fu. This invariance property is obtained in Section 4. It is the generalization of
the classical fact that the scalar curvature on a Riemannian manifold is an inner
quantity.

The idea behind the proof of the main theorem is to use the fact that, in the situa-
tion we will consider, each geodesic can be extended beyond its endpoints, by prop-
erties of CAT-spaces. In codimension 2, the triangle inequality for angles then yields
that the density at each point of the stratum is bounded from below by 1. In codi-
mension 1, a careful investigation of geodesics and angles between them is necessary.
Again, we will conclude by the triangle inequality for angles that the scalar curvature
measure is non-positive.

Acknowledgments. I would like to thank Professor Ludwig Bröcker for helpful dis-
cussions and his encouragement and the referee for useful comments.

1.2 Recall of definitions. First, we will introduce spaces with curvature bounded from
above and give some properties that will be needed in the following proof. There is
an excellent book, [4], where the reader can find a systematic treatment of spaces with
curvature bounded from above. The following definitions are taken from Part II of
that book.
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Definition 1.2. A geodesic triangle in an inner metric space consists of three points
A;B;C and geodesic segments ½A;B�, ½B;C � and ½C;A� between them. We say that it
satisfies the CATðkÞ inequality ðk A RÞ, if for all points P A ½A;B� and Q A ½A;C �, we
have dðP;QÞc dð ~PP; ~QQÞ, where ~PP and ~QQ are points on the sides ½ ~AA; ~BB� respectively
½ ~AA; ~BB� of a comparison triangle ~AA; ~BB; ~CC in the 2-dimensional space form Mk with con-

stant curvature k with dð ~AA; ~PPÞ ¼ dðA;PÞ, dð ~AA; ~QQÞ ¼ dðA;QÞ.

A metric space is called d geodesic if all pairs of points a distance less than d apart
can be joined by a (not necessarily unique) geodesic.

We denote by Dk the diameter of Mk, that is Dk ¼ y for kc 0 and Dk ¼ pffiffi
k

p for
k > 0.

Definition 1.3. a) An inner metric space X is called CATðkÞ space if it is a Dk geo-
desic space and all geodesic triangles of perimeter less than 2Dk satisfy the CATðkÞ
inequality.

b) A metric space X is said to be of curvatureck if it is locally a CATðkÞ-space,
i.e. for every x A X there exists rx > 0 such that the ball Bðx; rxÞ, endowed with the
induced metric, is a CATðkÞ-space.

Remark 1.4. The initials C, A, T stand for Cartan, Alexandrov and Toponogov.

Recall that in a metric space X , the angle JðA;B;CÞ is defined as the angle
at ~AA of a comparison triangle ~AA; ~BB; ~CC in Euclidean space. The Alexandrov angle
between two geodesics c; c 0 with cð0Þ ¼ c 0ð0Þ ¼ x is defined as Jðc; c 0Þ :¼
lim supt; t 0!0 Jðx; cðtÞ; c 0ðtÞÞ.

The next few statements are taken from [4]. We will need them in the course of the
proof of our main theorem.

Proposition 1.5. Suppose X is a CATðkÞ-space. Then:
. The Alexandrov angle between the sides of any geodesic triangle of perimeter smaller

than 2Dk in X with distinct vertices is not greater than the angle between the corre-

sponding sides of its comparison triangle in M 2
k . Moreover, every Dk-geodesic metric

space with this property is actually a CATðkÞ-space.
. Every local geodesic in X of length at most Dk is a geodesic.

. If X is a topological manifold, then each geodesic g : ½a; b� ! X can be extended to a

geodesic g : ½a� e; bþ e� ! X for some e > 0. It follows that, if X is complete, any
geodesic can be extended to a geodesic of length Dk.

Next, we recall the definition of o-minimal structures. Most propositions about
semialgebraic sets can be deduced from a short list of properties, including the Tarski–
Seidenberg principle (which states that the projection of a semialgebraic set is semi-
algebraic). Each class of sets satisfying these axioms shares automatically many useful
properties with semialgebraic sets, e.g. boundedness of number of connected compo-
nents. The definition is the following:
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Definition 1.6. An o-minimal structure is a sequence s ¼ ðsnÞn¼1;2;3;... such that:

a) sn is a Boolean algebra of subsets of Rn.

b) Algebraic subsets belong to s.

c) If S A sn and S 0 A sm, then S � S 0 A snþm.

d) If S A snþ1 then pðSÞ A sn where p : Rnþ1 ! Rn is the projection on the first n
coordinates.

e) s1 consists exactly of finite unions of points and intervals.

Examples 1.7. The smallest example of an o-minimal structure is the set of semi-
algebraic sets.

Globally subanalytic sets form an o-minimal structure. A set is called globally
subanalytic if its closure in the projective space is subanalytic.

Sets definable over Rexp ¼ ðR;þ; �; <; expÞ yield another example of an o-minimal
structure.

The basic reference for o-minimal structures is [21], see also [10]. In the rest of
the paper, we fix an o-minimal system and refer to its elements as definable sets.

Definition 1.8. Let SHRn be a compact connected definable set. Then the restriction
of the Euclidean metric of Rn defines a metric on S, also called Euclidean metric and
denoted by de. In general, de is not a length metric, but it induces a unique length
metric on S, which we will denote by di. It is called inner metric of S.

Let dðT ;T 0Þ :¼ supv AT ;kvk¼1 dðv;T 0Þ denote the ‘‘distance’’ of vector subspaces

of Rn. Then T is contained in T 0 if and only if dðT ;T 0Þ ¼ 0. It is easy to see that
dðT ;T 0Þ ¼ kP?

T 0PTk, where PT denotes the projection on T and P?
T 0 the projection

on the orthogonal complement of T 0.

Definition 1.9. A stratification S ¼6
i
X i of a closed subset of Rn is called Verdier-

stratification if for any pair X i;X j of strata with X i H qX j and each x A X i we have
the following Verdier condition: There are a real number C > 0 and a neighborhood
U of x such that dðTpX

i;TqX
jÞcCkp� qk for p A X i VU ; q A X j VU .

Given a Whitney-stratification S ¼ UX i HRn of a compact definable set, we
denote by Nore SHRn � Sn�1 HR2n the set of unit vectors normal to some stratum.
Nore TX iX j, X i HX j denotes the set of limits of unit normal vectors of X j with foot-
points tending to points X i. A more detailed description of these sets and their rela-
tions can be found in [16].

