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Abstract. In this paper we study the Hilbert scheme of Palatini threefolds X in P5. We prove
that such a scheme has an irreducible component containing X which is birational to the
Grassmannian Gð3; �PP14Þ and we determine the exceptional locus of the birational map.
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1 Introduction

Let X be a smooth non-degenerate 3-fold in P5 which is a scroll over a smooth sur-
face S. There are four examples, all classical, of such scrolls in P5: the Segre scroll,
the Bordiga scroll, the Palatini scroll and the K3-scroll, of degree 3, 6, 7, 9 respec-
tively. Ottaviani in [16] proved that in P5 these are the only smooth 3-dimensional
scrolls over a surface.
The first two scrolls are arithmetically Cohen–Macaulay threefolds, defined by the

maximal minors of a 3� 2, or of a 4� 3 matrix of linear forms respectively and their
Hilbert schemes are described by Ellingsrud ([9]).
In this paper we are interested in studying the Hilbert scheme of Palatini scrolls.
By definition, a Palatini scroll is the degeneracy locus of a general morphism

f : Ol4

P5 ! WP5ð2Þ. This definition is the straightforward analog in P5 of the classical
construction performed by Guido Castelnuovo in 1891 for the projected Veronese
surface S in P4 (see [6]). In the modern language, he showed indeed that any such
surface S can be interpreted as the degeneracy locus of a morphism defined by three
independent sections of WP4ð2Þ.
This kind of morphisms is closely connected to the notion of linear complexes of

lines (see [6], [2]). In fact, it is possible to interpret the degeneracy locus of a general

morphism f : Ol4

P5 ! WP5ð2Þ as the set of centres of linear complexes in P5 belonging
to a general linear system D of dimension 3 (web for short) of linear complexes in P5.
This latter interpretation will be very important in proving our results.

*Partially supported by MURST in the framework of the project ‘‘Geometria sulle varietà
algebriche’’.



In the case of Veronese surfaces, Castelnuovo proved also that the net of com-
plexes, giving rise to the morphism Ol3

P4 ! WP4ð2Þ, can be reconstructed from S, as
the span of the locus of trisecant lines to S inside the embedding space of the Grass-
mannian Gð1; 4Þ. This is equivalent to the claim that the irreducible component of
the Hilbert scheme of the Veronese surface is birational to Gð2;PðH 0ðWP4ð2ÞÞÞÞ.
Here we study the analogous problem for Palatini threefolds.
One of the first things we prove, see Proposition (3.1), is that the Hilbert scheme

of the Palatini scroll has a distinguished reduced irreducible component H which is
smooth at the point representing X and of dimension 44. This dimension is equal to
the dimension of Gð3; �PP14Þ, the Grassmannian parametrizing maps Ol4

P5 ! WP5ð2Þ.
It is known that there is a natural map r : Gð3; �PP14ÞdH and we study this

map. The main result we obtain is the following theorem. It relies on a careful de-
scription of the variety of four-secant lines of the Palatini scroll. We prove that this
variety is the union of C4, the base locus of a general web of linear complexes, and
of one more component, the one given by the lines contained in X . Hence the sit-
uation is a bit di¤erent from the one encountered by Castelnuovo in the case of
a general net of linear complexes in P4. But nevertheless we can reconstruct C4 from
X in a geometrical way, as it was done by Castelnuovo in the case of Veronese
surfaces.

Theorem 1.1. Let X HP5 be a smooth Palatini scroll of degree 7. Let H be the irre-

ducible component of the Hilbert scheme containing X. Then the rational map

r : Gð3; �PP14ÞdH

is birational.

Since the map r is birational, our next task is to determine the locus over which
this map is not regular.
It is well-known that if the degeneracy locus of a bundle map from a vector bundle

F to a vector bundle G has the expected dimension then it lies in the same Hilbert
scheme as the degeneracy locus of a general map from F to G. So r is not regular
over the points D A Gð3; �PP14Þ such that the set of centres of linear complexes in P5

belonging to D has dimension strictly bigger than 3.
It turns out that these are the 3-spaces of �PP14 which either are completely con-

tained in the dual Grassmannian �GGð1; 5Þ, or intersect Gð3; 5Þ, naturally identified
with the singular locus of �GGð1; 5Þ, along a curve. In other words, we can consider the
intersection of D with �GGð1; 5Þ: in general it is a cubic surface S which can be identi-
fied with the base of the scroll. The non-regularity of r at D means that either S is not
defined or that it is singular along a curve.
For the precise statements about the locus over which the map r is not regular,

we refer to §4, Theorem (4.3) and Theorem (4.9).
In the last section we will see how the Hilbert scheme of the Palatini scrolls fits

into commutative diagrams involving the variety of 6� 6 skew-symmetric matrices
of linear forms, the space of cubic surfaces, the moduli space of rank two bundles
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E on a cubic surface, with c1ðEÞ ¼ OSð2Þ, c2ðEÞ ¼ 5. The relations among the latter
mathematical objects were considered in [3] to which we refer for all the details.

Acknowledgments. The authors would like to thank the referee for many interesting
comments and suggestions.

2 Notations and preliminaries

The following notation will be needed later on in the paper. We refer to [14] for the
details.
Let X be a smooth non-degenerate 3-fold in P5. By Hilb4 P5, respectively Hilb4X ,

we denote the Hilbert scheme of zero dimensional subschemes of P5, respectively of
X , of length 4, i.e. 4-tuples.
Let Hilb4c P5 be the open smooth subset of Hilb4 P5 of the 4-tuples lying on a

smooth curve, Hilb4c X :¼ Hilb4X �Hilb4 P5 Hilb4c P5. Note that dim Hilb4c P5 ¼ 20.
Let Al4 P5 be the subvariety given by those elements in Hilb4c P5 which are on

some line in P5.

Remark 2.1. (1) Al4 P5 is a smooth subvariety of Hilb4c P5 of dimension 12.
(2) The map a : Al4 P5 ! Gð1; 5Þ which sends an element of Al4 P5 to the line on

which it lies is a fibration of fibre type Hilb4 P1GP4.

