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Hyperplanes of dual polar spaces of rank 3 with no
subquadrangular quad
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Abstract. Let D be a thick dual polar space of rank 3, and let H be a hyperplane of D. Calling
the elements of D points, lines and quads, we call a quad aNH singular if H V a ¼ P? V a for
some point P, subquadrangular if H V a is a subquadrangle, and ovoidal if H V a is an ovoid. A
point P A H of a quad a is said to be deep with respect to a if P? V aHH, and it is called deep
if P? HH.
We investigate hyperplanes H of D such that no quad is subquadrangular. We generalize

a result of Shult proving that, if all quads are singular, then the polar space P ¼ D� is an or-
thogonal polar space Q6ðKÞ for some (not necessarily finite) field K, and the hyperplane H is a
split Cayley hexagon HðKÞ.
If both singular and ovoidal quads exist, then one of the following holds:

1. H ¼ 6
P AO P

? where O is an ovoid of a quad o.
2. There exists one deep point P A H such that all quads containing P are singular and the
remaining quads are ovoidal.

3. The set P of deep points with respect to the singular quads is a locally singular hyperplane
of a dual polar space D0. D0 is the dual of an orthogonal polar space P0GQ6ðKÞ for some
field K and P0 is a subspace of the dual P of D where the lines of P0 are lines of P. The set
P together with the lines of D contained in H form a split Cayley hexagon HðKÞ. The hy-
perplane H contains all points of D on lines of HðKÞ.

1 Introduction and results

A subspace of a linear space is a subset of the point set of the linear space that con-
tains all points of a line l if l contains at least two points of the subspace. A geometric
hyperplane or shortly, a hyperplane, of a point-line geometry is a proper subspace H
such that each line meets H.
Let P be a thick polar space of rank 3 (not necessarily finite) and let D be its dual.

So, D has the diagram
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points lines quads

and as indicated, we call the elements of D points, lines and quads. Note that finite
thick polar spaces are classical by Tits [12]. Considering a classical thick polar space,
the residue ResPðPÞ in P of a point P A P is a classical generalized quadrangle. The
residue ResDðaÞ in D of a quad a of D is isomorphic to the generalized quadrangle
dual of ResPðPÞ.
If H is a hyperplane of D (the latter being regarded as point-line geometry) and a

a quad of D, then either a is contained in H or H meets the generalized quadrangle
a in a hyperplane. If aNH, the hyperplane aVH of a is the perp of a point or a full
subquadrangle or an ovoid (cf. Payne and Thas [7, 2.3.1]). Accordingly, we call the
quad a singular, subquadrangular, or ovoidal, respectively. If a is a singular quad, we
call the point P A a with aVH ¼ P? V a the deep point with respect to a, where ?
denotes collinearity in D and where P? is the set of points of D collinear with P, in-
cluding P. If a is a quad contained in H and P a point of a, then P? V aHH. Ac-
cordingly, we also say that every point of a quad aHH is a deep point with respect to
a. Furthermore, we call a point P deep if P? HH. So, if a point P is deep, it is deep
with respect to all quads containing P.
Pasini and Shpectorov [6] call a hyperplane H of a dual polar space locally ovoidal

(respectively locally singular and locally subquadrangular), if each quad a not con-
tained in H meets the hyperplane in an ovoid (respectively in the perp of a point or
in a subquadrangle). A hyperplane is called uniform if it is locally ovoidal or locally
singular, or locally subquadrangular. Their main result is the non-existence of finite
locally subquadrangular hyperplanes apart from two small examples, one in Q6ð2Þ
and one in H5ð4Þ.
The existence of locally ovoidal hyperplanes is an outstanding problem. Pasini and

Shpectorov [6] prove that, given a locally ovoidal hyperplane H of a dual polar space
D of rank 3, its complement DnH cannot be flag-transitive.
For locally singular hyperplanes, there are two possibilities. The points at non-

maximal distance from a given point P form a locally singular hyperplane called the
singular hyperplane with deep point P. If all quads are singular and there is no deep
point, then the hyperplane is a generalized hexagon by Shult [10]. More precisely,
there is a bijection from the set of quads of D onto the set of deep points of the (sin-
gular) quads. In the finite case, Shult [10] shows that the polar space P ¼ D� is an
orthogonal space Q6ðqÞ and that the generalized hexagon H is a split Cayley hexagon
HðKÞ for a finite field K ¼ GFðqÞ (for definition of HðKÞ, see Section 4.1). By means
of a theorem due to Ronan [8], we prove the following Theorem 1 in Section 4.2
without assuming finiteness; it has also been proved by H. Van Maldeghem in 1999
(unpublished).

Theorem 1. Let H be a hyperplane of a dual polar space D of rank 3 such that every
quad is singular and H does not admit any deep point. Then the polar space PGD�
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is an orthogonal polar space Q6ðKÞ and the hyperplane H is a split Cayley hexagon

HðKÞ.

Our aim is to determine the non-uniform hyperplanes H of D such that no quad
is subquadrangular, i.e. quads are either singular or ovoidal or contained in H. We
prove the following:

Theorem 2. Let H be a hyperplane of a thick dual polar space D of rank 3 such that no
subquadrangular, but both singular and ovoidal quads exist. Then one of the following
holds:

1. H ¼ 6
P AO P

? where O is an ovoid of a quad o.

2. There exists one deep point P A H such that all quads containing P are singular and

the remaining quads are ovoidal.

3. The set P of deep points with respect to the singular quads is a locally singular

hyperplane of a dual polar space D0. D0 is the dual of an orthogonal polar space

P0GQ6ðKÞ for some field K and P0 is a subspace of the dual P of D where the

lines of P0 are lines of P. The set P together with the lines of D contained in H form
a split Cayley hexagon HðKÞ. The hyperplane H contains all points of D on lines of
HðKÞ.

Remarks. 1. The class of hyperplanes of the form6
P AO P

? where O is an ovoid of a
quad has not yet been determined since ovoids of generalized quadrangles are not yet
classified.
2. If we do not require the existence of ovoidal quads, Case 3 includes the possi-

bility D0 ¼ D. Then we are back to Theorem 1.

Case 2 of Theorem 2 is non-empty. In Section 2, we describe examples for Cases 1
and 2 of Theorem 2.
No example as in Case 3 is known to the author in which P0 is not a hyperplane

of P. Thus it is an open problem whether the existence of a hyperplane as in Case 3
forces P0 to be a hyperplane of P. This is of great interest because of

Corollary 1. Assume the hypotheses of Theorem 2 and suppose that the hyperplane H
is as in Case 3 of Theorem 2. If P0 is a hyperplane of P, then H contains exactly the

points of D on lines of HðKÞ and we have PGQ�
7 ðKÞ.

In particular, if D is finite and the hyperplane H is as in Case 3 of Theorem 2, then P
is isomorphic to Q�

7 ðqÞ.

Remarks. 1. Clearly, the situation described in Corollary 1 occurs whenever P ¼
Q�
7 ðKÞ: just take P0 ¼ Q6ðKÞHP, HðKÞ inside P0 and define H as in Corollary 1.
2. In the finite case, if P ¼ Q6ðqÞ with q odd, neither ovoidal nor subquadrangular

quads exist, whence hyperplanes of its dual are locally singular.

If P ¼ Q�
7 ðqÞ or H6ðq2Þ, then D admits no subquadrangular quad. The example

of Case 2 of Theorem 2 exposed in Section 2 is infinite. No finite example is known
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to the author. If Case 2 of Theorem 2 could be shown to be impossible in the finite
case, then by means of Theorem 2 and the known results on locally uniform hyper-
planes, the hyperplanes of the duals of Q�

7 ðqÞ and H6ðq2Þ would be classified.
After a few preliminaries in Section 3, we introduce the split Cayley hexagon in

Section 4.1 and prove Theorem 1 in Section 4.2.
The main part of the proof of Theorem 2 characterizes the hyperplane H when H

has no deep point, which leads to Case 3 of Theorem 2. One step of this proof is a
result on the extension of hyperplanes of dual polar spaces stated below in Theorem 3
and proved in Section 5.1. The proof of Theorem 2 will be finished in Section 5.2.
In the following, P0 is a non-degenerate polar subspace of rank 3 of a non-

degenerate polar space P of rank 3, such that the lines of P0 are lines of P. We
denote their duals by D0 and D, respectively. Furthermore, s (respectively s0) is the
shadow operator of D (respectively D0), i.e. given a line l of D0, sðlÞ (respectively
s0ðlÞ) is the set of points of D (respectively D0) on l. If X is a point subset of D0, we
denote by sðX Þ the set of points of D that are on some line m with s0ðmÞJX . Then
the following holds.

Theorem 3. Let H0 be a locally singular hyperplane of the dual D0 of the polar space

P0 of rank 3. Then P0 is a hyperplane of P (and its lines are lines of P) if and only if
sðH0Þ is a hyperplane of the dual D of P. In that case and if sðH0Þ has no deep point,
then all quads of D not in D0 are ovoidal with respect to sðH0Þ.

Acknowledgment. The author wishes to thank the referee for some remarkable im-
provements.

2 Examples

The points collinear with those of a hyperplane of a quad. The following proposition
gives an easy method to construct hyperplanes of dual polar spaces of finite rank.

Proposition 2. If o is a quad of a dual polar space D of finite rank nd 3 and Ho is a

hyperplane of o, then the set H of points at distance at most n� 2 from some point of
Ho is a hyperplane of D.

We omit the straightforward proof. As mentioned in the introduction, the hyper-
plane Ho is one of the three kinds of hyperplanes of generalized quadrangles, namely
an ovoid, a subquadrangle or the perp of a point.
We focus again on a rank three dual polar space D. If a is a quad meeting o in a

line l, then P? V aJ aVH for all P A l VHo. So, if l meets Ho in a single point X, a
is singular with deep point X. If lHHo, then a is contained in H.
Finally, if a quad a misses o, then aVH is the image of Ho in the projection of o

onto a (for definition of the projection, see Section 3). In particular, if Ho is an ovoid,
then a is ovoidal.

An example of Case 2 of Theorem 2. We state a lemma first.
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Lemma 3. Given a dual polar space D of rank 3 and a hyperplane H of D, suppose that
H admits a deep point P. Then the following are equivalent:

(i) H is as in Case 2 of Theorem 2, namely P is the unique deep point of H and no two

points of HnP? are collinear;

(ii) Q? VH ¼ fQg for every point Q A H at distance 3 from P;

(iii) Q? VH ¼ fQg for some point Q A H at distance 3 from P.

Proof. Clearly, (i) implies (ii) and (ii) implies (iii). We shall prove that (iii) implies (i).
Assume (iii) and suppose that (i) is false, to get a contradiction. So, there exist distinct
collinear points X ;Y in HnP?. As X ;Y A H, the line l ¼ XY is contained in H. Let
P 0 be the point of l at minimal distance from P. If dðP;P 0Þ ¼ 1, then l and P belong
to a quad a. Otherwise, dðP;P 0Þ ¼ 2 and there exist a quad a containing both P and
P 0. In any case, we get a quad a containing P and a point Z A H at distance 2 from P

(take Z ¼ X or P 0 according to whether dðP;P 0Þ ¼ 1 or 2). As P? HH, aVHK
ðP? V aÞU fZgIP? V a. Therefore, aJH. Hence the point Q 0 A a collinear with Q
belongs to H, which forces QQ 0 JH, contrary to (iii). r

We are now ready to describe an example for Case 2 of Theorem 2. Given a field
K, the dual S5ðKÞ� of the symplectic polar space S5ðKÞ is embeddable into a pro-
jective space PGPGð13;KÞ by means of the mapping e : Gr3ðVÞ ! 53

V from the
Grassmannian of planes of PGðVÞ (where V ¼ Vð6;KÞ) into the 3-fold wedge prod-
uct 53

V (cf. Cooperstein [4, Proposition 5.1]; note that no hypotheses on the under-
lying field is needed in Proposition 5.1 of [4]).
Explicitly, suppose the polar space S5ðKÞ is represented by the symplectic form

f ðx; yÞ ¼ x0y3 � x3y0 þ x1y4 � x4y1 þ x2 y5 � x5y2

for x ¼
P5

i¼0 xiei and y ¼
P5

i¼0 yiei with e0; . . . ; e5 a basis of V. The vectors eijk :¼
ei5ej5ek for 0c i < j < kc 5 form a basis of 53

V . The coordinates of a vector

X

0ci< j<kc 5

xijkeijk

of 53
V representing a totally isotropic plane hx; y; zi of PGð5;KÞ satisfy the six

equations

0 ¼ x013 � x125 ¼ x014 þ x025 ¼ x023 þ x124
¼ x034 � x245 ¼ x035 þ x145 ¼ x134 þ x235: ð1Þ

where, for 1c i < j < kc 5, xijk is the determinant of the matrix obtained from the
3� 6 matrix formed by the three vectors x, y, z by picking the i-th, j-th and k-th

column. Equations (1) define a 13-dimensional subspace P < PGð53
VÞ. The image

of S5ðqÞ� via e spans P (Cooperstein [4, Proposition 5.1]; see also [5, Teorema 4.15]).

Hyperplanes of dual polar spaces of rank 3 with no subquadrangular quad 111



Also, if H is a hyperplane of PGð53
VÞ not containing P, then the point set

fX A S5ðKÞ� : eðXÞ A Hg is a hyperplane of S5ðqÞ�. So, in view of Lemma 3, we only
need to find a hyperplane H of PGð53

VÞ satisfying the following:

eðP?ÞHH; ð2:1Þ

eðQ?ÞVH ¼ feðQÞg for some point Q at distance 3 from P: ð2:2Þ

(Note that (2.2) implies HQP). We choose P ¼ he0; e1; e2i and Q ¼ he3; e4; e5i. So,
the points of P?nfPg correspond to the following (singular) planes of S5ðKÞ where
r; s; t A K :

he0 þ se1; e1 þ te2; ste3 � te4 þ e5 þ re0i ð3:1Þ

he0 þ se1; e2;�se3 þ e4 þ re0i ð3:2Þ

he1; e2; e0 þ re3i ð3:3Þ

Their coordinates in PGð13;KÞ are as follows:

for (3.1): x012 ¼ rst, x013 ¼ x125 ¼ st, x014 ¼�x025 ¼�t, x015 ¼ 1, x023 ¼�x124 ¼ st2,
x024 ¼ �t2, x123 ¼ s2t2 and xijk ¼ 0 if id 2

for (3.2): x012 ¼ rs, x023 ¼ �x124 ¼ �s, x024 ¼ 1, x123 ¼ �s2, and xijk ¼ 0 for all re-
maining choices of fi; j; kg

for (3.3): x012 ¼ 1; x123 ¼ r and xijk ¼ 0 for fi; j; kg0 f0; 1; 2g; f1; 2; 3g

So, considering that the above scalars r, s and t vary arbitrarily in K, if

X

1ci< j<kc5

aijkxijk ¼ 0

is the equation of H, condition (2.1) forces

a012 ¼ a015 ¼ a024 ¼ a123 ¼ 0

a025 � a014 ¼ a124 � a023 ¼ a125 þ a013 ¼ 0
ð4:1Þ

In its turn, the condition eðQÞ A H forces

a345 ¼ 0: ð4:2Þ

However, according to (2.2), we also want that eðQ?nfQgÞVH ¼ q. The points of
Q?nfQg correspond to the following (singular) planes of S5ðKÞ where r; s; t A K

he4 þ se5; e3 þ te4; ste0 � se1 þ e2 þ re3i ð5:1Þ

he5; e3 þ te4;�te0 þ e1 þ re3i ð5:2Þ

he5; e4; e0 þ re3i ð5:3Þ
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and their coordinates in PGð13;KÞ are as follows:
for (5.1): x034 ¼ x245 ¼ �st, x035 ¼ �x145 ¼ �s2t, x045 ¼ �s2t2, x134 ¼ �x235 ¼ s,

x135 ¼ s2, x234 ¼ �1, x345 ¼ �rst and xijk ¼ 0 if jc 2;

for (5.2): x035 ¼ �x145 ¼ t, x045 ¼ t2, x135 ¼ �1, x345 ¼ rst and xijk ¼ 0 for all re-
maining choices of fi; j; kg;

for (5.3): x045 ¼ �1, x345 ¼ r and xijk ¼ 0 for fi; j; kg0 f0; 4; 5g; f3; 4; 5g;
In view of (4.1) and (4.2), none of the above points belongs to H if and only if all
of the following hold for any s; t A K:

ða034 þ a245Þstþ ða035 � a145Þs2tþ a045s2t2

� ða134 � a235Þs� a135s2 þ a2340 0 ð6:1Þ

a045t
2 þ ða035 � a145Þt� a1350 0 ð6:2Þ

a345 ¼ 0 and a0450 0 ð6:3Þ

Needless to say, the existence of solutions for the inequalities (6.1)–(6.3) depends
on the field we consider. In order to describe some of them, we may assume some
additional conditions on the scalars aijk involved in (6.1)–(6.3). Note first that,
as a2340 0 by (6.1), we may always assume a234 ¼ 1. Suppose furthermore that
a145 � a035 ¼ a034 þ a245 ¼ a235 � a134 ¼ 0 (which is allowed by (6.1)–(6.3)) and put
a ¼ a045 (which is non-zero by (6.3)) and b ¼ a135=a (which is non-zero by (6.2)).
Then (6.1) and (6.2) read as follows:

s2ðt2 � bÞ0� 1
a

for any s; t A K ð7:1Þ

t20 b for any t A K ð7:2Þ

Condition (7.2) just says that b is a non-square. So, suppose that K is the field of real
numbers and choose b ¼ �1. Then (7.2) is satisfied and (7.1) says that �1=a is not the
product of two positive numbers, which is true whenever a > 0.

Note. The trick we have exploited above when K is the field of real numbers does
not work if K is a finite field. Indeed, when K ¼ GFðqÞ, for (7.2) to hold we only need
to choose a non-square for b (which can always be done, provided that q is odd).

However, even so, the equation s2ðt2 � bÞ ¼ � 1
a
always has a solution in GFðqÞ, con-

trary to (7.1).

Problem. Is there any example for Case 2 of Theorem 2 in the finite case?

3 Notations and preliminaries

For basic properties of dual polar spaces, we refer to Cameron [2]. If a is a quad of a
dual polar space D and P is a point not in a, there exists exactly one point in a nearest
to P. If the rank of D is 3, there exists exactly one point in a collinear with P.
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Definition 4. Let a be a quad of the dual polar space D of rank 3. We call the map
sending every point P A D to the point of a nearest to P the projection onto a and
denote it by pa.
It is well known that pa is a surjective morphism from D, regarded as a point-line

geometry, to a. It is easy to see that, if a 0 is a quad disjoint from a, pa induces an iso-
morphism from a 0 onto a.
Given a hyperplane H of a dual polar space D of rank 3, we introduce the follow-

ing notations. We call a line (quad) a �-line (respectively �-quad ) if it is contained in
H and a þ-line (respectively þ-quad ) if it is not contained in H.

4 On locally singular hyperplanes

4.1 The split Cayley hexagon. We introduce the split Cayley hexagon HðKÞ for a
field K following Van Maldeghem [13, 2.4] for notation. Most of the results are due
to Tits [11].
Let Pð0Þ denote the points of the quadric Qþ

7 ðKÞ for a field K, let L denote the set
of lines of Qþ

7 ðKÞ, and let Pð1Þ and Pð2Þ denote the two classes of 3-spaces of Qþ
7 ðKÞ.

The D4-geometry WðKÞ associated to Qþ
7 ðKÞ consists of the elements of L and the

elements of PðiÞ for i ¼ 0; 1; 2 where incidence is symmetrized inclusion from Qþ
7 ðKÞ

and two elements ofPð1Þ andPð2Þ are incident if the corresponding 3-spaces of Qþ
7 ðKÞ

intersect in a plane.
For the following, the most important property of WðKÞ is that the geometry

arising from WðKÞ by any permutation of fPð0Þ;Pð1Þ;Pð2Þg is isomorphic to WðKÞ.
Hence for each i A f0; 1; 2g, the set of elements of PðiÞ may be identified with the
points of Qþ

7 ðKÞ.
A triality of WðKÞ is an incidence preserving map y : L ! L, PðiÞ ! Pðiþ1Þ mod 3

for i ¼ 0; 1; 2 such that y3 ¼ 1. An element x of PðiÞ is called absolute if x and yðxÞ
are incident. A line is absolute if it is fixed by y.
Now, identifying the elements of PðiÞ with the points of Qþ

7 ðKÞ for each
i ¼ 0; 1; 2, there is an algebraic description of WðKÞ available by a trilinear form
T : V � V � V ! K where V is the 8-dimensional vector space over K in which
Qþ
7 ðKÞ is defined by a quadratic form. Two elements x A Pð0Þ and y A Pð1Þ are inci-

dent in WðKÞ if and only if Tðx; y; zÞ ¼ 0 for all z A V . The other incidences follow
similarly.
Given a vector space representation of Qþ

7 ðKÞ as above, denote by t the triality
sending ðx; y; zÞ onto ðz; x; yÞ induced on WðKÞ by the identity on V. The split Cayley
hexagon HðKÞ consists of the absolute points and lines of t. The absolute points of
t are the singular points of a non-degenerate hyperplane PGð6;KÞ of the embedding
projective space PGð7;KÞ of Qþ

7 ðKÞ. For the direct embedding of HðKÞ in the para-
bolic quadric Q6ðKÞ due to Tits [11], see Van Maldeghem [13, 2.4.13].

4.2 Proof of Theorem 1. Let L denote the set of lines contained in H. By Shult
[10, Theorem 1], H ¼ ðH;LÞ is a generalized hexagon, and there exists a bijection d
from H onto the set of quads of D that maps every point X A H onto the quad dðX Þ
of which X is the deep point.
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We follow Van Maldeghem [13, 1.9] for the notation: For a point P of H, the
perp-geometry in P has point set the points of P? VH. There are two di¤erent kinds
of lines in the perp-geometry in P, firstly the lines of H through P, and secondly the
point sets G2ðPÞVG4ðXÞ for every X A H at distance 3 from P, where G2nðXÞ denotes
the set of points ofH at distance n from X in the collinearity graph ofH. A point P
is called projective if the perp-geometry in P is a projective plane. A point P is called
distance-2-regular if two lines of the perp-geometry in P intersect in at most one point.
By Ronan [8], the generalized hexagon H is a split Cayley hexagon HðKÞ if all its

points are distance-2-regular and if there is at least one projective point in H (we use
Ronan’s result as it is stated in Van Maldeghem [13, Theorem 6.3.1]). We prove that
every point of H is projective. Then every point is distance-2-regular and the con-
ditions of [13, 6.3.1] are satisfied.
For a point P A H, let G2ðPÞVG4ðX Þ be a line of the perp-geometry in P where X

is a point of H at distance 3 from P. The line G2ðPÞVG4ðXÞ contains the points of H
collinear with P and with pdðPÞðX Þ in D. Hence it is the trace fP; pdðPÞðXÞg? of P and
pdðPÞðX Þ in the generalized quadrangle ResðdðPÞÞ. For every point T A G2ðPÞVG4ðXÞ,
the quad dðTÞ contains theþ-line hðP;XÞ :¼ PpdðXÞðPÞ. Indeed, if T 0 A P? V dðPÞ and
hðP;X ÞN dðT 0Þ, then the quad dðT 0Þ is disjoint from dðX Þ, whence T 0 is at distance 3
from X and T 0 B G2ðPÞVG4ðXÞ. Hence the line G2ðPÞVG4ðX Þ of the perp-geometry
in P is uniquely determined by the line hðP;X Þ of D, and the points of G2ðPÞVG4ðX Þ
are the points d�1ðtÞ for the quads t of D on the line hðP;X Þ.
Hence the points of the perp-geometry in P correspond to the lines of the residue

ResDðPÞ of P in D (these are the quads having points of P? VH as deep points), and
the lines of the perp-geometry in P correspond to the points of ResDðPÞ (these are the
lines of D through P). Since ResDðPÞ is a projective plane, the perp-geometry in P is a
projective plane isomorphic to the dual of ResDðPÞ.
Hence the generalized hexagonH is a split Cayley hexagon HðKÞ embedded in an

orthogonal polar space ~PPGQ6ðKÞ.
It remains to show that P ¼ D� is isomorphic to the orthogonal polar space

~PPGQ6ðKÞ. The points of P are the (singular) quads of D. These correspond to the
points ofH via the bijection d, whence the quads of D correspond to the points of the
orthogonal polar space ~PP ¼ Q6ðKÞ which is the ambient space of HðKÞ.
The lines of ~PP through a point P B H are the lines of the perp-geometry in P.

By the above, the perp-geometry in P is a projective plane, in fact a singular plane
of ~PPGQ6ðKÞ. On the other hand, we have seen that the lines of the perp-geometry
in P correspond to the lines of D through P. So, the lines of D are the lines of the
polar space ~PPGQ6ðKÞ and we have proved that the dual P of D is isomorphic to
~PP ¼ Q6ðKÞ. Hence we have proved Theorem 1. r

5 Non-uniform hyperplanes with no subquadrangular quad

5.1 Proof of Theorem 3.We remind the reader of the notations in Theorem 3: H0 is
a locally singular hyperplane of the dual D0 of a polar space P0 of rank 3 that is a
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hyperplane of a polar space P of rank 3. The shadow operator of D (respectively D0)
is s (respectively s0). Remark that a line l of D belongs to D0 if and only if s0ðlÞ0q.
If X is a point subset of D0, sðXÞ denotes the set of points of D that are on some line
m with s0ðmÞJX .
Suppose P0 is a hyperplane of P. We first show sðH0Þ is a subspace of D. Let X ;Y

be two points of sðH0Þ on a line l. We have to show lHH0. Since P0 is a hyperplane,
there is a point b A P0 on l, the latter being regarded as a line of P. As X ;Y A sðH0Þ,
there are lines h;mHH0 through X and Y, respectively. If h does not belong to the
quad b of D0, then the point X ¼ hV b belongs to D0, thus X A H0. If m does neither
belong to b, it follows similarly Y A H0. Then lHH0 and we are done. So, assume
hN b and mH b. Then, as X and m belong to D0, the line through X concurrent with
m, namely the line l, belongs to D0, and we are done. Finally, assume h;mH b. If
bHH0, then lH bHH0 is contained in H0. If b is singular, h and m are concurrent
in the deep point of b. Thus either h; l;m form a triangle, which is impossible, or l ¼
h ¼ mHH0. Hence sðH0Þ is a subspace of D.
It remains to show sðlÞV sðH0Þ0q for every line l of D. Since P0 is a hyperplane

of P, every line l of P contains a point a of P0. Regarded in D, a is a singular quad
with deep point P, and l contains a point P0 collinear with P. Then the line l0 :¼ PP0
(possibly l ¼ l0) belongs to H0 since it is contained in the quad a of D0.
Conversely, suppose sðH0Þ is a hyperplane of D. Then every line l of D contains a

point P of sðH0Þ. The point P lies on some line l0 of D0. The quad hl; l0i belongs to
D0 since it contains the line l0 of D0. In P, the quad hl; l0i is a point of P0 on the line
l. So, every line of P meets P0, and P0 is a hyperplane of P.
In the remainder, suppose P0 is a hyperplane of P and sðH0Þ has no deep point.

Given a quad a of D not in D0, we have to show that aV sðH0Þ is an ovoid. Assume
to the contrary that a contains two points X ;Y of sðH0Þ on a line l. Since P0 is a
hyperplane, there is a point b A P0 on l regarded as line of P. Since X ;Y A sðH0Þ,
there are lines h;mHH0 through X and Y, respectively. If h does not belong to the
quad b of D0, then the intersection point X of the line h of D0 with b belongs to D0.
Regarding X as plane of P0, all of its points belong to P0. This forces a to belong to
D0 in contradiction to the hypothesis. Thus hH b and similarly mH b. Since h;mH
H0 V b and b is singular, h and m are concurrent in a point P of D0. Thus either h; l;m
form a triangle, which is impossible, or h ¼ l ¼ m. However, the second case is im-
possible, too, since it forces a to belong to D0.
Hence Theorem 3 is proved.

5.2 Proof of Theorem 2. Let H be a hyperplane such that þ-quads are either
singular or ovoidal and assume that there exist both singular and ovoidal quads. In
Lemmata 5–9, we investigate some properties of the hyperplane H.

Lemma 5. Given two quads a; a 0 with common deep point P A H, P is deep with respect
to H.

Proof. Let b be a quad containing P and not containing the line aV a 0. Then
b V a0 b V a 0 and b V a and b V a 0 are �-lines concurrent in P. Hence P is deep with
respect to b. It follows that all lines through P are �-lines. So, P is deep itself. r
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Lemma 6. Given a quad aHH and an ovoidal quad o, setting O :¼ oVH, the set
paðOÞ is an ovoid and all its points are deep.

Proof. The quads a and o are disjoint since an ovoidal quad has no �-line. Let P A O
and denote the point paðPÞ by P 0. The line l :¼ PP 0 is contained in H. Let b be a
quad on l. Then b contains the two �-lines l and bV a through the point P 0. Hence P 0

is deep with respect to b. By Lemma 5, P 0 is deep. r

Lemma 7. If there exists an ovoidal quad, any two �-quads are disjoint.

Proof. Assume a; a 0 are �-quads on a �-line l ¼ aV a 0. By Lemma 5, every point
P A l is deep. If o is an ovoidal quad, it is disjoint from a and a 0, hence from l. So,
poðlÞ is a line in o. Since all points of l are deep, all points of poðlÞ are contained in
H. This is impossible since o is ovoidal. r

Lemma 8. If there exists an ovoidal quad, no two deep points of H are collinear.

Proof. Assume P;P 0 are collinear deep points. The line l :¼ PP 0 is contained in H.
Given a quad a on l, it is contained in H since P;P 0 are two deep points with respect
to aVH. Hence all quads on l are �-quads in contradiction to Lemma 7. r

Lemma 9. If a is a �-quad and o1;o2 are ovoidal quads with ovoids Oi :¼ oi VH,
i ¼ 1; 2, then paðO1Þ ¼ paðO2Þ.

Proof. By Lemma 6, paðO1Þ and paðO2Þ consist of deep points. Since by Lemma 8
no two deep points are collinear, paðO1ÞU paðO2Þ is an ovoid of Q, hence paðO1Þ ¼
paðO2Þ. r

Propositions 10 and 11 establish Cases 1 and 2 of Theorem 2.

Proposition 10. The hyperplane H contains at most one quad. If H contains a quad a,
then H ¼ 6

P AO P
? where O is an ovoid of a.

Proof. Assume H contains a quad a. By Lemma 7 and since no ovoidal quad meets a
�-quad, all quads meeting a are singular.
Since there exists an ovoidal quad o, by Lemma 6, the points of the ovoid

O :¼ paðoVHÞ of the quad a are deep. Let P A O. Given a point X A P?na, the line
l :¼ PX is contained in H and the quads on l are singular with deep point P. Hence l
is the only �-line through X, and the quads through X not containing l are ovoidal.
Since a quad a 0 disjoint from a has exactly one point Y in P? (indeed the point

pa 0 ðPÞ) and since a 0 does not contain the line YP, according to the previous para-
graph, a 0 is ovoidal. Hence all quads disjoint from a are ovoidal.
By Lemma 9, there is one and only one ovoid O of deep points in a. So, the hy-

perplane consists of all points collinear with points of O. r
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Proposition 11. If H does not contain any quad, H has at most one deep point. If it has
a deep point P, the quads through P are singular and the remaining quads are ovoidal.

Proof. Let P be a deep point of H. Let R A P?nfPg and denote the �-line PR by l.
Since no quad is contained in H, all quads on l are singular with deep point P. Hence
the line l is the only line through R contained in H. So, a quad through R not con-
taining l is ovoidal and meets P? in the unique point R.
Since every quad has a point of P?, it follows that the quads through P are sin-

gular with deep point P and the quads not containing P are ovoidal. r

In the remainder, we investigate the hyperplane H when it has no deep point. We
prove the assertions of Case 3 of the theorem in several lemmata and propositions.
Let Q be the set of all singular quads of D, let P be the set of points of H deep with

respect to some singular quad, and let L be the set of lines of D that meet the point
set P. Denote by P0 the substructure ðQ;LÞ of the polar space P dual of D.

Lemma 12. Every quad of D containing a line of L is singular.

Proof. Let l A L. If lHH, the assertion is obvious. Assume l VH is a point X. By
definition of L, X is deep for some singular quad a. Hence every quad containing l
meets a in a �-line and is singular. r

Lemma 13. P0 is a proper subspace of P. The lines of P0 are lines of P, and two points
a; b A P0 are collinear whenever they are collinear in P.

Proof. Let a; b be two quads of Q that have a line l in common. We claim l A L.
Indeed, if lHH, all quads on l are singular and have their deep points on l, whence
l A L. If l is a þ-line that meets H in a point P, both quads a and b are singular and
have distinct �-lines h; h 0, respectively, through P. Hence the quad hh; h 0i is singular
with deep point P. So, P A P and l A L. By Lemma 12, all quads on l belong to Q.
Hence Q which is the point set of P0, is a subspace of P, and the lines of P0 are
precisely the lines of P contained in Q.
It is a proper subspace since the points of P corresponding to ovoidal quads of D

do not belong to P0. r

Lemma 14. Given a point P of D, either none, one or all lines through P belong to L.

Proof. If P A P, there is nothing to prove. Accordingly, assume in the following that
P is not deep for any quad of Q, i.e. P B P.
We first show that there is no �-line of L through P. Assume to the contrary that

l is a �-line through P. If l 0 A L is a second line through P, l 0 is a þ-line with
l 0 VH ¼ P. It follows P A P since otherwise l 0 would not belong to L—a contra-
diction.
So, the two lines l; l 0 of L through P are þ-lines. Since by Lemma 12, the quad

hl; l 0i is singular, it follows P B H since otherwise there would be a �-line through
P in contradiction to the previous paragraph. Hence given a line h through P not
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in hl; l 0i, hVH is a point Y0P. Since every quad on l (respectively l 0) is singular,
the quad hh; li (respectively hh; l 0i) is singular. Since Y A hh; liVH (respectively
A hh; l 0iVH), there is a �-line through Y in hh; li (respectively hh; l 0i). Hence there
are two �-lines through Y. So, Y A P, thus implying h A L.
Given a line m through X in hl; l 0i, the quad hh;mi is singular by Lemma 12 since

h A L. Hence there are the two singular quads hl; l 0i and hh;mi on the þ-line m.
It follows that there are two �-lines on the point mVH. Hence mVH A P, which
forces m A L. r

Proposition 15. P0 is a polar space of rank 3.

Proof. By Buekenhout and Shult [1], P0 is a polar space of rank 3 if it satisfies
the one-or-all axiom and if its maximal subspaces are planes. We start verifying the
one-or-all axiom for polar spaces.
Let a A Q be a singular quad with deep point Z, and let l A L be a line of L not

contained in a. All quads on l are singular by Lemma 12. If a quad a 0 on l meets a in
a line h A L, a 0 is a point of P0 on l collinear with a.
We show that the quads on l meeting a intersect a in lines of L. This proves the

one-or-all-axiom since on the one hand, all quads on l meet a if l meets a, and on the
other hand, there is exactly one quad on l meeting a if l is disjoint from a.
Firstly, assume l V a ¼ q. Denote the line paðlÞ by h. By Lemma 12, the unique

quad hh; li containing l and meeting a is singular, and it remains to show h A L.
If h goes through Z, h belongs to L since Z A P. If h does not go through Z, de-

note the point hVH ¼ hVZ? by X. Since hh; li is singular by Lemma 12, there is a
�-line g through X in hh; li such that the point X A h is deep for the quad hg;XZi.
Hence h belongs to L.
Secondly, assume l intersects a in a point X. The quads on l are the points of P0 on

the line l collinear with the point a by the lines that are the lines in the quad a through
the point X. Since all quads on l are singular, it remains to show that all lines through
X in a belong to L.
If l is a �-line, X is collinear with Z and is deep with respect to the quad hl;XZi.

Thus X A P and all lines through X belong toL and we are done. If l is a þ-line, the
point l VH is deep for a singular quad b since l A L. We investigate the cases l VH ¼
X ð¼ PV lÞ and l VH0X separately.
Assume l VH0X . Then the quad b is disjoint from a since it does not contain the

line l. The point X is not collinear with the deep point Z with respect to a. Let g be a
quad on l. So, g is singular with deep point D on the line m :¼ gV b where D0mV l.
Furthermore, g meets a in a line h that is not contained in H since D B h. It follows
hVH ¼ hVD?. The point Y :¼ hVH is collinear with Z since Z is the deep point of
a. So, Y A P since the lines DY and YZ are distinct �-lines through Y. Thus, Y is the
deep point of the singular quad hD;Zi. Hence h A L.
Finally, assume l is a þ-line with l VH ¼ X . The line XZH a is contained in

H since Z is the deep point of a and XZ belongs to L. So, l;XZ are two lines of
L through X, and by Lemma 14, all lines through X belong to L. Therefore, every
quad on l meets a in a line h A L.
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Hence P0 satisfies the one-or-all axiom. It remains to show that the maximal sub-
spaces of P0 are planes. On the one hand, since P0 is a subspace of the polar space
P, the rank of P0 is at most 3. On the other hand, by Lemma 14, the maximal sub-
spaces of P0 are maximal subspaces of P. Consequently, P0 has rank 3. r

Lemma 16. A point P of D belongs to the dual D0 of P0 if and only if all lines of D
through P belong toL.

Proof. By Lemma 13, the polar space P0 is a subspace of the polar space P ¼ D�.
Since the set of all quads through a point of D is the point set of a maximal subspace
of P, the quads through a point of D0 are the points of a maximal subspace of P0. If
X is a point of D0, the quads of D0 through X regarded as points of P0 are points of
a plane of P0. By Proposition 15, all points and lines of that plane belong to P0.
Hence all lines of D through X belong to L. Conversely, if all lines of D through X
belong to L, then all quads on X are singular by Lemma 12. Thus regarding X as a
plane of P, all its points belong P0, whence it is a plane of P0, namely a point of
D0. r

Proposition 17. The point set P is a hyperplane of D0. It is the hyperplane D0 VH in-

duced by H in D0.

Proof. Since P consists of the points deep with respect to some singular quad of D,
all lines through a point X A P belong to L, and X is a point of D0 by Lemma 16.
Hence P is a subset of the point set of D0.
To show that P is a subspace of D0, let X ;X 0 A P be distinct points on a line l.

Since PHH and H is a subspace of D, it follows lHH. It remains to show that if l
is a line of D contained in H, every point of D0 on l belongs to P. Let V A l belong
to D0. By Lemma 16, all lines through V belong to L. If a is a quad of D0 through
V not containing l, then a is singular by Lemma 12. So, since V A H, there exists
a �-line m ð0 lÞ of D0 through V in a. Hence V is deep with respect to the quad
hl;mi of D0, and it follows V A P.
Since every quad of D0 meets P in the perp of a point by construction of D0, P is

a proper subspace of D0. P is a hyperplane of D0 since the lines of D0 are the lines in
L that meet P by definition.
Furthermore, we have seen in the previous paragraph that all points of D0 on a line

contained in H belong to P. Given a point P A D0 VH and a quad a of D0 on P, a is
singular and P A aVH belongs to some line l UH. Thus P ¼ D0 VH. r

We denote the set of lines of D contained in H by L. An immediate consequence is
LJL and LPL. Let H denote the incidence structure ðP;LÞ.

Proposition 18. H ¼ ðP;LÞ is a split Cayley hexagon HðKÞ. The polar space P0 ¼
ðQ;LÞ is isomorphic to the orthogonal polar space Q6ðKÞ in which H is embedded.

Proof. Since the points of P0 ¼ D�
0 are the singular quads of D, each quad of D0 is

singular with respect to the hyperplane P ¼ D0 VH (cf. Proposition 17). By Theorem
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1, H ¼ ðP;LÞ is a split Cayley hexagon HðKÞ embedded in ~PPGQ6ðKÞ and the
polar space P0 is isomorphic to ~PP. r

Hence we have proved the assertions of Theorem 2. The following corollary and
proposition establish Corollary 1.

Corollary 19. Suppose P0 is a hyperplane of P. Then the hyperplane H consists of the

points on lines of L.

Proof. Denote by H 0 the set of points of D on lines of L. Supposing P0 is a hyper-
plane of P, we apply Theorem 3. Then H 0 ¼ sðPÞ is a hyperplane of D. We show
H ¼ H 0. The inclusion H 0 JH follows from the definition of H 0.
Assume there exists a point P A HnH 0. Since H 0 is a hyperplane of D, each line

through P meets H 0 in a point distinct from P since P B H 0. So, each line through P
is contained in H implying P A H 0—a contradiction. r

Remark that Corollary 19 is a special case of a result of Shult [9, Lemma 6.1] ac-
cording to which every hyperplane of a dual polar space is a maximal subspace.
Corollary 19 together with the following proposition prove the second assertion of

Corollary 1.

Proposition 20. If D is finite, the polar space P ¼ D� is an orthogonal polar space
Q�
7 ðqÞ. In particular, P0GQ6ðqÞ is a hyperplane of P.

Proof. By Theorem 2, the dual P0 of D0 is a polar space isomorphic to Q6ðKÞ for
some finite field K ¼ GFðqÞ.
If a is a point of P0, its residue ResP0

ðaÞ in P0 is a generalized quadrangle of
order ðq; qÞ which is a proper subquadrangle of the generalized quadrangle ResPðaÞ
of order ðt; qÞ. Hence t > q.
Regarding a as a quad of D, the generalized quadrangle ResDðaÞ admits an ovoid.

Thus by Payne and Thas [7, 3.4.1] and since t > q, ResDðaÞ is isomorphic to H3ðqÞ.
Hence PGQ�

7 ðqÞ. r
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Math. 2 (1959), 13–60. Zbl 0088.37204

[13] H. Van Maldeghem, Generalized polygons. Birkhäuser 1998. MR 2000k:51004
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