Definition 1.10. We call a Whitney-stratification S ¼ UX i HRn of a compact defin-
able set tame if there is a stratification UN m of the unit normal space Nore SH
Rn � Sn�1 HR2n satisfying the following two conditions:
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a) fN mg is compatible with the sets Nore TX iX j, where X i HX j. This means that
each of the latter sets is a union of strata.

b) The projection p : Nore S ! S; ðx; veÞ 7! x is a submersion on each stratum.

Remark 1.11. Let S be a compact definable set. Then it admits stratifications of each
of the above types, as was proven by Ta Lê Loi ([18]) for Verdier stratifications and
by Bröcker–Kuppe ([5], [16]) for tame stratifications.

If one defines scalar curvature measure in the integral geometric setting, then one
needs tame stratifications from the very beginning. However, in this paper, we define
scalar curvature measure by an explicit formula and will need tame stratifications
only for some technical arguments in the proof of the main theorem.

We now come to the definition of the scalar curvature measure of definable sets.
At first look, this seems to be an ad hoc definition, but it is shown in Theorem 1.2
of [2] that this definition coincides with a more natural definition coming from inte-
gral geometry. Since we do not want to go into details on integral geometry (such as
Lipschitz–Killing curvatures), we define the scalar curvature measure from the very
beginning by the formula below.

Definition 1.12. Let S be a compact connected definable set of dimension m with a
stratification S ¼6

i
X i. Then we define a (signed) Borel measure by setting for each

Borel subset U HS

scalðS;UÞ :¼
ð
UVX m

sðxÞ dvolmðxÞ þ 2

ð
UVX m�1

Xk
i¼1

tr IIwi
dvolm�1ðxÞ

þ 4p

ð
UVX m�2

1

2
þ ð�1Þm

2
wlocðS; xÞ � ymðS; xÞ

� �
dvolm�2ðxÞ:

Here, w1;w2; . . . ;wk denote the normal vectors of X m�1 in direction of the highest
dimensional strata and tr IIwi

is the trace of the second fundamental form of Xm�1

in direction wi ðIIwi
¼ �‘wiÞ. By wlocðS; xÞ :¼ wðH�ðS;SnfxgÞÞ we denote the local

Euler-characteristic of S at xwith respect to Borel–Moore homology. ymðS; xÞ denotes
the m-dimensional density of S at x.

Remark 1.13. The scalar curvature measure is independent of the chosen stratifica-
tion. See [16] or [5] for details.

Examples 1.14. A Riemannian manifold has positive or negative scalar curvature
measure if and only if its usual scalar curvature is positive or negative respectively.

A Riemannian manifold with boundary has positive or negative scalar curvature
measure if and only if its scalar curvature is positive or negative and the mean cur-
vature of the boundary is positive or negative respectively.

For a compact Riemannian manifold S, scalðS;SÞ is called the total scalar curva-
ture. The Einstein–Hilbert functional of S is the functional that associates to a metric
the total scalar curvature.
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The scalar curvature measure of the surface of a cube is concentrated in its vertices.
The scalar curvature measure of a vertex is 4p 1� 3

4

� �
¼ p. The total scalar curvature

equals 8p ¼ 4pw. This is the Gauss–Bonnet-formula, which remains true in this set-
ting. See [5] for details.

2 Law of reflection

Not much is known about the behavior of geodesics on definable sets. Approaching
the boundary of a highest dimensional stratum, the di¤erential equation for geodesics
becomes singular. However, using some metric arguments and su‰ciently good strat-
ifications, we are able to show a law of reflection that will be important later on.

Proposition 2.1. Let S be a compact definable set of dimension m with a fixed tame strat-

ification, X m�1 and X m strata of dimension m� 1 respectively m with X m�1 HX m.
Then there is a definable subset E of X m�1 of dimension smaller than m� 1 such that for
each point P A X m�1nE the following two conditions are satisfied:

. The tangent map extends continuously from X m to P, i.e. there is a unique m-

dimensional space T such that TQX
m ! T for Q ! P.

. Near P, Verdier’s condition is satisfied.

Proof.We can refine the given stratification to a stratification satisfying Verdier’s con-
dition. Therefore, if we remove some strata of smaller dimension, Verdier’s condition
will be satisfied on X m�1.

On the other hand, the set of limit tangent spaces of Xm has dimension less than
m in the Grassmannian of pointed m� 1 dimensional a‰ne subspaces of Rn (see
[16]). We denote for each x A Xm�1nX m�1 the set of limit tangent spaces at x by
Tlim;xX

m. Then TlimX
m ¼ 6

x AX mnX m Tlim;xX
m. We therefore see that the dimension

of Tlim;xX
m has to be 0 almost everywhere. As a consequence of Hardt’s Theorem

(see for instance [10], Theorem 5.22), this dimension is a definable function of x. It
follows that it is 0 outside a set of smaller dimension. With X m being locally con-
nected, Tlim;PX

m is connected for each P A X m�1. Therefore, if it is 0-dimensional,
it consists only of a single space which implies that the tangent map extends contin-
uously to P. r

Proposition 2.2. Let X m and X m�1 be two strata as above. Suppose that the tangent

map extends continuously from X m to P with limit tangent space T. Then we can

describe X m (locally at P) in the following way: There are an orthonormal base of Rn

with associated coordinates fx1; . . . ; xng and smooth functions g; f such that:

TPX
m�1 ¼ fxm ¼ xmþ1 ¼ � � � ¼ xn ¼ 0g.

T ¼ fxmþ1 ¼ xmþ2 ¼ � � � ¼ xn ¼ 0g.

X m is the graph of f over the open set U ¼ fðx1; . . . ; xmÞ A T : xm > gðx1; . . . ; xm�1Þg.

The derivatives of f , qf

qxi
ðQÞ tend to 0 for Q ! P.
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Proof. Remember that Xm�1 is smooth. The tangent space TPX
m�1 is included in T ,

hence the projection of X m�1 to T will be a smooth hypersurface of T which can be
written as the graph of a smooth function g. If we choose first a coordinate system on
TPX

m�1, extend it to a coordinate system of T and finally to one of Rn, we get auto-
matically the first two conditions.

By our assumption, the tangent space TQX
m will be close to T in the Grassman-

nian. Therefore, the projection from X m to T is a bijective smooth map. By simple
topological reasons, its image must be one of the sets fxm > gðx1; . . . ; xm�1Þg or
fxm < gðx1; . . . ; xm�1Þg. Changing the signs of the coordinate xm and of g, we can
suppose that this image is U ¼ fxm > gðx1; . . . ; xm�1Þg. Since Xm is smooth, we get
some smooth function f such that X m is the graph of f over U . The partial deriva-
tives of f tend to 0 as follows easily from the uniqueness of the limit tangent space.

r

Remark. We can extend f to a continuous function (also denoted by f ) on U ¼
U U graph g. The graph of f over the set graph g is nothing else than X m�1. Since
X m�1 is smooth, f jgraph g is smooth. We know furthermore that TPX

m�1 HT which
yields that all derivatives of f jgraph g vanish at 0.

Proposition 2.3. Same situation as above. Let A A X m, P A X m�1 be points such that

diðA;PÞc diðA;P 0Þ for all points P 0 A Xm�1. Further suppose that the tangent map

extends continuously from X m to P. Choose a geodesic g between P and A, parame-

terized by arclength and with gð0Þ ¼ P. Let w A T be the vector which is given in our

coordinate system by ð0; . . . ; 0; 1Þ. Then

lim
a!0

gðaÞ � P

a
¼ w:

Proof.We argue by contradiction. Suppose there exist a vector w 0 0w and a sequence
of real numbers a1 > a2 > � � � ! 0 such that

lim
i!y

gðaiÞ � P

ai
¼ w 0:

Set ri :¼ gða iÞ� P�a iw
0

a i

��� ���. Then ri ! 0. By the triangle inequality we get

riai d deðgðaiÞ;PÞ � aikw 0k:

By some easy arguments using Whitney’s condition B, we see that limi!y
deðgða iÞ; PÞ

a i
¼

limi!y
diðgða iÞ; PÞ

a i
¼ 1. So we easily get kw 0kd 1.

On the other hand, we always have di d de. It follows kgðaiÞ � Pkc ai and

kw 0kc w 0 � gðaiÞ � P

ai

����
����þ gðaiÞ � P

ai

����
����c ri þ 1:

Since ri ! 0, it follows kw 0kc 1 and finally kw 0k ¼ 1.

Scalar curvature of definable CAT-spaces 29



Next, T is the unique limit tangent space and therefore w 0 A T . Since w 0 0w, some
of the first m� 1 coordinates of w 0 must be non-zero. Suppose without loss of gener-
ality that w 0 ¼ ðw1; . . . ;wm; 0; . . . ; 0Þ with w1 0 0.

Now, gðaiÞ has coordinates ðh1; . . . ; hm; 0; . . . ; 0Þ with hj ¼ aiwj þ oðaiÞ. The line Li

that joins this point with the point P 0 ¼ ðh1; . . . ; hm�1; gðh1; . . . ; hm�1Þ; 0; . . . ; 0Þ has
length li ¼ gðh1; . . . ; hm�1Þ � hm. Since the derivatives of g at 0 vanish, it follows that

lim
i!y

li

ai

����
���� ¼ jwmj < 1:

For i su‰ciently big, the function f will have arbitrarily small derivatives on Li. It
follows that the length of the pre-image of Li under the projection to T , which is a
curve in Xm, has a length which is close to the length of Li, hence strictly smaller than
ai. This is a contradiction, since we have supposed that there is no point on X m�1

with smaller distance to A than P, but P 0 would be such a point. r

A similar proof will yield the following:

Proposition 2.4 (Law of reflection). Let S be a compact connected definable set of

dimension m with a fixed tame stratification and X m�1 an m� 1 stratum neighboring

exactly two m-strata X m
1 ;Xm

2 . Let g be a geodesic such that gðaÞ A Xm
1 for a < 0, P ¼

gð0Þ A Xm�1 and such that g can be extended beyond P. We assume that the tangent

map extends continuously from X m
1 ;Xm

2 to P. We choose for each stratum X m
i a repre-

sentation as in Proposition 2.2. Since both T1 and T2 contain TPX
m�1, we can suppose

that the coordinates x1; . . . ; xm�1 coincide on TPX
m�1. Let w1 ¼ ða1; . . . ; am; 0; . . . ; 0Þ1

be a tangent vector of gj<0. Then, if w1 is not contained in TPX
m�1, gj>0 has a unique

tangent vector w2 at P which is given by w2 ¼ ð�a1; . . . ;�am�1; am; 0; . . . ; 0Þ2.

Remarks. a) If w1 is contained in TPX
m�1, the same holds true for w2, for otherwise

we could apply the proposition with the reversed geodesic.
b) If w1 is not contained in TPX

m�1, both sides of g have unique tangent vectors.
(Just apply the proposition twice.) It follows that gðaÞ ¼ Pþ aw1 þ oðaÞ and gð�aÞ ¼
Pþ aw2 þ oðaÞ for small positive a.

Proof of the proposition. Assume first that there is a sequence a1 > a2 > � � � ! 0 such
that gðaiÞ A X m

1 for each i. Then the set

gðaiÞ � P

ai
j i ¼ 1; 2; . . .

� 	

has an accumulation point w 0 of norm 1 (this follows from arguments as in Proposi-
tion 2.3). By choosing a subsequence of faig (which for simplicity we call again a) we
can thus suppose that

gðaiÞ ¼ Pþ aiw
0 þ oðaiÞ:

Let w 0 be given in coordinates by w 0 ¼ ða 0
1; a

0
2; . . . ; a

0
m; 0; . . . ; 0Þ. Let P1 be the pro-

jection of Rn to T1. Since all derivatives of g at 0 vanish, the line between the points
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P1gðaiÞ and P1gð�aiÞ lies entirely in U for ai small enough. Its length is given by
aikw 0 � wk þ oðaiÞ. The pre-image of this line yields a curve between gðaiÞ and
gð�aiÞ of length bounded by

ð1þ oð1ÞÞðaikw 0 � wk þ oðaiÞÞ ¼ aikw 0 � wk þ oðaiÞ:

This follows from the fact that the derivatives of f tend to 0 for ai ! 0.
On the other hand, g is a geodesic between gðaiÞ and gð�aiÞ which shows

diðgðaiÞ; gð�aiÞÞ ¼ 2ai:

From both inequalities we easily deduce kw 0 � wkd 2. This is a contradiction,
since w 0 and w both have norm 1 and have coordinates am > 0 respectively a 0

m d 0.
Our assumption was wrong, therefore gðaÞ A Xm

2 for a in an interval ð0; eÞ, e > 0.
Take w 00 and a sequence a1 > a2 > � � � ! 0 with

gðaiÞ ¼ Pþ aiw
00 þ oðaiÞ:

We shall show that w 00 ¼ w2.
Again, kw 00k ¼ 1 by easy arguments.
Consider in Rm the points ða1; . . . ; amÞ and ða 0

1; . . . ; a
0
m�1;�a 0

mÞ. Since am > 0 and
a 0
m d 0, the line between these points intersects the set fxm ¼ 0g in a point b ¼

ðb1; . . . ; bm�1; 0Þ.
For ai small, the line in T1 between P1gð�aiÞ and ðb; g1ðbÞ; 0; . . . ; 0Þ1 lies in U1

and has a certain length l1, while the line between P2gðaiÞ and ðb; g2ðbÞ; 0; . . . ; 0Þ2 lies
in U2 and has a certain length l2. From the fact that g is smooth with vanishing deriv-
atives at 0, we deduce that

l1 þ l2 ¼ aikða1 � a 0
1; . . . ; am�1 � a 0

m�1; am þ a 0
mÞk þ oðaiÞ:

Again, we can lift the union of these lines by P1 and P2 to get a curve joining gðaiÞ
and gð�aiÞ whose length is bounded by

aikða1 � a 0
1; . . . ; am�1 � a 0

m�1; am þ a 0
mÞk þ oðaiÞ:

This cannot be smaller than diðgðaiÞ; gð�aiÞÞ ¼ 2ai since g is a geodesic between both
points. We deduce that

kða1 � a 0
1; . . . ; am�1 � a 0

m�1; am þ a 0
mÞkd 2:

Finally, it follows that a 0
1 ¼ �a1; a

0
2 ¼ �a2; . . . ; a

0
m�1 ¼ �am�1; a

0
m ¼ am. r

Proposition 2.5. Let S be a compact definable set of dimension m with a fixed tame

stratification. Suppose S has the geodesic extension property and X m�1 is a stratum

neighboring exactly two strata X m
1 ;Xm

2 of highest dimension. Then at a dense set of

points P A Xm�1 there is a geodesic g passing through both sides of X m�1 that has

unique tangent vectors at P which are furthermore orthogonal to TPX
m�1.
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Proof. Choose some point A A X m
1 near X m�1 and the point P which is the nearest to

A in the inner metric. It is clear that there is a dense subset of points P arising in this
way. So we can furthermore assume that P satisfies both conditions of Proposition
2.1 and we can apply Propositions 2.4 and 2.3.

Choose a geodesic between A and P and extend it beyond P to a geodesic g. We
can reparameterize by arclength such as to have gð0Þ ¼ P, gð�diðA;PÞÞ ¼ A. By Pro-
position 2.4, gðaÞ A Xm

2 for small positive a. We know by Proposition 2.3 that gj<0 has
a unique tangent vector w1 ¼ ð0; . . . ; 0; 1Þ1 (the index refers to the coordinate system).
We can therefore apply Proposition 2.4 to see that g>0 must have w2 ¼ ð0; . . . ; 0; 1Þ2
as unique tangent vector. This finishes the proof of the proposition. r

3 Proof of the Main Theorem

We recall that the Main Theorem states that a compact connected definable set
of dimension m which is a pseudo-manifold with curvature bounded from above
by k has scalar curvature bounded from above by kmðm� 1Þ, which means that
scalðS;�Þc kmðm� 1Þ volðS;�Þ. Before turning to the proof, we will give two easy
examples.

Example 3.1. Let S be a connected two-dimensional piecewise linear space. Suppose
that S is a topological manifold. Then the following statements are equivalent:

a) S is a metric space of curvaturec0.

b) For every vertex v of S, the link of S at v is a CATð1Þ-space.

c) The density at each vertex is at least 1.

d) scalðS;�Þc 0.

The equivalence between a) and b) is remarked in [4], Theorem 5.2., the equivalence
between b) and c) comes from the fact that a one-dimensional space is CATð1Þ if and
only if there are no loops of length smaller than 2p. The equivalence between c) and
d) is clear by definition.

Example 3.2. Let us generalize this example to the higher dimensional case. S is now
a piecewise linear manifold which is supposed to be a topological manifold and to
have curvature bounded from above by 0.

Let m denote the dimension of S. The scalar curvature measure is concentrated on
simplices of dimension m� 2. Locally at a point P of such a simplex, S is the product
of the normal section and Rm�2. Consequently, the normal section is (at least locally)
a convex subset of S and thus a CATð0Þ-space in a neighborhood of P (see also
Example II 1.15 of [4]). Since it is a two-dimensional space, this is by the preceding
example equivalent to the density at P being at least 1, which implies non-positive
scalar curvature measure by Definition 1.12.

Proof of Theorem 1.1. Let S be a compact connected definable pseudo-manifold of
dimension m which has curvature bounded from above by k. Choose a tame stratifi-
cation S ¼ UX i of S. By the topological condition, refining this stratification if nec-
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essary, we can assume that each stratum of codimension 1 lies in the boundary of
exactly two m-strata, hence in Formula 1.12 we have k ¼ 2.

Furthermore, by Thom’s Isotopy Lemma ([20], [14]), we get for each point
x A X m�2 that wlocðS; xÞ ¼ ð�1Þm. In view of Definition 1.12, we have to show that
for each Borel subset U HS, the expression

scalðS;UÞ ¼
ð
UVX m

sðxÞ dvolmðxÞ þ 2

ð
UVX m�1

tr IIw1þw2
dvolm�1ðxÞ

þ 4p

ð
UVX m�2

ð1� ymðS; xÞÞ dvolm�2ðxÞ

is bounded from above by kmðm� 1Þ volðUÞ.
This can be done for each stratum dimension separately, the codimension 0 case

being trivial (the CATðkÞ-condition implies sðxÞc kmðm� 1Þ on the smooth part).
For strata of codimension 1 and 2, we will show the non-positivity of the scalar cur-
vature measure in Propositions 3.3 and 3.6. r

3.1 Strata of codimension 1. The aim of this section is the proof of the following:

Proposition 3.3. If S is a compact connected definable set of dimension m which is a

CATðkÞ-space for some k (with respect to the inner metric) and X m�1 an m� 1-stratum
on the boundary of exactly two m-strata, then scalðS;�ÞjX m�1 c 0

We recall that scalðS;�ÞjX m�1 is given by integration of the definable function h :¼
2 tr IIw1þw2

on X m�1. To show that scalðS;�ÞjX m�1 c 0, it is therefore enough to estab-

lish that hðPÞc 0 on a dense subset of X m�1. We are going to prove that hðPÞc 0
for all points P A Xm�1 such that:

a) The tangent map can be extended continuously from both X m
1 ;X m

2 to P.

b) The stratification satisfies Verdier’s condition near P.

c) There is a geodesic passing through P as in Proposition 2.5.

Let S have curvatureck and let S ¼ UX i be a tame stratification of S and Xm�1 a
stratum neighboring exactly two m-strata. Then by Propositions 2.1 and 2.5, the set
of points P A Xm�1 satisfying the above three conditions is a dense subset of X m�1.

Let us fix such a point P. We find a geodesic g consisting of two geodesic arcs g1; g2
such that gi lies entirely in X m

i and such that

giðaÞ ¼ Pþ awi þ riðaÞ

for small positive a and where ri denotes a function with lima!0
riðaÞ
a

¼ 0. Further-
more, wi ? TPX

m�1 and kwik ¼ 1.
Choose real functions e1; e2 : ð0;yÞ ! ð0;yÞ such that for i ¼ 1; 2

a) ei is monotonically increasing,

b) lima!0 eiðaÞ ¼ 0,

c) riðaÞ
a

��� ���c eiðaÞ.
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We carry out the following construction for both Xm
1 and Xm

2 . In order to simplify
the notation, we omit indices. We write g in place of gi and so on. The well defined
limit tangent space of X m at P is denoted by T .

Apply Proposition 2.2 to the stratum Xm and the point P. This yields a system of
coordinates x1; . . . ; xn, a set

U ¼ fðx1; . . . ; xmÞ A Rm : xm > gðx1; . . . ; xm�1ÞgHT ¼ fxm�1 ¼ � � � ¼ xn ¼ 0g

and a function f : U ! Rn�m such that Xm is the graph of f and f has deriva-
tives that converge to 0 if we approach P. In coordinates, f can be written as f ¼
ð f1; . . . ; fn�mÞ. Since P is contained in T , we get f ð0; . . . ; 0Þ ¼ 0.

Lemma 3.4. There are a neighborhood VP of P and a constant C > 0 such that the

function f satisfies for each j ¼ 1; . . . ; n�m the following estimate:

qfj

qxi
ðQÞ

����
����cCdeðQ;PÞ for i ¼ 1; . . . ;m� 1 and Q A VP:

Furthermore,

qfj

qxm
ðQÞ

����
���� ! 0 for Q ! P:

Proof of the lemma. The second assertion follows from the fact that the tangent map
can be extended continuously from X m to P (see Proposition 2.2).

Let us sketch the proof of the first assertion. It will be a consequence of Verdier’s
condition. Remark that the tangent space of X m at Q is generated as a vector space
by the vectors

1; 0; . . . ; 0;
qf1

qx1
; . . . ;

qfn�m

x1

� �
; . . . ; 0; . . . ; 0; 1;

qf1

qxm
; . . . ;

qfn�m

xm

� �
:

Since the tangent spaces TQX
m converge to T for Q ! P, we see that all deriva-

tives converge to 0. We can suppose without loss of generality that among the vectors
qf
qxi

ðQÞ, i ¼ 1; . . . ;m� 1, the first one is the longest. We denote its length by
L ¼ LðQÞ. We have to show that LðQÞcCdeðP;QÞ for some constant C > 0.

Let PP denote the orthogonal projection to TPX
m�1 and P?

Q the orthogonal pro-

jection to the orthogonal complement of TQX
m. From Verdier’s condition we know

that kP?
QPPkcCdeðP;QÞ for some constant C > 0.

Consider the unit vector ð1; 0; . . . ; 0Þ A TPX
m�1. Its projection PQð1; 0; . . . ; 0Þ to

TQX
m is given by

a1; a2; . . . ; am; a1
qf1

qx1
þ � � � þ am

qf1

qxm
; . . . ; a1

qfn�m

qx1
þ � � � þ am

qfn�m

qxm

� �

for some real numbers ða1; . . . ; amÞ. The condition of orthogonality yields a system of
linear equations for the unknowns a1; . . . ; am. It has the form
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ðIdþ oðLÞÞða1; . . . ; amÞT ¼ ð1; 0; . . . ; 0ÞT

where Idm denotes the identity matrix of type ðm;mÞ and oðLÞ is a matrix that tends
faster to 0 than L.

Resolution gives us a1 ¼ 1þ oðLÞ; a2 ¼ oðLÞ; . . . ; am ¼ oðLÞ where oðLÞ stands for
real numbers that tend faster to 0 than L. Hence

P?
QPPð1; 0; . . . ; 0Þ ¼ oðLÞ; oðLÞ; . . . ; oðLÞ; qf1

qx1
þ oðLÞ; . . . ; qfn�m

qx1
þ oðLÞ

� �

and therefore

kP?
QPPð1; 0; . . . ; 0Þk ¼ 0; . . . ; 0;

qf1

qx1
; . . . ;

qfn�m

qx1

� �����
����þ oðLÞ ¼ Lþ oðLÞ:

We know from Verdier’s condition that this must be bounded by CdeðP;QÞ for
some constant C > 0. Since we already know that L tends to 0 for Q ! P, we see that
L is bounded by 2CdeðP;QÞ for Q su‰ciently near P. This proves the lemma. r

Next, choose some real function e3 : ð0;yÞ ! ð0;yÞ such that:

a) e3 is monotonically increasing,

b) lims!0 e3ðsÞ ¼ 0,

c) for all s > 0, Q A BeðP; sÞ and j ¼ 1; . . . ; n�m we have
qfj
qxm

ðQÞ
��� ���c e3ðsÞ.

Remember that there are two m-strata neighboring X m�1. We define e4 in the same
way as we did for e3, but this time for the other m-strata. The existence of such
functions follows from the second assertion of the lemma.

We denote by PT the orthogonal projection from S to T .
Let s be a positive real number which we will let tend to 0. Set

eðsÞ :¼ maxfs; e1ðsÞ; e2ðsÞ; e3ðsÞ; e4ðsÞg1=2;

aðsÞ :¼ s2=eðsÞ;

A ¼ AðsÞ :¼ xðsÞ A X m�1; A :¼ PTA A graph gHU HT ;

B ¼ BðaÞ :¼ gðaÞ; B :¼ PTðBÞ A U HT :

Note that e is monotonically increasing and lims!0 eðsÞ ¼ 0. We easily see that
ac s for sc 1.

Remember that gðaÞ ¼ Pþ awþ rðaÞ where the vector w A T is given in our
coordinate system by ð0; . . . ; 0; 1Þ and where rðaÞ ¼ oðaÞ. Then B is given by

ð0; . . . ; 0; aÞ þ rðaÞ. Hence,
k rðaÞk

a
tends to 0 for a ! 0.

Since x1ðsÞ is a geodesic on Xm�1, x 00
1 ð0Þ is orthogonal to TPX

m�1. From x1ðsÞ ¼
Pþ sx 0

1ð0Þ þ s2

2 x
00
1 ð0Þ þOðs3Þ we get

AðsÞ ¼ s; 0; . . . ; 0;
s2

2
hx 00

1 ð0Þ;wi
� �

þOðs3Þ:
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Lemma 3.5. For su‰ciently small s, the line between A and B lies entirely in U.

Remark. Here is where we need that a is strictly bigger than s2. On the other hand,
we will need later that the quotient s2

a
should very slowly tend to 0 in order to erase

some superfluous terms. This is why we defined a in such a complicated way. Com-
pare also with the situation for Alexandrov spaces with curvature bounded from
below ([2]), where a similar definition for a was necessary.

Proof. Suppose there are arbitrarily small positive s such that the line does not lie
entirely in U . The slope of this line in direction xm is of order a=s ¼ s=eðsÞ. If the line
does not lie in U , it must cut the graph of g at some point between A and B. Then, at
some other point, the slope of the graph of g would equal the slope of the line.

Remember that g is smooth with vanishing derivatives at 0. Therefore the deriva-
tives of g behave like OðsÞ. This is a contradiction, since eðsÞ tends to 0 for s ! 0.
This shows the lemma. r

Let L denote the line between A and B. It is given by

LðtÞ ¼ ð1� tÞAþ tB ¼ ð1� tÞs; 0; . . . ; 0; taþ ð1� tÞ s
2

2
hx 00

1 ð0Þ;wi
� �

þ trðaÞ þOðs3Þ 0c tc 1:

Let L denote the pre-image of L under P. Since L lies in U , L is well defined and
yields a curve in S between A and B. In our coordinate system, L is given by

LðtÞ ¼ ðLðtÞ; f1ðLÞ; f2ðLÞ; . . . ; fn�mðLÞÞ:

We will compute its length in order to get an upper bound for diðA;BÞ. First, note the
following estimates:

jB1 � A1j ¼ j�sþ r1ðaÞjcOðsÞ;

jBk � Akj ¼ jrkðaÞjcOðaÞcOðsÞ; k ¼ 2; . . . ;m� 1;

jBm � Amj ¼ � s2

2
hx 00

1 ð0Þ;wiþ aþ rmðaÞ þOðs3Þ
����

����cOðaÞcOðsÞ:

On the other hand, since the first component of B� A is �sþ r1ðaÞ, we have
kB� AkdC2s for some constant C2.

L0ðtÞ ¼ L 0ðtÞ; q
qt

f1ðLÞ;
q

qt
f2ðLÞ; . . . ;

q

qt
fn�mðLÞ

� �
:

Obviously, L 0ðtÞ ¼ B� A. We calculate the other derivatives. It su‰ces to do the
calculation for q

qt
f1ðLÞ:
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q

qt
f1ðLÞ ¼

Xm
k¼1

qf

qxk

qLk

qt
:

We claim that this is an Oðs2Þ-term. For k ¼ 1; 2; . . . ;m� 1, we have qf
qxk

��� ���cOðsÞ
and qLk

qt

��� ���cOðsÞ. For k ¼ m and small s we have qf
qxk

��� ���c e3ðsÞc eðsÞ and qLk

qt

��� ���c
OðaÞ. The product iscOðeðsÞaÞ ¼ Oðs2Þ. This shows the claim.

It follows that

kL0ðtÞk2 c kL 0ðtÞk2 þOðs4Þ ¼ kB� Ak2 þOðs4Þc ð1þOðs2ÞÞkB� Ak2:

From this we can deduce

diðA;BÞc lðLÞ ¼
ð 1

0

kL0ðtÞk dtc ð1þOðs2ÞÞkB� Ak:

The inequality diðA;BÞd deðA;BÞd deðA;BÞ ¼ kB� Ak implies that in fact

diðA;BÞ ¼ ð1þOðs2ÞÞkB� Ak:

In our coordinate system, B� A is represented as

B� A ¼ �sþ r1ðaÞ; r2ðaÞ; . . . ; rm�1ðaÞ; aþ rmðaÞ �
s2

2
hx 00

1 ð0Þ;wi
� �

þOðs3Þ:

It follows that

kB� Ak2 ¼ s2 � 2sr1ðaÞ þOðr1ðaÞ2Þ þ � � � þOðrmðaÞ2Þ

þ a2 þOðarmðaÞÞ � as2hx 00
1 ð0Þ;wiþOðrmðaÞs2Þ þOðs4Þ

¼ s2 � 2sr1ðaÞ þ a2 � as2hx 00
1 ð0Þ;wi

þOððae1ðaÞÞ2Þ þOða2e1ðaÞÞ þOðae1ðaÞs2Þ þOðs4Þ:

Next we have for s ! 0:

a2e1ðaÞ2

as2
c

ae1ðsÞ2

s2
c

aeðsÞ4

s2
¼ eðsÞ3 ! 0;

a2e1ðaÞ
as2

c
ae1ðsÞ
s2

c
aeðsÞ2

s2
¼ eðsÞ ! 0;

ae1ðaÞs2
as2

¼ e1ðaÞ ! 0;

s4

as2
¼ eðsÞ ! 0:

It follows that

kB� Ak2 ¼ s2 � 2sr1ðaÞ þ a2 � s2hx 00
1 ð0Þ;wiþ oðas2Þ:
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From simple calculations and the fact that g is a geodesic between P and B we see
that

sd diðP;AÞd deðP;AÞ ¼ sþOðs3Þ

and

diðP;BÞ ¼ a:

This enables us to compute the angle JðA;P;BÞ in the case k ¼ 0:

cosJðA;P;BÞ

¼ dðP;AÞ2 þ dðP;BÞ2 � dðA;BÞ2

2dðP;AÞdðP;BÞ

¼ s2 þ a2 � ð1þOðs2ÞÞðs2 � 2sr1ðaÞ þ a2 � as2hx 00
1 ð0Þ;wiþ oðas2ÞÞ þOðs4Þ

2aðsþOðs2ÞÞ

¼ r1ðaÞ
a

þ s

2
hx 00

1 ð0Þ;wiþ oðsÞ:

(Remark. In the case k0 0, we have to apply the corresponding law of cosines, but
the resulting asymptotic behavior is the same. This is not surprising, as we consider
very small triangles and locally, di¤erences between hyperbolic, spherical and Eucli-
dean space vanish.)

Doing the same calculations with A ¼ x1ðsÞ replaced by C ¼ x1ð�sÞ yields

cosJðC;P;BÞ ¼ �r1ðaÞ
a

þ s

2
hx 00

1 ð0Þ;wiþ oðsÞ:

Furthermore, replacing B ¼ g1ða1Þ by D ¼ g2ða2Þ gives us:

cosJðA;P;DÞ ¼ r2ða2Þ
a2

þ s

2
hx 00

1 ð0Þ;w2iþ oðsÞ;

cosJðC;P;DÞ ¼ �r2ða2Þ
a2

þ s

2
hx 00

1 ð0Þ;w2iþ oðsÞ:

Taking the sum of the cosines of these four angles yields:

cosJðA;P;BÞ þ cosJðC;P;BÞ þ cosJðA;P;DÞ þ cosJðC;P;DÞ

¼ shx 00
1 ð0Þ;w1 þ w2iþ oðsÞ ð1Þ

Let gA; gB ¼ g1; gC ; gD ¼ g2 denote the geodesics between P and A;B;C;D. By the
CAT-inequality, we have

JPðgA; gBÞcJðA;P;BÞ
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and analogous inequalities for the other points. From the triangle inequality for
angles (see [4], Proposition 1.14) and the fact that B;P;D lie on a geodesic g, we get

p ¼ JPðgB; gDÞcJPðgB; gAÞ þJPðgA; gDÞcJðA;P;BÞ þJðA;P;DÞ

Using monotony of the cosine function, we get

cosJðA;P;BÞ þ cosJðA;P;DÞc 0

and analogously

cosJðC;P;BÞ þ cosJðC;P;DÞc 0:

It follows that

shx 00
1 ð0Þ;w1 þ w2iþ oðsÞc 0

and hence

hx 00
1 ð0Þ;w1 þ w2ic 0:

In the same way, such an inequality holds true with x1 replaced by xi for i ¼
1 . . . ;m� 1. This shows

hðPÞ ¼ 2ðtr IIw1
þ tr IIw2

Þ ¼ 2
Xm�1

j¼1

hx 00
j ð0Þ;w1 þ w2ic 0

which was to be shown. r

3.2 Strata of codimension 2.

Proposition 3.6. Let S be a compact connected definable set of dimension m with a

fixed tame stratification. Suppose that S is a space of curvature ck for some k A R
and that each m� 1-stratum lies on the boundary of exactly two m-strata. Then

scalðS;�ÞjX m�2 c 0 for each stratum X m�2 of dimension m� 2.

Proof. From Thom’s Isotopy Lemma ([20], [14]) it follows that wlocðS;PÞ ¼ ð�1Þm
for each point P A Xm�2. In view of Definition 1.12 we shall show that yðS;PÞd 1 at
almost each such point P. By the Normal Section Formula of [2], the density of S at
P equals almost everywhere the density of the normal section SP :¼ ðTPX

m�2Þ? VS

at P. It thus su‰ces to show that yðSP;PÞd 1 almost everywhere.
Fix a point P A X m�2. A neighborhood UP of P in SP lies in a tubular neighbor-

hood around X m�2 which implies that for each point A in SP that is su‰ciently close
to P, the Euclidean distance of A to Xm�2 equals the Euclidean distance between A

and P.
We denote by SeðP; rÞ the Euclidean sphere of radius r around P. By hypothesis

and Thom’s Isotopy Lemma, the sets SeðP; rÞVSP are disjoint unions of sets
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K1ðrÞ; . . . ;KkðrÞ which are homeomorphic images of circles. Their lengths will be
denoted by l1ðrÞ; . . . ; lkðrÞ. The density of SP at P is given by

yðSP;PÞ ¼ lim
r!0

Pk
i¼1 liðrÞ
2pr

:

This is proven in [2], it follows from easy arguments using Whitney-stratifications.
We will show that each term in this sum is at least 1. It su‰ces to show this for the

first one, so we claim that

lim
r!0

l1ðrÞ
2pr

d 1:

If this is not the case, choose a real number y 0 with limr!0
l1ðrÞ
2pr < y 0 < 1 and e > 0.

For su‰ciently small r > 0, the following conditions will be satisfied:

a) K1ðrÞ lies in a tubular neighborhood of X m�2,

b) 0 < l1ðrÞc 2pry 0.

Claim. There exist arbitrarily small r > 0 and points A;B A K1ðrÞ with the following
property: the geodesic between A and B contains a point P 0 of Xm�2.

To prove the claim, we need some topological arguments. Choose a homeomor-
phism j : S1 ¼ fz A C : jzj ¼ 1g ! K1ðrÞ. We will extend j to a continuous map
j : B2 ! S. To this end, fix some point A A K1ðrÞ. Then A 0 :¼ j�1ðAÞ A S1 and each
point C 0 of B2 can be represented as

C 0 ¼ A 0 þ tðB 0 � A 0Þ

with 0c tc 1 and B 0 A S1. If C 0 0A 0, this representation is unique.
Set B :¼ jðB 0Þ. Denote the unique geodesic between A and B by gA;B. We define

jðC 0Þ :¼ gA;BðtdiðA;BÞÞ:

Since in CATðkÞ-spaces geodesics of length strictly smaller than Dk depend con-
tinuously on their endpoints (see [4]), j is a continuous map from B2 to S.

Suppose that the claim were not fulfilled. Then j is a continuous map from B2 to
SnX m�2. It follows that the loop K1ðrÞ is contractible in SnX m�2. The image of B2

under this map lies for r su‰ciently small in the neighborhood UP. Hence K1ðrÞ is
contractible in ðSnXm�2ÞVUP.

On the other hand, K1ðrÞ cannot be contractible in SPnfPg, since this set is homo-
topically equivalent to the union of the sets KiðrÞ, i ¼ 1; . . . ; k. By Thom’s Isotopy
Lemma, ðSnX m�2;PÞ is locally homeomorphic to ððSPnfPgÞ �Rm�2;PÞ. Therefore
K1ðrÞ cannot be contractible in SnX m�2 which is a contradiction. The claim is proved.

Next, choose a su‰ciently small r and points A;B as in the claim. The geodesic g

between A and B contains some (not necessarily unique) point P 0 A Xm�2.
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The length of the curve K1ðrÞ is bounded by 2pry 0. Since this curve is homeomor-
phic to a circle, we can join A with B by a curve b of length bounded by pry 0 which
stays at a Euclidean distance r away from P. By our assumptions, this curve lies in a
tubular neighborhood of X m�2 which implies that the Euclidean distance from each
point of the curve to P 0 is at least r.

Take a series of points A ¼ P0;P1; . . . ;Pk ¼ B on b such that

diðPj;Pjþ1Þ < e; j ¼ 0; 1; . . . ; k � 1

and

Xk�1

j¼0

diðPj;Pjþ1Þc lðbÞc pry 0:

Let gj be the geodesic between Pj and P 0. We deduce from the CAT-inequality and
from the triangle inequality for angles (see [4], Proposition 1.14)

p ¼ JP 0 ðg0; gkÞc
Xk�1

j¼0

JP 0 ðgj; gjþ1Þc
Xk�1

j¼0

JðPj;P
0;Pjþ1Þ:

Let lkðrÞ denote the length of the circle of radius r in M 2
k .

To estimate the angle JðPj;P
0;Pjþ1Þ note that diðPj;P

0Þd r. It follows that this
angle is not greater than the corresponding angle of a comparison triangle inM 2

k with

side lengths r; r; diðPj;Pjþ1Þ which is bounded by cðeÞ2p diðPj ;Pjþ1Þ
lkðrÞ

where cðeÞ tends to
1 for e ! 0 ( just take a Taylor development of the k-cosine).

It follows that

p ¼ JP 0 ðg0; gkÞc
Xk�1

j¼0

JðPj;P
0;Pjþ1ÞccðeÞ 2p

lkðrÞ
Xk�1

j¼0

diðPj;Pjþ1ÞccðeÞ 2pr

lkðrÞ
py 0

If we let e tend to 0, we get

pc
2pr

lkðrÞ
py 0

For r ! 0, the right hand side tends to py 0 < p, which is a contradiction. Hence the
assumption y < 1 cannot be fulfilled and Proposition 3.6 is proved. r

The proof of the main theorem is complete.

4 Further remarks

A natural conjecture would be that the main theorem remains true under the weaker
condition that every stratum of codimension 1 lies on the boundary of at least two
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top dimensional strata. Surprisingly, this turns out to be false. The first part of the
proof of the main theorem can be generalized to this situation, the problem lies in the
codimension 2 case.

Take for instance 5 points on a 4-dimensional unit sphere and join each pair of
them by a semialgebraic arc of length 2p

3 in such a way that these arcs do not inter-
sect. With respect to the induced length metric, this graph is a CATð1Þ-space, since
every non-contractible loop has length at least 2p ¼ 2D1 (see [4], Example II 1.15).
The Euclidean cone X over this graph with base point the center P of the sphere is
a (semialgebraic) CATð0Þ-space by a theorem of Berestovskii (see [4], Theorem II
3.14).

On the other hand, wlocðX ;PÞ ¼ 1� 5þ 10 ¼ 6 and y2ðX ;PÞ ¼ 10 1
2p

2p
3 ¼ 10

3

which implies scalðX ; fPgÞ ¼ 1
2 þ 3� 10

3 ¼ 1
6 > 0. Hence the scalar curvature measure

is strictly positive at P.
Another remark concerns the invariance of the scalar curvature measure under

isometries. As Bröcker–Kuppe and Fu have shown, each Lipschitz–Killing curvature
measure is preserved under any definable isometry. The scalar curvature measure
is one of these curvatures. However, there are simple examples of non-definable iso-
metries between definable sets (for instance between a circle and an ellipse). But it is
not clear if there is really a big di¤erence between ‘‘isometric’’ and ‘‘definably iso-
metric’’. Anyway, the next corollary shows that scalar curvature measure is preserved
by any isometry:

Theorem 4.1. Let S; ~SS be two compact, connected, definable sets and f : S ! ~SS an

isometry between them. Then f induces an isomorphism of the scalar curvature mea-

sures, i.e. for each Borel measure ~UU H ~SS we have

scalð ~SS; ~UU Þ ¼ scalðS; f �1ð ~UU ÞÞ:

Proof. The idea is to use Formula (1). The scalar curvature measure on strata of
codimension 1 is there expressed only using inner geometric terms: certain geodesics
and angles. On m-strata, the scalar curvature is invariant under isometries (classical),
on strata of codimension 2 as well (local Euler-characteristic and density are invariant
under isometries). Furthermore, the scalar curvature measure is independent of the
stratification. These ideas can be easily put together to give a proof of Theorem 4.1.

r
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