We recall the definition of the embedded 4-secant variety of X . Let Al4 X :¼
Al4 P5 �Hilb4 P5 Hilb4c X . We denote by S4ðXÞ the closure of aðAl4 XÞ in Gð1; 5Þ. Let

F :¼ fðx;LÞ A P5 � Gð1; 5Þ j x A Lg

be the flag manifold and let p1 : F ! P5, p2 : F ! Gð1; 5Þ be the two projections.

Definition 2.2. S4ðX Þ :¼ p1ðp	12 ðS4ðX ÞÞÞHP5 is the embedded 4-secant variety of
X .

We recall a basic result on the Hilbert scheme which will be important for us. Let
Z be a smooth connected projective variety. Let X be a connected submanifold of Z
with H 1ðX ;NÞ ¼ 0 where N is the normal bundle of X . The following proposition
holds, see [10] and [17].

Proposition 2.3. Let Z and X be as above. There exist irreducible projective varieties

Y and H with the following properties:

(i) YHH� Z and the map p : Y ! H induced by the product projection is a flat

surjection,

(ii) there is a smooth point x A H with p of maximal rank in a neighborhood of

p	1ðxÞ,
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(iii) q identifies p	1ðxÞ with X where q : Y ! Z is the map induced by the product

projection, and

(iv) H 0ðNÞ is naturally identified with TH;x where TH;x is the Zariski tangent space of

H at x.

3 Webs of linear complexes in P5

In this section we will study the maps Ol4

P5 ! WP5ð2Þ and their degeneracy loci. Note
that a general morphism f : Ol4

P5 ! WP5ð2Þ is defined by 4 general global sections of
WP5ð2Þ.
We recall first two interpretations of global sections of WP5ð2Þ, that explain the link

with the classical construction of Castelnuovo ([6]).

Geometric interpretation of f (see [16]). Let P5 ¼ PðVÞ. Consider the twisted dual
Euler sequence on P5

0! WP5ð2Þ ! l
6
OP5ð1Þ ! OP5ð2Þ ! 0:

With V 
 GH 0ðP5;OP5ð1ÞÞ, we have the natural identification HomðOP5 ;WP5ð2ÞÞG
52V 
, where a morphism OP5 ! WP5ð2Þ is given (after choosing a basis in V and
its dual basis in V 
) by a skew-symmetric 6� 6 matrix A ¼ ðaijÞ, aij A C and corre-
sponds to the morphism V ! V 
 given by

ðx0; . . . ; x5Þ !
X

a0ixi; . . . ;
X

a5ixi

� �
:

The morphism f : Ol4

P5 ! WP5ð2Þ is given by four generic 6� 6 skew-symmetric
matrices A;B;C;D.
The equations of the degeneracy locus X of f are the 4� 4 minors of the 4� 6

matrix

F ¼

0
BBBB@

P
a0ixi . . .

P
a5ixiP

b0ixi . . .
P

b5ixiP
c0ixi . . .

P
c5ixiP

d0ixi . . .
P

d5ixi

1
CCCCA ð1Þ

If P ¼ ðx0; . . . ; x5Þ A X then there exists ðx; y; z; tÞ0 ð0; 0; 0; 0Þ such that

ðxAþ yBþ zC þ tDÞP ¼ 0 ð2Þ

or equivalently
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X5
i¼0

ðxaji þ ybji þ zcji þ tdjiÞxi ¼ 0; j ¼ 0; . . . ; 5 ð3Þ

Hence the matrix xAþ yBþ zC þ tD has to be a degenerate skew-symmetric matrix
and its pfa‰an has to vanish. Let ðx; y; z; tÞ be homogeneous coordinates in P3, then
the vanishing of the pfa‰an of xAþ yBþ zC þ tD defines a hypersurface S of de-
gree 3 in P3.
For f general and a fixed ðx; y; z; tÞ A S, the matrix xAþ yBþ zC þ tD has rank

four, so we find in X a line of solutions of the Equation (3) and thus X is a scroll over
S. This X is a Palatini scroll of degree 7, see [16] and [2].
Let f : X ! S denote the scroll map. If we fix a point P A X , then f ðPÞ is the

unique solution of the Equation (2), interpreted as an equation in ðx; y; z; tÞ. The
uniqueness of the solution is equivalent to the fact that the 4� 6 matrix F in (1) has
rank 3.
The morphism f : X ! S is associated to the line bundle KX þ 2H, [16, 3.3], where

H is the hyperplane divisor. Moreover X GPSðEÞ where E :¼ f
H is a rank two
vector bundle on S with c1ðEÞ ¼ OSð2Þ, c2ðEÞ ¼ 5.

Global sections of WP5 (2) as linear complexes. Consider Gð1; 5Þ, the Grassmannian
of lines in P5, embedded in Pð52VÞGP14 via the Plücker map. The dual space
Pð52V 
ÞG �PP14 parametrizes hyperplane sections of Gð1; 5Þ or, in the old terminol-
ogy, linear complexes in P5. A linear complex G in P5 is represented by a linear
equation:

P
0ci<jc5 aijpij in the Plücker coordinates pij. We associate to G the skew-

symmetric matrix A ¼ ðaijÞ of order 6. A point P A P5 is called a centre of G if all
lines through P belong to G. The space PðKerðAÞÞ is the set of centres of G and it is
called the singular space of G. Since we are in P5 a general linear complex G does not
have any centre. In fact let A be the skew-symmetric matrix associated to G. Being G
general it follows that rkA ¼ 6. G is said to be special if its singular space is at least
a line. The special complexes can be of first type or of second type depending on
whether they have a line or a P3 as a singular space.
Note that a special G corresponds to a tangent hyperplane section of Gð1; 5Þ, or

equivalently to a point of �PP14 lying in �GGð1; 5Þ, the dual variety of Gð1; 5Þ.
From this it follows that it is possible to interpret the degeneracy locus X of a

general morphism f : Ol4

P5 ! WP5ð2Þ as the set of centres of linear complexes be-
longing to a general linear system D of dimension 3 (web for short) of linear com-
plexes in P5. Since D is general, it does not contain any special complex of the sec-
ond type. Moreover such a D is spanned by four linearly independent complexes
G1; . . . ;G4 and it corresponds to a linear subspace P3 in �PP14: it intersects �GGð1; 5Þ
(which is a hypersurface of degree three) along a cubic surface which is disjoint from
Gð3; 5Þ. Its points represent the special complexes of D and so the surface can be
identified with S (see [2]).
Hence given a general web of linear complexes in P5 its set of centres is the de-

generacy locus X of a general morphism f : Ol4

P5 ! WP5ð2Þ which is a Palatini scroll
of degree 7.
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We see next that the Hilbert scheme of the Palatini scroll has a distinguished re-
duced irreducible component of dimension equal to 44.

