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Pseudo-parallel submanifolds of a space form
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Abstract. Pseudo-parallel immersions into space forms are defined as extrinsic analogues of
pseudo-symmetric manifolds (in the sense of R. Deszcz) and as a direct generalization of semi-
parallel immersions. In this paper we obtain a description of pseudo-parallel hypersurfaces of a
space form as quasi-umbilic hypersurfaces or cyclids of Dupin. Moreover, we study pseudo-
parallel immersions of surfaces and pseudo-parallel immersions with maximal first normal
bundle in space forms. Finally, we give a topological classification of some complete, simply
connected manifolds admitting a pseudo-parallel immersion into a space form.
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1 Introduction

A Riemannian manifold Mn is locally symmetric if its Riemannian curvature tensor
R is parallel, i.e. ‘R ¼ 0, where ‘ is the Levi–Civita connection extended to act on
tensors as a derivation. The integrability condition of ‘R ¼ 0 is R � R ¼ 0, where
again R is extended to act on tensors as a derivation. Manifolds which satisfy the
latter condition are called semi-symmetric and have been classified by Szabó (see [33],
[34]). Investigation of several properties of semi-symmetric manifolds gives rise to
their next generalization: the pseudo-symmetric manifolds. For example every totally
umbilic submanifold of a semi-symmetric manifold, with parallel mean curvature
vector, is pseudo-symmetric (see [1]). The class of pseudo-symmetric manifolds is very
large: many examples of pseudo-symmetric manifolds which are not semi-symmetric
have been constructed (see e.g. [15], [16] and references therein). In the last decade, a
big amount of results both intrinsic and extrinsic involving this class of manifolds
have been published by several authors. Consequently many particular results are
known, see, for example, [15], [16], [11], [17], [18], [19], [20], but a full classification is
not yet available.

In the theory of submanifolds of a space form, conditions analogous to local
symmetry and semi-symmetry have been introduced and studied quite intensively.
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Ferus and others introduced the concept of parallel immersions, i.e. immersions with
parallel second fundamental form, and classified such immersions (see [24], [5], [35]
for example). On the other hand, Deprez and others introduced the concept of semi-
parallel immersions, i.e. immersions such that the curvature tensor annihilates the
second fundamental form. A complete classification is not yet available, but some
particular results are known, see, for example, [12], [13], [26], [27], [22], [3].

In this paper we introduce the concept of pseudo-parallel immersions into a space
form QNðcÞ of constant curvature c, as the extrinsic analogue of pseudo-symmetric
manifolds, and as a direct generalization of semi-parallel immersions. Those immer-
sions are defined by the condition RðX5YÞ � a ¼ fðX5YÞ � a, where a is the sec-
ond fundamental form and f is a smooth real valued function on the manifold. In
Section 2 of this paper, we give the basic definitions. In Section 3 we classify the
pseudo-parallel hypersurfaces: They are either quasi-umbilic hypersurfaces or cyclids
of Dupin. In Section 4 we study pseudo-parallel surfaces proving, among other
results, that they are isotropic or have flat normal bundle. In Section 5 we study
pseudo-parallel immersions (of dimensiond 3), with maximal first normal bundle,
proving that such an immersion is a Veronese immersion into some sphere, if the
manifold is complete and fc 0. Finally, in Section 6 we introduce a Jordan triple
system in connection with every pseudo-parallel immersion and as a consequence we
prove a topological classification for some complete simply connected manifolds that
admit a pseudo-parallel immersion in QNðcÞ with c þ f > 0 and fd 0.

Some of those results were announced in [2] where a di¤erent proof of 6.3 was also
given.

2 Basic definitions

We will give some basic notations since they are standard only up to sign.
Let Mn be an n-dimensional Riemannian manifold with Levi–Civita connection

‘ and curvature tensor RðX ;YÞ ¼ ½‘X ;‘Y � � ‘½X ;Y �. Let QnþpðcÞ be an ðn þ pÞ-
dimensional space form with constant curvature c, connection ‘ and curvature tensor
R. Let f : Mn ! QnþpðcÞ be an isometric immersion with normal bundle nM, and
second fundamental form a : TM nTM ! nM. If x is a normal vector at x A M, we
denote by Ax : TxM ! TxM, hAxðX Þ;Yi ¼ haðX ;Y Þ; xi the Weingarten operator
in the x direction and by ‘?, R? the normal connection and its curvature.

We will identify a 2-form o A L2ðTxMÞ with the antisymmetric endomorphism
hoðXÞ;Yi ¼ oðX ;Y Þ. Given X ;Y A TxM, the bi-vector X5Y will be identified
with the 2-form

X5YðZÞ ¼ hX ;ZiY � hY ;ZiX :

By the well known symmetries of R the linear extension of the map RðX5YÞ ¼
RðX ;YÞ is a well defined symmetric endomorphism of L2ðTxMÞ.

Define actions of a 2-form o

ðo � RÞðX5YÞ ¼ ½o;RðX5Y Þ� � RðoðXÞ5YÞ � RðX5oðYÞÞ

ðo � aÞðX ;YÞ ¼ �aðoðX Þ;YÞ � aðX ;oðY ÞÞ
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so that

RðX5Y Þ � R ¼ ð½‘X ;‘Y � � ‘½X ;Y �ÞR:

It is natural to define an action of the curvature tensor of the ambient space on the
second fundamental form, by

RðX5YÞ � a ¼ ð½‘X ;‘Y � � ‘½X ;Y �Þa ¼ R?ðX ;YÞ � aþ RðX5YÞ � a:

We recall that Mn is said to be

– Locally symmetric (L.S., for short) if ‘R ¼ 0.

– Semi-symmetric (S.S., for short) if RðX5YÞ � R ¼ 0 for all X ;Y A TMn.

– Pseudo-symmetric (P.S., for short) if RðX5YÞ � R ¼ fðX5Y Þ � R for all
X ;Y A TMn where f is a real valued smooth function on Mn.

The correspondent concepts for an isometric immersion f : Mn ! QnþpðcÞ are the
following: f is said to be

– Locally parallel (L.P., for short) if ð‘XaÞðY ;ZÞ :¼ ‘?
X ½aðY ;ZÞ� � að‘XY ;ZÞ�

aðY ;‘XZÞ ¼ 0 for all X ;Y ;Z A TMn (extrinsically symmetric in Ferus’ terminol-
ogy).

– Semi-parallel (S.P., for short) if RðX5YÞ � a ¼ 0 for all X ;Y A TMn.

– Pseudo-parallel (P.P., for short) if RðX5YÞ � a ¼ fðX5Y Þ � a for all X ;Y A
TMn, where f is a real valued smooth function on Mn.

The basic Gauss, Codazzi–Mainardi and Ricci equations give that the extrinsic
conditions (L.P., S.P., P.P. respectively) imply the corresponding intrinsic conditions
(L.S., S.S., P.S. respectively), see [24], [5], [13], [2].

3 Pseudo-parallel hypersurfaces

Let f : Mn ! Qnþ1ðcÞ be a hypersurface of a space form, x a unit normal vector and
fe1; . . . ; eng an orthonormal basis of the tangent space of M which diagonalizes the
Weingarten operator Ax. Let li ¼ hAxei; eii be the principal curvatures in the x di-
rection.

From the Gauss equations

Rðei5ejÞ ¼ ðc þ liljÞej5ei;

we get, for i0 j:

½Rðei5ejÞ � a�ðei5ejÞ ¼ ðlj � liÞðlilj þ cÞx; ½ðei5ejÞ � a�ðei5ejÞ ¼ ðli � ljÞx:

Therefore, in the above situation we have
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Proposition 3.1. If f is P.P., then

ðlilj þ c þ fÞðli � ljÞ ¼ 0 for all i0 j: ð1Þ

In particular, f has at most two distinct principal curvatures and, if exactly two, their

product is �ðc þ fÞ.

The above condition (1) is also su‰cient for P.P., up to the smoothness of f. For
example, suppose that Ax has, at every x A M, at most two distinct eigenvalues lðxÞ
and mðxÞ. Define fðxÞ ¼ �ðc þ lðxÞmðxÞÞ. Then f is a continuous function which is
smooth outside the boundary of the set U ¼ fx A M : lðxÞ ¼ mðxÞg, of umbilic
points. If f is smooth then the immersion is P.P.

In particular, if n ¼ 2, f is the curvature, hence is smooth. So every surface in
Q3ðcÞ is P.P.

Let f : Mn ! Qnþ1 be an hypersurface and U JM be the set of umbilic points.
We recall that f is quasi-umbilic if it has a principal curvature of multiplicity at least
ðn � 1Þ. Quasi-umbilic hypersurfaces are conformally flat and, if nd 4, conformal
flatness is equivalent to quasi-umbilicity. Compact quasi-umbilic hypersurfaces are
completely described in [23], for nd 3. Also we recall that f is a cyclid of Dupin if it
has exactly two distinct principal curvatures, each of which is constant in the direc-
tion of the corresponding eigenspace (see also [8] pp. 151–152). Such hypersurfaces
have been studied intensively, see [30] for example.

In the above terms we have the following description of P.P. hypersurfaces:

Theorem 3.2. A P.P. hypersurface of a space form is either quasi-umbilic or a cyclid of

Dupin.

Proof. Consider the connected components of MnnU . They are open and the princi-
pal curvatures have constant multiplicity in each of them. Suppose there is such a
connected component, C, which is not quasi-umbilic. Then neither principal cur-
vature is simple and, as a standard consequence of Codazzi’s equations, C is a cyclid
of Dupin. Suppose C0Mn and let x0 be a boundary point. Then x0 A U . By a result
of Pinkall (see [30]), there is a conformal transformation A which sends C onto an
open part of a compact cyclid of Dupin Mn. This cyclid may have singular points,
but not near Aðx0Þ since such a point is a regular point of AðMnÞ. Since conformal
transformations preserve umbilics, Aðx0Þ is an umbilic of Mn, which is absurd. So
C ¼ Mn.

Some Examples. 1. The condition for an hypersurface of Rnþ1 to be S.P. is that each
point is either umbilic or has two distinct principal curvatures, one being 0 (see [13]).
Therefore it is easy to construct examples of P.P. hypersurfaces which are not S.P.
See also [2] for examples in Qnþ1ðcÞ for c0 0.

2. Consider the cone over the Cli¤ord torus T 2 HS3. This is a minimal hyper-
surface of R4 with three distinct principal curvatures, one being 0. This hypersurface
is S.S. and by Theorem 2 of [21] it is not S.P., in particular, is not P.P. Moreover, it is
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a conformally flat hypersurface which is not pseudo-umbilic, a phenomenon which
can occur only in dimension 3.

3. Consider R5 as the space of 3� 3 symmetric matrices of trace zero. Then the
regular orbits of the action of SOð3Þ by conjugation are isoparametric hypersurfaces
of S4 with three distinct principal curvatures, the so called Cartan hypersurfaces. In
this family there is a minimal one, with one zero principal curvature. This one is P.S.
(see [19]) but not S.S., because c þ f ¼ 0. Hence this is an example of a P.S. hyper-
surface which is not P.P.

Remark 3.3. An immediate consequence of Theorem 5.1 and Theorem 3.1(i) of [18] is
the following: If f : Mn ! Qnþ1ðcÞ is a P.S. hypersurface with c þ f0 0, then f is

P.P.

4 Pseudo-parallel surfaces

We start observing that any 2-dimensional manifold is S.S., hence P.S. with any f. In
fact, in this case, RðX5Y Þ � R ¼ 0 ¼ ðX5Y Þ � R.

Consider now an isometric immersion f : M 2 ! QNðcÞ of a 2-dimensional mani-
fold into an N-dimensional space form.

Let fe1; e2g be an orthonormal basis for the tangent space and set aij ¼ aðei; ejÞ,
where a is the second fundamental form of f . Also K denotes the Gaussian curvature
and R? ¼ R?ðe1; e2Þ the normal curvature operator. With this notation the condition
of pseudo-parallelism can be written as:

R?a11 ¼ �2ðK þ fÞa12 ¼ �R?a22; ð2Þ

R?a12 ¼ ðK þ fÞða11 � a22Þ: ð3Þ

In particular, if R? ¼ 0, then f is P.P. with f ¼ �K (or any f if the point is um-
bilic). We recall that a S.P. surface with R? ¼ 0 is either umbilic or flat. So any
non-umbilic, non-flat surface with vanishing normal curvature is an example of a
P.P. surface which is not S.P.

Next we study P.P. surfaces with non-vanishing normal curvature. We recall
that an isometric immersion f : Mn ! QNðcÞ is l-isotropic, l : Mn ! R, if
kaðX ;XÞk ¼ lðpÞ for all p A M and all X A TpM with kXk ¼ 1 (see [29]).

Proposition 4.1. An isometric immersion f : M 2 ! QNðcÞ with non-vanishing normal

curvature is P.P. if and only if it is l-isotropic. Moreover, for such an immersion we

have:

1. K þ f > 0,

2. l2 ¼ 4K þ 3f� c > 0,

3. kHk2 ¼ 3K þ 2f� cd 0,

where H :¼ 1
2 ða11 þ a22Þ is the mean curvature vector.
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Proof. Suppose that f is P.P. From the Ricci equations we get for i ¼ 1; 2:

ha12; aiiiða11 � a22Þ þ ½ha22 � a11; aiiiþ ð�1Þ iþ12ðfþ KÞ�a12 ¼ 0;

ðka12k2 þ ðfþ KÞða11 � a22Þ þ ha22 � a11; a12ia12 ¼ 0:

Since the normal curvature does not vanish, a12 and a11 � a22 are linearly indepen-
dent. It follows that

ha12; aiii ¼ 0; ha22 � a11; aiii ¼ ð�1Þ i2ðfþ KÞ; i ¼ 1; 2; ð4Þ

ka12k2 ¼ K þ f > 0: ð5Þ

From the Gauss equation we get

kaiik2 ¼ 4K þ 3f� c > 0; i ¼ 1; 2;

ha11; a22i ¼ 2K þ f� c;

ka11 � a22k2 ¼ 4ðfþ KÞ > 0;

kHk2 ¼ 3K þ 2f� c

and the claim follows.
Conversely, suppose that f is l-isotropic and set X ¼ cos ye1 þ sin ye2. Computing

d
dy
kaðX ;XÞk2 ¼ 0 for y ¼ 0; p4, we get that haii; a12i ¼ 0. Then from the equations of

Gauss and Ricci, we can see that

R?a11 ¼
2

3
ðK � c � l2Þa12 ¼ �R?a22;

R?a12 ¼
1

3
ð�K þ c þ l2Þða11 � a22Þ:

Therefore f is f-P.P. for f ¼ ðc þ l2 � 4KÞ=3.

We recall that a minimal isotropic immersion is called superminimal (see [7]). Then
we have:

Corollary 4.2. Let f : M 2 ! Q4ðcÞ be an isometric immersion with R? 0 0. Then f is

P.P. if and only f is superminimal. Moreover, if f is constant, then K ¼ c
3 > 0, and

f ðMÞ is a piece of a Veronese surface.
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Proof. First observe that an isotropic immersion in codimension two is minimal. If f
is constant, then K is constant and the claim follows from a theorem of Kenmotsu
(see [25]).

Remark 4.3. By a theorem of Chern, every minimal immersion of a topological 2-
sphere in S4ð1Þ is superminimal (see [10]). So any such immersion is P.P. Moreover if
the curvature is not constant, the immersion is not semi-parallel.

Finally we will study a class of P.P. surfaces in 5-dimensional space forms. We
start with the following example (see [6]):

Example. Consider the immersion T : R2 ! S5ðcÞ:

Tðx; yÞ ¼ 2ffiffiffiffiffi
6c

p cos u cos v; cos u sin v;

ffiffiffi
2

p

2
cos 2u; sin u cos v; sin u sin v;

ffiffiffi
2

p

2
sin 2u

 !

where u ¼
ffiffi
c
2

p
x, v ¼

ffiffiffiffi
6c

p

2 y. A direct calculation shows that T is superminimal with

l2 ¼ c
2 (see [32]). In particular, by Proposition 4.1 T is P.P. with f ¼ c

2.

Theorem 4.4. Let f : M 2 ! Q5ðcÞ be a P.P. immersion of a connected, complete sur-

face, with f constant non-negative and c þ f > 0. Then we have one of the following

possibilities:

1. f is a totally umbilic immersion;

2. f is an immersion with flat normal bundle and constant Gaussian curvature

K ¼ �fc 0;

3. f ðM 2Þ is a Veronese surface in some totally umbilic S4ð~ccÞHQ5ðcÞ;

4. f ðM 2ÞHS5ðcÞ is congruent to the torus of the example above.

Proof. If the normal curvature is identically zero, then f is totally umbilic or
fþ K ¼ 0 at the non-umbilic points, by (2) and (3). But f constant implies K con-
stant on all M and therefore K þ f is constant on all M. Suppose now there is a point
x A M such that R?ðxÞ0 0. Let C be the connected component of the set of points
where the normal curvature does not vanish, which contains x. We proceed similarly
as in the proof of Theorem 3.7 of [3]. The calculations are quite horrible, but, after a
few pages, we arrive at the conclusion that the curvature has to be constant near x

(which is evident if H ¼ 0). In particular, by (4), ka12k is a non-zero constant in C. If
y is an accumulation point of C; y B C, then R?ðyÞ ¼ 0. We can therefore choose an
orthonormal basis fe1; e2g in TyM such that a12 ¼ 0. Extending this frame smoothly
to a neighborhood of y, we get a contradiction. So R?ðzÞ0 0 for all z A M, hence f

is l-isotropic with l constant and the conclusion follows from the classification of
such surfaces in [32].
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5 Pseudo-parallel immersions with maximal first normal bundle

In this section we will study an extension of Theorem 4.4, for the case nd 3. Let
f : Mn ! QNðcÞ be a P.P. immersion. We recall that the first normal space at
x A Mn is defined as

N1ðxÞ ¼ spanfaðX ;Y Þ : X ;Y A TxMgJ nxM:

Fix an orthonormal basis fe1; . . . ; eng of TxM and let

aij :¼ aðei; ejÞ; R?
ij :¼ R?ðei; ejÞ; Rijkl :¼ hRðei; ejÞek; eli:

The condition of pseudo-parallelism can be written as

R?
ij ðaklÞ �

Xn

m¼1

ðRijkmaml þ RijlmamkÞ þ fðdikajl � djkail þ dilajk � dilaikÞ ¼ 0:

Theorem 5.1. Let f : Mn ! QNðcÞ, nd 3, be a P.P. immersion.

1. If dimN1ðxÞ ¼ 1
2 nðn þ 1Þ for all x A Mn, then

(a) M has constant sectional curvature K and K þ f > 0;

(b) f is l isotropic with l2 ¼ 4K þ 3f� c, and pseudo-umbilic, i.e. AH ¼ kHk2 Id
and kHk2 ¼ 2ðnþ1Þ

n
K þ nþ2

n
f� c;

(c) The set b ¼ fH; a11 � a22; . . . ; aðn�1Þðn�1Þ � ann; a12; . . . aðn�1Þng is an orthogonal

basis of the first normal space;

(d) The normal curvature is given by

R?
ij aii ¼ �2ðK þ fÞaij;

R?
ij aij ¼ �ðK þ fÞðajj � aiiÞ;

R?
ij akk ¼ 0 ¼ R?

ij akl :

2. If H ¼ 0 and dimN1ðxÞ ¼ 1
2 nðn þ 1Þ � 1 for all x A Mn, then f and K are constant

and

f ¼ nc � 2ðn þ 1ÞK
ðn þ 2Þ :

Proof. With the equation

R?
ij akl ¼

Xn

m¼1

ðhamj ; akliaim � haim; akliamjÞ

of Ricci, the condition of pseudo-parallelism becomes
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0 ¼
Xn

m¼1

ðhaim; akliamj � hamj; akliaim þ Rijkmaml þ RijlmakmÞ

� fðpÞðdikajl þ dilajk � djkail � djlaikÞ: ð6Þ

Using the Gauss equation and the fact that the set g ¼ fa11 � a22; . . . ;
aðn�1Þðn�1Þ � ann; a12; . . . aðn�1Þng is linearly independent, we obtain, after some calcu-
lations, taking in account the various possibilities for the indeces i; j; k; l:

Rijkl ