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1 Introduction

Let p be a prime andK the algebraic closure of the finite field GFðpÞ. We will always
work in characteristic p and consider Pn as a scheme over GFðpÞ. Let X be an alge-
braic scheme defined over a finite field GFðpeÞ.X ðKÞwill denote the set of allK-points
of X . For every power q of p with qd pe let XðqÞ denote the set of all GFðqÞ-points
of X . Hence XðqÞJX ðq 0Þ if q, q 0 are p-powers and q 0 d qd pe. XðKÞ is the union of
all XðqÞ, qg 0 and q a p-power. If X is reduced, then the scheme X is uniquely deter-
mined by the algebraic variety XðKÞ in the sense of Serre (Hilbert Nullstellensatz). If
X is not a zero-dimensional scheme, then XðKÞ is infinite. We fix a p-power q with
qd pe and we would like to see up to what order the finite set XðqÞ determines the
infinite set XðKÞ.
Now assume that X is projective and that it is equipped with an embedding XHPN

defined over GFðqÞ. Let k be an integer. We say that the pair ðX ;X ðqÞÞ satisfies the
Finite Field Nullstellensatz of order k (or just that FFNðkÞ is true for X and XðqÞ) if
every homogeneous form of degreec k on PNðKÞ vanishing on X ðqÞ vanishes on
X ðKÞ. Choose homogeneous coordinates z0; . . . ; zN on PN . The set PGðN; qÞ is the
union of qþ 1 hyperplanes; for instance take the hyperplanes z0 ¼ czN , c A GFðqÞ,
and the hyperplane zN ¼ 0. Hence if X ðKÞ0X ðqÞ (and in particular if dimðX Þ > 0),
then the pair ðX ;X ðqÞÞ does not satisfy FFNðqþ 1Þ. A. Blokhuis and G. E. Moor-
house proved FFNðq� 1Þ for an elliptic quadric surface, FFNðqÞ for a hyperbolic
quadric surface and FFNðqÞ for a smooth quadric hypersurface of PGðn; qÞ, qd 4
[1]. G. E. Moorhouse proved FFNðqÞ for Hermitian varieties, q a square [5, Theorem
4.1], and FFNðq� 1Þ for Grassmann varieties [6, O4]. Here we consider the case of
the intersection of two quadric hypersurfaces and prove the following result.

Theorem. Fix an integer N d 7. Let q be a power of p and assume qd 6. Take two

linearly independent quadric hypersurfaces Q1, Q2 of PN defined over GFðqÞ and set
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Y :¼ Q1 VQ2 (the scheme-theoretic intersection). Then YðqÞ0q. Let U be the linear

subspace of PN spanned by Y ðqÞ. U is defined over GFðqÞ. Set X :¼ Y VU (the
scheme-theoretic intersection). Then XðqÞ ¼ Y ðqÞ and for every P A YðqÞ there is a line

DHX defined over GFðqÞ with P A D. The pair ðX ;XðqÞÞ satisfies FFNð½ðq� 1Þ=4�Þ.

Notice that since the line D in the statement of the Theorem is defined over GFðqÞ,
we have cardDðqÞ ¼ qþ 1. Easy examples show that in general the pair ðY ;Y ðqÞÞ
does not satisfies FFNð1Þ (see Remark 5). To get FFNð1Þ for the pair ðY ;YðqÞÞ one
should add some assumption and we prefer to avoid to do that; this is the reason for
our formulation of the Theorem. We conjecture that if ng 0, n :¼ dimðUÞ, then the
pair ðX ;X ðqÞÞ satisfies FFNðqÞ. For our proof of FFNð½ðq� 1Þ=4�Þ the existence of
GFðqÞ-lines through each GFðqÞ-point is very important. We conjecture that similar
results are true for the intersection of s quadric hypersurfaces, i.e. we conjecture the
existence of an integer aðsÞ such that if nd aðsÞ, calling Y the intersection of s nice
quadric hypersurfaces of PnðKÞ defined over GFðqÞ, then the pair ðY ;YðqÞÞ satisfies
FFNðqÞ. However, we believe that niceness of the quadrics should be a very restrictive
assumption.