Proposition 3.1. Let X HP5 be the Palatini scroll of degree 7. Then the Hilbert scheme

of X has an irreducible component,H, which is smooth at the point representing X and

of dimension 44.

Proof. We have seen that X GPSðEÞ where E is a rank two vector bundle on a
smooth cubic surface S with c1ðEÞ ¼ OSð2Þ, c2ðEÞ ¼ 5. Note that E is stable with
respect to OSð1Þ and therefore simple: in fact f
H ¼ E, where f is the adjunction
mapping of X , hence H 0ðS;Eð	1ÞÞ ¼ H 0ðX ;	ðK þHÞÞ ¼ 0.
Let N denote the normal bundle of X in P5. We will show that H 1ðX ;NÞ ¼ 0.

Let

0! OX ! OX ð1Þl6 ! TP5 jX ! 0 ð4Þ

be the Euler sequence on P5 restricted to X . From the cohomology sequence asso-
ciated to (4) we have hiðX ;TP5 jX Þ ¼ 0 for id 1. Using the following exact sequence

0! TX ! TP5 jX ! N ! 0 ð5Þ

and the fact that hiðX ;TP5 jX Þ ¼ 0 for id 1 we get that

hiðX ;NÞ ¼ hiþ1ðX ;TX Þ for id 1: ð6Þ

Hence in order to compute h1ðX ;NÞ will be enough to compute h2ðX ;TX Þ.
Let f : PðEÞ ! S be the scroll map, where E is a rank two vector bundle on S as

above. We have the following sequences:

0! WX jS ! ð f 
EÞð	1Þ ! OX ! 0 ð7Þ

0! TX jS ! TX ! f 
TS ! 0 ð8Þ

Dualizing (7) we get

0! OX ! ð f 
E 
Þð1Þ ! TX jS ! 0 ð9Þ

By the projection formula and the fact that R1f
OX ð1Þ ¼ 0 it follows that the first
direct image R1f
ðð f 
E 
Þð1ÞÞ ¼ E 
 nR1f
OX ð1Þ ¼ 0. Hence by the Leray spectral
sequence it follows that

HiðX ; ð f 
E 
Þð1ÞÞGHiðS; f
ð f 
E 
Þð1ÞÞGHiðS;E 
 nEÞ

for id 0. In particular we have that h3ðX ; ð f 
E 
Þð1ÞÞ ¼ 0 since h3ðS;E 
 nEÞ ¼ 0.
On the other hand hiðX ;OX Þ ¼ 0 for i > 0. Hence the cohomology sequence
associated to (9) gives that h3ðX ;TX jSÞ ¼ 0. We also know that HiðX ; f 
TSÞG
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HiðS;TSÞ, id 0 and that h3ðS;TSÞ ¼ 0. Thus h3ðX ; f 
TSÞ ¼ 0 and by (8) it follows
that h3ðX ;TX Þ ¼ 0. This latter fact along with (6) gives h2ðX ;NÞ ¼ 0.
We now compute HiðS;TSÞ. Since S is a smooth cubic surface in P3, the Euler

sequence on P3 restricted to S along with

0! TS ! TP3 jS ! OSð3Þ ! 0

and the fact that hiðS;OSð3ÞÞ ¼ 0 for i > 0 give that h2ðS;TSÞ ¼ 0 and thus
h2ðX ; f 
TSÞ ¼ 0. It remains to prove that h2ðX ;TX jSÞ ¼ 0. From the cohomology
sequence associated to (9) it follows that h2ðX ;TX jSÞ ¼ h2ðS; E 
 nEÞ. Note that

h2ðS; E 
 nEÞ ¼ h2ðS;EndðEÞÞ ¼ h2ðS;OSÞ þ h2ðS;End0ðEÞÞ

The last equality follows from the fact that EndðEÞGOS lEnd0ðEÞ, where End0ðEÞ
is the bundle of the traceless endomorphisms of E, see [4, pg. 121]. Since S is a smooth
cubic surface in P3 it follows that h2ðS;OSÞ ¼ 0. Moreover h2ðS;End0ðEÞÞ ¼ 0, see
[3, proof of Lemma 7.7]. Hence the cohomology sequence associated to (8) gives that
h2ðX ;TX Þ ¼ 0 and thus, by (6), h1ðX ;NÞ ¼ 0. In order to compute the dimension
of H, by ((2.3), (iv)) we need to compute h0ðX ;NÞ. But h0ðNÞ ¼ wðNÞ and by the
Hirzebruch–Riemann–Roch theorem we know that

wðNÞ ¼ 1

6
ðn31 	 3n1n2 þ 3n3Þ þ

1

4
c1ðn21 	 2n2Þ þ

1

12
ðc21 þ c2Þn1 þ rwðOX Þ ð10Þ

where ni ¼ ciðNÞ, ci ¼ ciðXÞ and r ¼ rkðNÞ ¼ 2.
Note that n3 ¼ 0 since rkðNÞ ¼ 2. We compute the remaining Chern classes of N

from the exact sequence (5) and we get:

n1 ¼ K þ 6H; n2 ¼ 15H 2 þ 6HK þ K 2 	 c2

The numerical invariants of the Palatini scroll and its Hilbert polynomial have been
computed in [16] and they are:

KH 2 ¼ 	8; K 2H ¼ 7; K 3 ¼ 	2; 	Kc2 ¼ 24

wðOX ðtÞÞ ¼
7

6
t3 þ 2t2 þ 11

6
tþ 1

From these we get that c2H ¼ 15. Plugging these in (10) we get that wðNÞ ¼ 44 and
thus h0ðNÞ ¼ wðNÞ ¼ 44. r

Let D be a web of linear complexes in P5. D is spanned by 4 independent linear
complexes in P5 and hence it corresponds to a linear P3 in Pð52V 
ÞG �PP14. Thus the

webs of linear complexes in P5 are parametrized by Gð3; �PP14Þ, the Grassmannian of
P3’s in �PP14. Therefore we can define a natural rational map
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r : Gð3; �PP14ÞdHilbðXÞ:

The map r sends a general web D to its singular set X . By Propositions (2.3) and
(3.1), the Hilbert scheme of X , HilbðXÞ, has an irreducible component H which is
smooth at the point representing X and of dimension 44. It is well known that the
image of r is dense in H. We let r denote also the map r : Gð3; �PP14ÞdH. Since
domain and codomain of r have the same dimension 44 and r is dominant, a general
fibre of r is finite. So it is natural to ask for the degree of such a fibre.
An answer to this question is one of the main results of this paper.

Theorem 3.2. Let X HP5 be a smooth Palatini scroll of degree 7. Let H be the irre-

ducible component of the Hilbert scheme containing X. Then the rational map

r : Gð3; �PP14ÞdH

is birational.

The proof of Theorem (3.2) will follow at once after we have proved the following
claims and proposition.
Let us point out that to prove this theorem we have tried to adapt Castelnuovo’s

result [6, §7 and §8] to our case. Unfortunately his whole argument does not extend
and the di‰culty lies in the fact that the locus of the 4-secants of X in Gð1; 5Þ con-
tains besides C4 also other lines. By C4 we denote the base locus of a general web D of
linear complexes in P5 of which X is the singular set. In fact we prove, see Proposi-
tion (3.6), that there is only one more component, the one given by the lines of the
ruling of X .
Let D be a general web of linear complexes. Let G1;G2;G3;G4 be four linear com-

plexes of P5 generating D. Let C4HGð1; 5Þ denote the base of the web D, that is, C4

is the family of lines in P5 which are common to G1;G2;G3;G4: it is irreducible and 4-
dimensional, being the intersection of the Grassmannian with a general linear space
of codimension 4. Let X be the set of centres of complexes belonging to D. The fol-
lowing claim is the analog of Castelnuovo’s result about trisecants of the Veronese
surface in P4.

Claim 3.3. The lines of C4 are 4-secants of X .

Proof. The equations of the degeneracy locus X are the fifteen 4� 4 minors Fij of the
4� 6 matrix F , with F as in (1). If F12 denotes the 4� 4 minor obtained by deleting
the 1st and 2nd column of F then

fF12 ¼ 0g

is the variety of degree 4 which is made out of the lines of C4 which intersect the 3-
plane x0 ¼ x1 ¼ 0.
Let l be a line in C4 which does not intersect the 3-plane x0 ¼ x1 ¼ 0. Let

l V fF12 ¼ 0g ¼ fP1;P2;P3;P4g: then each Pi is also on a line r of C4 which intersects
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the 3-plane x0 ¼ x1 ¼ 0. Hence there is a pencil of lines of C4 through Pi: the pencil
spanned by l and r, and so Pi A X . This is true for every Pi, i ¼ 1; . . . ; 4, hence l is a
4-secant of X . r

Claim 3.4. C4 is a congruence of lines of order one, i.e. for a generic point x A P5,
there is only one line of C4 passing through x.

Proof. In fact, as a cycle, C4 coincides with s41 , where s1 is the Schubert cycle of
lines of P5 intersecting a fixed P3. Using Pieri’s formula, it is easy to show that
s41 ¼ a0s4 þ a1s31 þ a2s22 ¼ s4 þ 3s31 þ 2s22 (see [8]). Since the coe‰cient of s4 is
equal to the number of lines of s41 passing through a general point, we have the
claim. r

Claim 3.5. C4 is an irreducible component of S4ðXÞ, the locus of all 4-secant lines of
X in the Grassmannian Gð1; 5Þ.

Proof. Let SkðX Þ denote the locus of all k-secant lines of X in the Grassmannian
Gð1; 5Þ. Note that every irreducible component of S4ðX Þ has dimension c5. If
otherwise then, since S4ðXÞJS2ðXÞ and since S2ðX Þ is irreducible of dimension
6, it would follow that every secant line is also a 4-secant, which is impossible.
So either C4 is a whole irreducible component of S4ðX Þ, or it is contained in an

irreducible component S 0 of dimension 5. But, in the second case, it follows from
[15], Theorem 2.3, that the lines of S 0 cannot fill up P5, against the fact that C4 has
order one. r

Proposition 3.6. S4ðXÞ ¼ C4 USyðXÞ, where SyðX Þ is the variety of lines contained

in X .

Proof. The number q4ðXÞ of the 4-secant lines of X passing through a general point
of P5 is finite by [15]. Hence q4ðXÞ can be computed using the formula given by Kwak
in [13] and it turns out that q4ðXÞ ¼ 1. So C4 is the unique irreducible component of
S4ðXÞ whose lines fill up P5. We have to exclude the existence of another irreducible
component S 0, of dimension 4 or 5, such that the union of the lines of S 0 is strictly
contained in P5.
If such a component S 0 exists, it follows from [15] that X contains either a one-

dimensional family of surfaces of P3 of degree at least 4, or a 2-dimensional family of
plane curves of degree at least 4. In the first case, every hyperplane H containing such
a surface S of P3 cuts X along a reducible surface: H VX ¼ S US 0, where S 0 is a
surface of degree 7	 k c 3. So on X there should be also a 2-dimensional family of
surfaces of degree c3. But then a general hyperplane section of X should contain a
2-dimensional family of curves of degree c3. This surface is a rational non-special
surface of P4, which has been extensively studied (see for instance [1]): it can be easily
excluded that it contains such a family of curves.
In the second case, every 3-space containing a plane curve on X , of degree k d 4,

should cut X residually in a curve of degree c3. So we would get on X also a 3-
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dimensional family of curves of degree c3. Now, X contains in fact both a three-
dimensional family of conics and of cubics, but a computation in the Picard group of
a general hyperplane section of X shows that their residual curves cannot be plane.
So both possibilities are excluded and the proof of the proposition is accom-

plished. r

Proof of Theorem 3.2. Let X ¼ rðDÞ be a general threefold in the image of r. Then C4

is the unique irreducible component of S4ðXÞ whose lines fill up P5. This implies that
X comes via r from a unique web D. Therefore, by the theorem on the dimension of
the fibres, there is an open subset in H such that the fibres of r over this open subset
are finite and of degree one. This proves the theorem. r

4 Regularity of the map r

We will see that there are webs D over which the map r is not regular. Our next task
is to determine such webs.
It is well-known that if the degeneracy locus of a bundle map from a vector bundle

F to a vector bundle G has the expected dimension then it lies in the same Hilbert
scheme as the degeneracy locus of a general map from F to G. So r is not regular
over the webs D such that the corresponding degeneracy locus has dimension strictly
bigger than 3.
We recall the following facts about dual Grassmannians that will be used in the

sequel (see for instance [11]):

Facts 4.1. – Gð3; 5Þ can be naturally embedded in �GG, where �GG stands for the dual
Grassmannian �GGð1; 5Þ. We can interpret Gð3; 5Þ as the set of singular complexes of
the second type, because a complex of second type is determined uniquely by its
singular space P3: it is formed by the lines intersecting that P3.

– �GG ¼ SecðGð3; 5ÞÞ, the variety of secant lines, and Gð3; 5Þ ¼ Singð �GGÞ, hence
�GG ¼ SecðSingð �GGÞÞ.

– The linear spaces contained in Gð3; 5Þ have dimension c4. In particular, a linear
P3 in Gð3; 5Þ represents the set of the 3-spaces of a fixed P4 passing through a fixed
point.

We will use Plücker coordinates pij on P14 and the dual coordinates mij on its dual
space.
Let D be a web of linear complexes in P5. Let G1; . . . ;G4 be four linearly inde-

pendent complexes which span D. Hence D corresponds to a P3H �PP14. The special
complexes of D are parametrized by DV �GGð1; 5Þ. In fact the space �PP14 parametrizes
all linear complexes: special complexes correspond to tangent hyperplane sections of
Gð1; 5Þ, that is to points of �GGð1; 5Þ which is a cubic hypersurface in �PP14. Moreover
special complexes of second type can be interpreted as points in Gð3; 5Þ (which is also
embedded in �PP14), because a special complex of second type is uniquely determined
by its singular space P3: it is formed by the lines intersecting that P3.
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Hence the following situations can occur:

a) DH �GGð1; 5Þ, that is, all the complexes of D are special, or

b) DQ �GGð1; 5Þ and DV �GGð1; 5Þ is a cubic surface S, possibly singular.

Let us consider case a): DH �GGð1; 5Þ, that is, the case in which all the complexes of
D are special. Let A;B;C;D be four 6� 6 skew-symmetric matrices associated to the
complexes G1; . . . ;G4, respectively. Hence these matrices span D. Note that in this
case for all ðx; y; z; tÞ A P3 we have that pfðxAþ yBþ zC þ tDÞ1 0. Hence the
equation pfðxAþ yBþ zC þ tDÞ ¼ 0 does not define any surface in P3.
Before stating our result concerning case a) we recall few facts, already introduced

in [2], which will be needed. Let

c : �GGð1; 5ÞdGð1; 5Þ

be the rational surjective map which sends a special complex of first type to its sin-
gular line, see [2]. So c is regular on �GGð1; 5ÞnGð3; 5Þ. The fibre c	1ðlÞ is formed by
the special complexes having l as singular line. The closures of these fibres are 5-
dimensional linear spaces which are denoted by P5

l . In fact we may think of c
	1ðlÞ

as the linear system of hyperplanes in P14 containing the tangent space to Gð1; 5Þ at
the point l: Tl;Gð1;5Þ GP8, see [2, Section 3] for the details.

Remark 4.2. Let l;m A Gð1; 5Þ be lines of P5. Then the intersection of P5
l with

Gð3; 5Þ is a smooth quadric of dimension 4. Also P5
l VP5

m is contained in Gð3; 5Þ and
is just one point if l, m do not intersect, or a plane if they intersect, see [2, Remark 1].

Theorem 4.3. Let D be a web of linear complexes in P5 as in case a). Then the rational

map

r : Gð3; �PP14ÞdH

is not regular at the point corresponding to D.

Proof. Since the web D is as in case a), the following situations can occur:

a1) DHGð3; 5Þ, or

a2) DQGð3; 5Þ and DH �GG.

Let D be as in case a1), i.e. DHGð3; 5Þ. Then by (4.1) we see that D represents the
set of the 3-dimensional linear spaces of a fixed P4 passing through a fixed point. Let
us fix the flag: E0HH5, where E0 ¼ ð1; 0; 0; 0; 0; 0Þ A P5 and H5 is the hyperplane in
P5 whose equation is x5 ¼ 0.
Hence D represents the 3-dimensional linear spaces of P5 whose equations

are: x5 ¼ 0, xx1 þ yx2 þ zx3 þ tx4 ¼ 0, with ðx; y; z; tÞ A P3. The lines intersect-
ing such a P3 satisfy the following equations in the Plücker coordinates
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pij: xp15 þ yp25 þ zp35 þ tp45 ¼ 0. Thus D has equations: m01 ¼ m02 ¼ m03 ¼ m04 ¼
m05 ¼ m12 ¼ m13 ¼ m14 ¼ m23 ¼ m24 ¼ m34 ¼ 0 in �PP14.
The corresponding matrix is

0
BBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 x

0 0 0 0 0 y

0 0 0 0 0 z

0 0 0 0 0 t

0 	x 	y 	z 	t 0

1
CCCCCCCCA

Hence a generic element of D can be written in the form xAþ yBþ zC þ tD, where
ðx; y; z; tÞ A P3 and A;B;C;D are 6� 6 skew-symmetric matrices. Note that

A ¼

0
BBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 	1 0 0 0 0

1
CCCCCCCCA

and similarly we can write down B;C;D. So X is the variety whose equations are the
4� 4 minors Fij of the 4� 6 matrix

F ¼

0
BBBB@

P
a0ixi . . .

P
a5ixiP

b0ixi . . .
P

b5ixiP
c0ixi . . .

P
c5ixiP

d0ixi . . .
P

d5ixi

1
CCCCA ¼

0 x5 0 0 0 	x1

0 0 x5 0 0 	x2

0 0 0 x5 0 	x3

0 0 0 0 x5 	x4

0
BBB@

1
CCCA ð11Þ

It is straightforward to see that X ¼ 3H5, where H5 : x5 ¼ 0. Hence the map r is
not regular in this case.
Let D be as in case a2), i.e. DQGð3; 5Þ and DH �GG. According to the position of

D with respect to the fibre of c : �GGð1; 5ÞdGð1; 5Þ, we have the following situations:

a2.1) there exists a unique line l such that DHP5
l ,

a2.2) DQP5
l , for every l, but there exists a line m such that DVP5

m ¼ p, with p a
plane,

a2.3) the general fibre of cjD is a line,

a2.4) the general fibre of cjD is a point.
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In the case a2.1) since DHP5
l , then DVGð3; 5Þ ¼ DV ðP5

l VGð3; 5ÞÞ. Note that
P5

l VGð3; 5Þ is a smooth 4-dimensional quadric, D is a P3 and thus DVGð3; 5Þ is a
2-dimensional quadric of P3: its points correspond to complexes having a P3 con-
taining l as a singular set, these P3 are contained in the degeneracy locus X and thus
dimX > 3.
In the case a2.2) since there exists a line m such that DVP5

m ¼ p, with p a plane,
then DVGð3; 5ÞI ðDVP5

mÞV ðGð3; 5ÞVP5
mÞ. This latter intersection is either p or a

conic, since Gð3; 5ÞVP5
m is a smooth 4-dimensional quadric and DVP5

m ¼ p.
As in the previous case, the points in such an intersection correspond to complexes

having a P3 as a singular set which is contained in the degeneracy locus X and thus
dimX > 3.
In the case a2.3) the general fibre of cjD : DdcjDðDÞHGð1; 5Þ is a line. Thus

T ¼ cjDðDÞ is a surface in Gð1; 5Þ. The intersection ðDVP5
l ÞV ðGð3; 5ÞVP5

l Þ0q,
for every l A T . Hence for every l A T , we find a P3 contained in X and thus
dimX > 3.
In the case a2.4) the general fibre of cjD : DdcjDðDÞHGð1; 5Þ is a point. This

means that T ¼ cjDðDÞ is a 3-fold in Gð1; 5Þ and that a general complex in D has a
line as singular set. Thus there is a 3-dimensional family of such lines and the variety
X is their union.
It could a priori happen that dimX ¼ 3, but then infinitely many lines of the family

pass through a general point of X . Hence the matrix F (see (1)) should have rank <3
at every point of X . This means that the four hyperplanes, whose coordinates are the
rows of F , belong to a pencil, whose support is a 3-space LP: it is the union of the
lines of C4 (the base of the web D) passing through P. Assume that the first two
rows of F are linearly independent, then the Plücker coordinates of LP are the order
two minors of the first two rows of F . If F0123 is the minor of the last two columns,
then its vanishing at P represents the condition that LP meets the line x0 ¼ x1 ¼
x2 ¼ x3 ¼ 0 (as in Claim 3.4). If LP is disjoint from this line, let QP be the
quadric surface LP V fF0123 ¼ 0g: we claim that QP HX . Indeed, if z A QP, then
both the line of C4 through P and the 3-plane Lz contain z. Let P 0 be the point
Lz V fx0 ¼ x1 ¼ x2 ¼ x3 ¼ 0g: the line zP 0 is in C4 but not in LP, so z A X , and the
claim is proved.
Let now P, P 0 be two distinct points in X : if LP ¼ L 0

P, then LP HX : in fact if r is
a line of LP through P, then r A C4, so if R A r, then R A L 0

P so the line RP 0 A C4 and
R A X . Therefore we can deduce that, if dimX ¼ 3, to each point P A X we can as-
sociate a P3 LP and di¤erent points give di¤erent 3-spaces. So also the quadrics QP

are two by two distinct and X contains a family of dimension 3 of quadric surfaces: a
contradiction. Hence we conclude that dimX > 3. r

Before considering case b) we make the following remark about equations of cubic
surfaces in P3 which will be used later on in the paper.

Remark 4.4. Let S be a cubic surface in P3. If S is smooth then it can be defined by
an equation pfM ¼ 0, where M is a 6� 6 skew-symmetric matrix of linear forms
([3], Proposition 7.6).
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Let S be a singular element of jOP3ð3Þj. If S has a finite number of lines then by [5]
it follows that its equation can be expressed as the determinant of a 3� 3 matrix N of
linear forms, except if S is the surface whose class of projective equivalence is called
T1. Note that if S is defined by detN ¼ 0, then S is also defined by pfM ¼ 0, where

M ¼ 0 N

	 tN 0

� �
, since pfM ¼ detN. Up to automorphisms the equation of the

surface in the class T1 is the following: x0x
2
1 þ x1x

2
3 þ x32 ¼ 0. It is easy to check that

it is the pfa‰an of the following matrix

0
BBBBBBBB@

0 	x0 0 0 x2 x1

x0 0 	x0 x3 0 x2

0 x0 0 x2 x3 0

0 	x3 	x2 0 x1 0

	x2 0 	x3 	x1 0 0

	x1 	x2 0 0 0 0

1
CCCCCCCCA

If S has an infinite number of lines then by a well known result (see for instance [7])
S is either a reducible cubic surface, or an irreducible cone, or an irreducible cubic
surface with a double line (i.e. a general ruled cubic surface). But in all of these cases
S can be defined by an equation detN ¼ 0, where N is a 3� 3 matrix of linear forms,
and hence also by pfM ¼ 0, with M as above.
Hence we can conclude that every cubic surface can be expressed as a pfa‰an.

Let us consider now case b). Let S be the cubic surface DV �GGð1; 5Þ. One of the
following may happen:

b1) DVGð3; 5Þ ¼ q, or

b2) DVGð3; 5Þ0q, but SQGð3; 5Þ ¼ Singð �GGÞ, or

b3) DVGð3; 5Þ0q and SHGð3; 5Þ, that is, SH Singð �GGÞ.

Let D be as in b1). Then either S is smooth, or it is singular and its singularities
correspond to tangency points of D to �GGð1; 5Þ. The case of S smooth was considered
in Theorem (3.2). We give next an explicit example of a surface S ¼ DV �GGð1; 5Þ with
DVGð3; 5Þ ¼ q and S singular.

Example 4.5. Let S be the cubic surface whose equation is x2y	 x2z	 xy2 þ xz2 þ
y3 	 y2tþ yzt ¼ 0. The class of projective equivalence of this surface is called T4
in [5]. Its equation can be written as detN ¼ 0, where N is the following matrix:

t x y

yþ z 	y 2xþ t

y 0 xþ y	 z

0
@

1
A or as pfM ¼ 0, where M is obtained from N as in (4.4).

S has only one singularity at the point ð0; 0; 0; 1Þ, which corresponds to the only
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matrix of rank less than 6 obtained from M, for a particular choice of x; y; z; t. It
is easy to see that its rank is 4.

Note that if D is as in b1), for all ðx; y; z; tÞ A S, the matrix xAþ yBþ zC þ tD

has rank four, so it determines always a line of solutions of the equation
ðxAþ yBþ zC þ tDÞ tðx0 . . . x5Þ ¼ 0 on the degeneracy locus X . Thus dimX ¼ 3.

Remark 4.6. It is possible that, for certain surfaces S, the matrices A;B;C;D ap-
pearing in a pfa‰an pfðxAþ yBþ zC þ tDÞ giving the equation of S, are linearly
dependent, so they do not generate a 3-space D in �PP14, but only a plane.
For example, let S be the union of 3 planes, then S is defined by detðMÞ ¼ 0,

where M is a 3� 3 diagonal matrix whose non-zero entries are the linear
forms defining the three planes: F ¼ axþ byþ czþ td, G ¼ a 0xþ b 0yþ c 0zþ t 0d,
H ¼ a 00xþ b 00yþ c 00zþ t 00d.
Note that S is also defined by pfðxAþ yBþ zC þ tDÞ ¼ 0, where

A ¼

0
BBBBBBBB@

0 0 0 a 0 0

0 0 0 0 a 0 0

0 0 0 0 0 a 00

	a 0 0 0 0 0

0 	a 0 0 0 0 0

0 0 	a 00 0 0 0

1
CCCCCCCCA

The remaining matrices B;C;D are of the same type where the entries a; a 0; a 00 are
replaced by b; b 0; b 00, c; c 0; c 00, d; d 0; d 00, respectively. Thus the matrices A;B;C;D are
linearly dependent.
Another example is that of cones: if S is a cone of vertex ð0; 0; 0; 1Þ over a

smooth plane elliptic curve, then its equation can be put in Weierstrass normal form
y2z ¼ xðx	 zÞðx	 czÞ: this can be interpreted as the determinant of a 3� 3 matrix
whose entries are linear forms in the variables x; y; z only.
Nevertheless, for both examples, it is possible to find also another pfa‰an expres-

sion of the equation of S, with a matrix which is a linear combination of four inde-
pendent matrices. In the first case, for example, the equation of S is the pfa‰an of the
matrix M:

0
BBBBBBBB@

0 0 0 F 0 0

0 0 0 0 G x

0 0 0 0 0 H

	F 0 0 0 0 0

0 	G 0 0 0 0

0 	x 	H 0 0 0

1
CCCCCCCCA

In the second case, the equation of S is the pfa‰an of
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0
BBBBBBBB@

0 x t y 0 0

	x 0 0 0 y y

	t 0 0 x 	z 0

	y 0 	x 0 	l 	l

0 	y z l 0 x

0 	y 0 l 	x 0

1
CCCCCCCCA

where l ¼ ðcþ 1Þx	 cz.

We prove next that the case b3) does not occur.

Proposition 4.7. The case b3) does not occur.

Proof. Let S be as in b3). Let P;Q A S and let L denote the line through P and
Q. Then LHD. Moreover LH �GG since �GG ¼ SecðGð3; 5ÞÞ. Thus LHS and hence
SecðSÞ ¼ S. This latter fact implies that (the support of ) S is linear, hence it is a tri-
ple plane. So D should be tangent to Gð3; 5Þ along a plane. But this is impossible,
because every tangent space to Gð3; 5Þ is tangent at one point only, and the tangent
spaces intersect two by two along a plane. r

Let us consider now the case b2), that is: DVGð3; 5Þ0q and S VGð3; 5Þ ¼
S V Singð �GGÞ0q, where S is the cubic surface S ¼ DV �GG, which in this case is
singular.
For all points ðx; y; z; tÞ in DVGð3; 5Þ, the equation

ðxAþ yBþ zC þ tDÞ tðx0 . . . x5Þ ¼ 0

is satisfied by the points of a P3, which enters in the degeneracy locus X . If the in-
tersection DVGð3; 5Þ is a finite set of points, say d points, then X has dimension 3
and contains d 3-spaces as irreducible components. This number d is at most 4 (see
[5]). If the intersection is infinite, then it contains at least a curve C, and over every
point of C there is a 3-space contained in X , therefore dimX d 4.
The latter situation can appear only if S is irreducible with a double line, or re-

ducible in the union of a plane with a quadric (possibly reducible). We will give ex-
amples of both these situations.

Example 4.8. (i) Let S be a cubic surface having the line r of equation x ¼ y ¼ 0 as
double line, and containing also the lines y ¼ z ¼ 0 and x ¼ t ¼ 0. Then its equation
takes the form F ðx; y; z; tÞ ¼ 0, where

Fðx; y; z; tÞ ¼ ax2yþ bx2zþ cxy2 þ dxyzþ exytþ fy2t

Note that F ¼ detN, where N ¼
exþ fy bxþ dy axþ cy

0 	y z

	x 0 t

0
@

1
A, or F ¼ pfM

where M is the corresponding skew-symmetric matrix xAþ yBþ zC þ tD (as in
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(4.4)). It is easy to check that the rank of M is less than 4 precisely at the points of
r. Therefore, if D is the 3-space generated by A;B;C;D, then r is the intersection
DVGð3; 5Þ.
(ii) Let now S be the union of the quadric Q : xz	 yt ¼ 0 with the plane

p : Lðx; y; z; tÞ ¼ 0. Then the determinant

x y 0

t z 0

0 0 L


 clearly vanishes on S. Hence

the rank of the corresponding skew-symmetric matrix M is 2 along the conic QV p.
If we replace Q with a quadric cone Q 0, with similar computations we get rank 2 on
the conic Q 0 V p and moreover in the vertex of Q 0.

We conclude this section collecting the results so far obtained about case b) in the
following theorem:

Theorem 4.9. Let D be a web of linear line complexes in P5 as in case b). Then the

rational map

r : Gð3; �PP14ÞdH

is not regular at the point corresponding to D if and only if the intersection of D with

Gð3; 5Þ contains a line or a conic.

5 The pfa‰an map

LetS3 be the variety of the 6� 6 skew-symmetric matrices of linear forms on P3. Let
pf : S3d jOP3ð3Þj be the rational map which sends M A S3 to the cubic surface S

defined by pfM ¼ 0. It is regular on the open set of matrices whose pfa‰an is not
identically zero. Note that the equation pfM ¼ 0 is equivalent to pfð tPMPÞ ¼ 0,
with P A GLð6Þ. In fact pfð tPMPÞ ¼ ðdetPÞðpfMÞ and thus S can also be defined by
pfð tPMPÞ ¼ 0.
Let GLð6Þ act on S3 by congruence, that is the action is given by

tPMP where
M A S3 and P A GLð6Þ. As noted in [3] the group GLð6Þ acts freely and properly on
S3 and the map pf factors through S3=GLð6Þ. Hence we have the following com-
mutative diagram:

S3

p
pf

S3=GLð6Þ
pf

jOP3ð3Þj

---------------r

------
r

-------r

It is easy to see that dimS3=GLð6Þ ¼ 60	 36 ¼ 24. By Remark (4.4) it follows
that the pfa‰an map, and by consequence also pf is surjective.
If S is a generic cubic surface defined by an equation pfM ¼ 0, Beauville in [3] has

also proved that expressing S as a linear pfa‰an is equivalent to producing a rank 2
vector bundle EM on S which is defined by
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EM :¼ cokerðOP3ð	1Þ6 !M O6
P3Þ:

Let Ss
3 be the scheme of matrices M A S3 such that pfM is smooth: it follows that

the map M is injective and EM is a stable bundle. Then Ss
3 is an open non-empty set

of S3. Going through the proof of Lemma 7.7 in [3], one gets that for the generic S

the fibre pf	1ðSÞ can be identified with an open subset of the moduli space of simple
rank 2 vector bundles E on S with c1ðEÞ ¼ OSð2Þ, c2ðEÞ ¼ 5. These are precisely the
bundles on S such that PðEÞ is a Palatini scroll over S ([16]).
Moreover the quotientSs

3 =GLð6Þ can be canonically identified with the set of pairs
ðS;EÞ, where S is a smooth cubic surface and E is a rank two bundle on S, of the
previous type.
There is a natural rational map F : Hd jOP3ð3Þj, where H is the component of

the Hilbert scheme studied in Section 3. The map F sends a scroll X to the base S of
the scroll. If X is smooth then S is its image via the adjunction map. Moreover we
have the following commutative diagram of rational maps:

H

C F

S3
pf

jOP3ð3Þj---
---
---
---
---
r ------

r

-------r

where C is the map which sends the matrix M ¼ Axþ Byþ CzþDt to the degen-
eracy locus X as in Section 3.
Let X be a Palatini scroll and let D be the web associated to it. The fibre of C over

X is 16-dimensional: its elements correspond to the di¤erent choices of a base of D.
Note that C does not induce any map from the quotient S3=GLð6Þ to H.
As a consequence of the interpretation of S3=GLð6Þ seen above, pf can be in-

terpreted as a forgetful map and we get a factorization of F through S3=GLð6Þ, as
F ¼ pf �F. The new map F : HdS3=GLð6Þ sends a Palatini scroll X ¼ PðEÞ to
the corresponding pair ðS;EÞ. Since dimH ¼ 44 and dimS3=GLð6Þ ¼ 24, the fibres
of F are 20-dimensional.
To explain this number, let us observe that the points of the fibre F	1ðS;EÞ are

nothing more than the di¤erent embeddings of the projective bundle PðEÞ on S in
P5, i.e. the automorphisms of P5 preserving X . We claim that if an automorphism of
P5 preserves X , then it belongs to the subgroup P of PGLð5Þ of automorphisms in-
ducing the identity on P3 ¼ PðH 0ðOSð1ÞÞÞ. Indeed, if G is an automorphism of P5

which preserves X , it preserves also P3, because

P3 ¼ PðH 0ðOX ðK þ 2HÞÞÞFPðH 4ðIX ð	2ÞÞÞ;

so it induces on P3 an action which preserves S. But every automorphism of S is
trivial, as S is general, so the restriction of G to P3 is the identity (see [12]). This
shows that the fibre of F is isomorphic to the subgroup P, whose dimension is 20.
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[9] G. Ellingsrud, Sur le schéma de Hilbert des variétés de codimension 2 dans Pe à cône de
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