2 Proof of the theorem

Remark 1. Recall that by the Chevalley–Warning theorem a finite field is C1 [2, p.
11]. Since N > 4, by a theorem of Nagata and Lang which extends the Chevalley–
Warning theorem [2, Theorem 3.4] the quadrics Q1 and Q2 have a common point
over GFðqÞ, i.e. the scheme defined by Q1ðKÞVQ2ðKÞ has a GFðqÞ-point.

Remark 2. Let Z be any projective scheme defined over GFðqÞ. The scheme Zred is a
subscheme of Z invariant for the natural action of the Galois group of the extension
K=GFðqÞ. Since GFðqÞ is a perfect field, this implies that Zred is defined over GFðqÞ.
We have ZðKÞ ¼ ZredðKÞ and ZðqÞ ¼ ZredðqÞ.

Remark 3. Fix a p-power q 0 d q and let G be the Galois group of the extension
GFðq 0Þ=GFðqÞ. Let A be a reduced projective scheme defined over GFðqÞ and as-
sume that over GFðq 0Þ the scheme A is the union of s subschemes A1; . . . ;As, none of
which is decomposable over GFðq 0Þ. Then G acts as a permutation group on f1; . . . ; sg
permuting A1; . . . ;As. The scheme Ai is invariant by this action of G if and only if Ai is
defined over GFðqÞ. For any g A G and any component Ai the varieties gðAiÞ and Ai

are isomorphic overK. In particular we have dimðgðAiÞÞ ¼ dimðAiÞ and degðgðAiÞÞ ¼
degðAiÞ. Hence if ðdimðA1Þ; degðA1ÞÞ0 ðdimðAiÞ; degðAiÞÞ for every i > 1, then A1 is
defined over GFðqÞ.

Remark 4.We use the notation of Remark 3. If P A AðqÞ we have gðPÞ ¼ P for every
g A G. Hence if P A A1 we have P A gðA1Þ for every g A G. In particular if P is a
smooth point of A, then gðA1Þ ¼ A1 for every g A G, i.e. A1 is defined over GFðqÞ.
Since a line is uniquely determined by two of its points, if A1 is a line containing two
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di¤erent points of AðqÞ, then A1 is defined over GFðqÞ and hence cardA1ðqÞ ¼ qþ 1.
Similarly, if A1 is a smooth conic containing at least 3 points of AðqÞ and no other
component of A is contained in the plane hA1i spanned by A1, then A1 is defined
over GFðqÞ and hence cardA1ðqÞ ¼ qþ 1.

We separate here one step of the proof of the Theorem, because it may be useful
for attacking the conjecture on the intersection of s quadrics. In each case or subcase
considered we are able to identify hðX VM 0ÞðqÞi and to give a large integer k such
that the pair ðX VM 0; ðX VM 0ÞðqÞÞ satisfies FFNðkÞ seeing X VM 0 as a subscheme
of hðX VM 0Þredi. In most cases the integer k we found is obviously the best possible
one, i.e. FFNðk þ 1Þ fails.

Preliminary steps for the proof of the Theorem. Let MðqÞHPGðn; qÞ be a 3-
dimensional linear space. Call MðKÞ the 3-dimensional linear subspace of PnðKÞ
spanned by the finite setMðqÞ andM 0 the associated scheme. HenceM 0ðKÞ ¼ MðKÞ
andM 0ðqÞ ¼ MðqÞ. SetW :¼ ðM 0 VXÞred. SinceX andM are defined over GFðqÞ,W
is defined over GFðqÞ (Remark 2). We haveW 0q, becauseWðKÞ0q. We fix an
integer kc q and a homogeneous form F of degree k defined over GFðqÞ and vanish-
ing on X ðqÞ. We distinguish 7 cases and divide some of them into several subcases.
(a) W ¼ M 0. HenceWðqÞ ¼ MðqÞ, hWðqÞi ¼ M 0ðKÞ. Since degðFÞ ¼ kc q and

F vanishes at each point of MðqÞ, F jM 0ðKÞ1 0.
(b) Here we assume that W is a quadric surface cone, say with vertex P and the

smooth plane conic C defined over GFðqÞ as a base. We have P A PGð3; qÞ. If C has
no GFðqÞ-point, thenWðqÞ ¼ fPg and hence hWðqÞi ¼ fPg, while hWðKÞi ¼ M 0.
Now assume CðqÞ0q. Hence cardCðqÞ ¼ qþ1, cardWðqÞ ¼ 1þqþq2, hWðqÞi ¼
M 0 and if kc q=2 we have F jWðKÞ1 0.
(c) Here we assume that W is a reducible quadric surface, say W ¼ AUB with A

and B planes. If the two planes A and B are not defined over GFðqÞ, then only the line
AVB is defined over GFðqÞ and hence WðqÞ ¼ ðAVBÞðqÞ, cardWðqÞ ¼ qþ 1 and
hWðqÞi ¼ AVB. Hence ifWðqÞ is not contained in a line, A and B are defined over
GFðqÞ and WðqÞ ¼ AðqÞUBðqÞ, hWðqÞi ¼ M 0 and cardWðqÞ ¼ 2ðq2 þ qþ 1Þ�
q� 1. Since kc q, we obtain F jWðKÞ1 0 if WðqÞ is not contained in a line.
(d) Here we assume thatW is a plane. We have hWðqÞi ¼ hWðKÞi. Since kc q,

we have F jWðKÞ1 0.
(e) Here we assume that W is the disjoint union of a plane A and a non-empty

union B of points and curves. Since two quadric surfaces containing A intersect in
the union of A plus a line (perhaps contained in A), B is a line. By the last part of
Remark 3 both A and B are defined over GFðqÞ. Hence we have hWðqÞi ¼ hWðKÞi
and F jWðKÞ1 0.
(f ) From now on, we assume that W has pure dimension one. By the Bezout the-

orem we have 1c degðWÞc 4 and if degðWÞ ¼ 4, then W is a reduced complete
intersection of two quadric surfaces. In particular W has at most 4 irreducible com-
ponents. Let A be an irreducible component ofW defined over GFðqÞ. If degðAÞ ¼ 1
we have cardAðqÞ ¼ qþ 1. Since kc q we have F jAðKÞ1 0. Now assume
degðAÞ ¼ 2. By [4, pp. 3 and 4] either AðqÞ ¼ q or cardAðqÞ ¼ qþ 1. If AðqÞ ¼ q,
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we cannot say anything; however, this case will not arise in the proof of the Theorem,
because we will always meet a case with AðqÞ0q. If cardAðqÞ ¼ qþ 1 we obtain
F jAðKÞ1 0 when kc q=2. Now assume degðAÞ ¼ 3. Since A is contained in the
intersection of two quadric surfaces and W does not contain a plane, A spans M 0.
Hence A is a rational normal curve of M 0 and we have AðKÞGP1ðKÞ. The canon-
ical line bundle of a smooth projective curve defined over any field K is defined over
K . In particular the canonical line bundle of A is defined over GFðqÞ. The canonical
divisor of P1 has degree �2, i.e. even degree, while 3 ¼ degðAÞ is odd. Hence there is
a degree one line bundle on A defined over GFðqÞ. This implies that A is isomorphic
to P1 over GFðqÞ. In particular we have cardAðqÞ ¼ qþ 1. Hence F jWðKÞ1 0
if 3kc q. Now assume degðAÞ ¼ 4. Hence A ¼ W , paðAÞ ¼ 1 and A is the complete
intersection of two quadrics. First assume A singular. Since paðAÞ ¼ 1, we have
cardðSingðAÞÞ ¼ 1, the normalization A 0 of A is isomorphic to P1 over K and A has
either an ordinary node or an ordinary cusp. The curve A 0 is defined over GFðqÞ by
the universal property of the normalization. If A has a cusp, then the counter-image
of SingðAÞ in A 0 is a unique point of A 0 and hence it is defined over GFðqÞ; we have
qþ 1 ¼ cardA 0ðqÞ ¼ cardAðqÞ and hence F jAðKÞ1 0 if 4kc q. Now assume that
A has an ordinary node. If AredðqÞ0q, then A 0ðqÞ0q, i.e. A 0 is isomorphic to P1

over GFðqÞ. Hence cardA 0ðqÞ ¼ qþ 1 and cardAðqÞ ¼ q. Since degðAÞ ¼ 4, we have
F jAðKÞ1 0 if 4k < q by the Bezout theorem.
(g) Now we assume the existence of an irreducible component B ofW not defined

over GFðqÞ. Since W has pure dimension one and degðWÞc 4, we have degðBÞc 2
by Remark 3. First we consider the case degðBÞ ¼ 2. Hence over K the irreducible
curve B is a smooth conic and W ¼ BUB 0 with B 0 a smooth conic (over K). Since
degðWÞ ¼ 4, we haveW ¼ M 0 VX , i.e.W is the complete intersection of two quadric
surfaces. Hence W spans M 0, W is connected and paðWÞ ¼ 1. In particular we have
1c cardðSingðWðKÞÞÞc 2. By Remark 4 this case cannot occur if cardWðqÞd 3.
Now assume degðBÞ ¼ 1. First assume that W has an irreducible component D with
degðDÞd 2. Since degðWÞ < degðBÞ þ 2 degðDÞ, D is defined over GFðqÞ. Hence
cardDðqÞ ¼ qþ 1 and hDðqÞi is a plane. By Remark 4 this case cannot occur ifWðqÞ
spans M 0. Look at P A WðqÞ and assume that P is not contained in a component of
W defined over GFðqÞ. Since M 0 VX is the complete intersection of two quadric
surfaces, there cannot be 3 components of W containing P, unless every component
ofW contains P (Remark 4); hence in this subcase we obtain that all the components
ofW are defined over GFðqÞ (Remark 3), contradiction. If P is contained in a unique
component of W , then that component is defined over GFðqÞ by the first part of
Remark 4. Now we assume that P is contained in exactly two components, say B1
and B2, of W , none of them defined over GFðqÞ. By Remark 3 neither B1 nor B2
contain other points of WðqÞ. Since hWðqÞi ¼ M 0, we obtain degðWÞ ¼ 4 and that
the other two components, sayA1 andA2, ofW are defined over GFðqÞ. SinceW is the
complete intersection of two quadric surfaces, W is connected and paðWÞ ¼ 1. Since
B1 and B2 are coplanar andW is the complete intersection of two quadrics, neither A1
nor A2 can be contained in the plane hB1 UB2i. The plane hB1 UB2i is defined over
GFðqÞ because B1 and B2 are exchanged by G. Hence the points Ai VhB1 UB2i,
i ¼ 1; 2, are defined over GFðqÞ. Since W is connected and P A B1 VB2, we obtain
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that at least one of the lines Bi, i ¼ 1; 2, contains two points of WðqÞ and hence it is
defined over GFðqÞ (Remark 4). Since the scheme M 0 VX is the complete intersec-
tion of two quadric surfaces, we have h0ðM 0 VX ;OM 0 VX Þ ¼ 1 (cf. [3]), i.e. M 0 VX is
connected in a very strong sense. In particularW ¼ ðM 0 VX Þred cannot be the union
of two disjoint lines. Since hWðqÞi ¼ M 0, we obtain degðWÞd 3. First assume
degðWÞ ¼ 3. SinceW ¼ ðM 0 VXÞred and degðM 0 VXÞ ¼ 4, the schemeM 0 VX con-
tains one line, D, of W with multiplicity two, while the other two lines of W appear
with multiplicity one. Hence D is G-invariant, i.e. it is defined over GFðqÞ, contradic-
tion. Now assume degðWÞ ¼ 4. If WðqÞ contains a point contained in only one line
DJW , then D must be defined over GFðqÞ, contradiction. Since cardWðqÞd 4 by
assumption, we obtain that at least one line of W contains two points of WðqÞ and
hence it is defined over GFðqÞ (Remark 4), contradiction.

Proof of the Theorem. We divide the proof into five steps.
Step 1. Since N d 6, we have Y ðqÞ0q by an extension due to Nagata and Lang

of the Chevalley–Warning theorem [2, Theorem 3.4 and p. 11]. Set n :¼ dimðUÞ. U
is defined over GFðqÞ because it is spanned by a subset of PGðN; qÞ. By Remark 2
and the very definitions of U and X , X ðqÞ ¼ YðqÞ and XðqÞ spans U , i.e. the pair
ðX ;X ðqÞÞ satisfies FFNð1Þ with respect to U . Fix an integer kc q and a homoge-
neous form F of degree k defined over GFðqÞ and vanishing on XðqÞ. We call again
Qi the restriction of Qi to U .

Step 2. Fix P A XðqÞ. First assume that both Q1 and Q2 are singular at P, i.e. that
they are cones with vertex P. Fix a hyperplane H of hXi defined over GFðqÞ (i.e.
spanned by a subset of PGðn; qÞ) with P B H. Hence X VH is defined inside H

by two quadratic equations defined over GFðqÞ. H is the intersection of hXi with a
hyperplane H 0 of PN defined over GFðqÞ. Since dimðH 0Þ ¼ N � 1 > 4, we have
ðX VHÞðqÞ0q [2, Theorem 3.4 and p. 11]. Fix O A ðX VHÞðqÞÞ. The line D span-
ned by fP;Og is defined over GFðqÞ. Since O A Q1 VQ2 and Q1 and Q2 are cones
with vertex P, then DJX , as wanted. Now assume that Q1 and Q2 are smooth at
P. Let TPQiðKÞJPNðKÞ (resp. TPQiðqÞJPNðqÞ) be the tangent space of Qi at
P. Since Qi is smooth at P, TPQiðKÞ and TPQiðqÞ are hyperplanes and TPQiðKÞ
is spanned by TPQiðqÞ. Set ZðKÞ :¼ TPQ1ðKÞVTPQ2ðKÞ and ZðqÞ :¼ TPQ1ðqÞV
TPQ2ðqÞ. Hence ZðKÞ and ZðqÞ are projective spaces (respectively over K and over
GFðqÞ) such that n� 2c dimZðKÞ ¼ dimZðqÞc n� 1. We will call Z the corre-
sponding linear subspace of Pn. Hence dimZ ¼ dimZðqÞ and Z is generated by
ZðqÞ. Since Qi is smooth at P, Qi VTPQi is the union of all lines contained in Qi and
passing through P. Furthermore, QiðqÞVTPQiðqÞ is the union of all lines of GFðqÞ
contained in QiðqÞ and passing through P. Z is the intersection of U with a codi-
mension one or two linear subspace of PNðqÞ defined over GFðqÞ. Since N � 2d 4,
we have ðZVX ÞðqÞ0q [2, Theorem 3.4 and p. 11]. For any O A ðZVXÞðqÞ the line
spanned by P and O is the line we were looking for. Now assume that Q1 is smooth
at P but that Q2 is singular at P. Take a hyperplane H of TPQ1ðKÞ defined over
GFðqÞ with P B H. Set Y :¼ X VH. Since X , Z and U are defined over GFðqÞ, Y is
defined over GFðqÞ. The scheme Y is defined in H by two quadric hypersurfaces.
Since dimH ¼ N � 2d 4, we have YðqÞ0q [2, Theorem 3.4 and p. 11]. For any

On the Finite Field Nullstellensatz for the intersection of two quadric hypersurfaces 77



O A YðqÞ the line spanned by P and O is the line we were looking for, because it is
contained in TPQ2, too. In the same way we find the line D if Q1 is singular at P, but
Q2 is smooth at P.

Step 3. Use the set-up and notation of Step 2. Instead of H (resp. Z) take a hyper-
plane H1 (resp. Z1) of H (resp. Z) defined over GFðqÞ. Since N � 3d 4, we may take
O A ðX VH1ÞðqÞ (resp. O A ðX VZ1ÞðqÞ). Hence we obtain that for every P A X ðqÞ
there are several lines (at least three) contained in X , defined over GFðqÞ and con-
taining P.

Step 4. Assume the existence of an integer u with 2c uc n and lines Ti HX ,
1c ic u, defined over GFðqÞ, such that Ti VTj 0q if and only if ji � j j c 1 and
T1 U � � � UTu spans a linear space of dimension u. Assume k < q=2. For any integer t
with 3c tc n, we define the following assertion HðtÞ:

HðtÞ: There exists a t-dimensional linear subspace Mt of PNðKÞ spanned by a
subset of XðqÞ (and hence defined over GFðqÞ) such that F j ðX VMtÞredðKÞ1 0.
If HðnÞ is true, then X satisfies FFNðkÞ. In this step we will prove HðtÞ for every

integer tc u taking as Mt the linear span of T1 U � � � UTu. First, we use the prelimi-
nary step to the proof of the Theorem to check Hð3Þ with M3 :¼ hT1 U � � � UT3i;
we use parts (a), (b), (c) and (d) if X VM3 contains a surface and part (g) if
dimðX VM3Þ ¼ 1; indeed, since cardT1ðqÞ ¼ qþ 1 we avoid the caseWðqÞ ¼ fPg in
part (b); in case (c) both planes A and B are defined over GFðqÞ because cardT1 U
T2ðqÞ ¼ 2qþ 1 > qþ 1 ¼ cardðAVBÞðqÞ. Assume ud 4. We have cardT4ðqÞ ¼
qþ 1. For every P A T4ðqÞ let AðPÞ be the hyperplane of M4 spanned by M2 and P.
M4 is defined over GFðqÞ and M4 VT4 ¼ fPg. By the previous step we have
F j ðX VAðPÞÞredðKÞ1 0 for every P. Since AðPÞVX contains P and P B T1 UT2,
ðX VAðPÞÞred is the union of T1 UT2 and at least another curve containing P. Hence
ðX VM4Þred contains T1 UT2 and at least qþ 1 other curves, say C1; . . . ;Cqþ1, such
that F jCiðKÞ1 0 for every i. If X contains M4, then F jM4ðKÞ1 0 because
PGð4; qÞ satisfies FFNðqÞ and kc q. Hence to prove Hð4Þ using M4 we may assume
that X does not contain M4. In order to obtain a contradiction we assume that F
does not vanish at some point of ðX VM4ÞredðKÞ. First assume that X VM4 does not
contain a hypersurface ofM4. This is equivalent to assuming that the scheme X VM4

is a codimension 2 complete intersection of two quadric hypersurfaces of M4. Since
degX VM4 ¼ 4, we have degðX VM4Þredc4. Call Ai, 1cics, the irreducible com-
ponents of ðX VM4Þred defined overK, not necessarily over GFðqÞ of ðX VM4Þred. Fix
an index i. Either F jAiðKÞ1 0 or the scheme fF ¼ 0gVAi has degree 2 degðAiÞ and
hence the scheme ðfF ¼ 0gVAiÞred has degree at most 2 degðAiÞ. Hence if fF ¼ 0g
does not contain an irreducible component of ðX VM4Þred, then the sum of all degrees
of the curves T1;T2;C1; . . . ;Cqþ1 is at most 8. If qd 6 this is impossible. Now assume
that ðX VM4Þred has some component of dimension 3, say Bj, 1c jc r, and some
component of dimension 2, say Ai, 1c ic s, with rd 1 and sd 0. Since X VM4 is
defined by two quadratic equations, B1 U � � � UBr is either a quadric hypersurface of
M4 (perhaps reducible) or a hyperplane ofM4. First assume that X VM4 is a quadric
hypersurface of M4. We must have X VM4 ¼ B1 U � � � UBr. Since T1 UT2 UT3 U
T4JX VM4, B1 cannot be a cone with vertex a line R and as base a conic without
GFðqÞ-points, because in this case we would have cardðX VM4ÞðqÞ ¼ cardRðqÞ ¼
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qþ 1; hence we have Hð4Þ, because the irreducible quadric hypersurfaces of PGð4; qÞ
with rank at least 4 satisfies FFNðq� 1Þ. IfX VM4 is a reducible quadric hypersurface,
then both components of X VM4 are defined over GFðqÞ because T1 UT2 UT3 U
T4JX VM4 and each line Ti is defined over GFðqÞ; in this subcase Hð4Þ is true,
because every linear space satisfies FFNðqÞ. Now assume that B1 U � � � UBr is a
hyperplane. We may also assume sd 1, otherwise F j ðX VM4ÞredðKÞ1 0, because a
linear space satisfies FFNðqÞ and B1 is defined over GFðqÞ by Remark 3. Since
X VM4 is the intersection of two quadric hypersurfaces of M4 containg B1, we have
s ¼ 1, and A1 is a plane. Since A1 is defined over GFðqÞ and kc q, we obtain
F j ðX VM4ÞredðKÞ1 0. Now assume ud 5. We will prove Hð5Þ. For every P A
T5ðqÞnðT5ðqÞVM4ðqÞÞ, call AðPÞ the hyperplane spanned byM4 and P. The previous
proof gives F j ðX VAðPÞÞredðKÞ1 0. Since cardT5ðqÞVM4ðqÞÞ ¼ q and 2k < q, we
obtain Hð5Þ. If ud 6 we continue in the same way.

Step 5. We are not able to prove that we always may take u ¼ n. By Step 2 we
may at least take ud 3. Take the maximal integer u such that there is T1 U � � � UTu

and assume u < n. Since u is maximal, for every O A TuðqÞnTu�1ðqÞ every line con-
tained in X and containing O is contained in hT1 U � � � UTui. However, to prove
HðtÞ we need the full force of the existence of T1 U � � � UTu only for u ¼ 3. In the
other cases it is su‰cient to take another line DHX , D defined over GFðqÞ and D

not contained in hT1 U � � � UTui. Such a line exists because u < n :¼ dimhXðqÞi and
for every P A X ðqÞ with P A hT1 U � � � UTui there is a line DHX , D defined over
GFðqÞ with P A D (Step 1). Since the set DðqÞ contains at least q points not contained
in hT1 U � � � UTui, the proof of HðtÞ given in Step 4 works for t ¼ uþ 1 using either
Mþ1 ¼ hT1 U � � � UTu UDi if DVhT1 U � � � UTui0q or Muþ1 spanned by T1 U
� � � UTu�1, D and one of the q points of TuðqÞnTu�1ðqÞ. Then we continue inductively
using at each step a suitable line and adding the new line to the previous configura-
tion of lines (perhaps with several connected components) either q new GFðqÞ-points
or qþ 1 new GFðqÞ-points and conclude the proof of the Theorem.

Remark 5. Here we show a very trivial case in which n < N, i.e. Y 0X and Y does
not satisfy FFNð1Þ. Assume that in the pencil spanned by Q1 and Q2 there is a double
hyperplane, say Q, with Qred the hyperplane M and, say, Q0Q1. For any scheme
Z we have ZðKÞ ¼ ZredðKÞ and in particular ZðqÞ ¼ ZredðqÞ. Hence YðqÞ ¼
ðM VQ1ÞðqÞJMðqÞ. Notice that this case may occur even if we assume that both Q1
and Q2 are smooth.

Remark 6. The existence of multiple components of Y has another drawback. Assume
dimðYÞ ¼ N � 2, i.e. assume that Q1 and Q2 have no common components; for in-
stance if Q1 is irreducible just assume Q10Q2. It may occur that ðQ1 VQ2Þred spans
PN but that Q1 VQ2 has a multiple component. For instance take a GFðqÞ-plane A

and an ðN � 3Þ-dimensional linear spaceV defined over GFðqÞwithAVV ¼ q. Take
two smooth conics C1 and C2 in V defined over GFðqÞ with cardC1 VC2 ¼ 3, i.e.
tangent at exactly one point. Let Qi be the quadric cone with vertex V and base Ci.
Call qi any homogeneous equation of Qi. Even if Q1 VQ2 satisfies FFNðkÞ we may
only say that a degree k polynomial vanishing on Q1 VQ2ðqÞ vanishes at each point
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of ðQ1 VQ2ÞredðKÞ, not that F ¼ a1q1 þ a2q2 with ai a homogeneous polynomial of
degree k � 2. The latter is the algebraic form of FFNðkÞ when dimðX Þ ¼ n� 2 and X

has no multiple component.
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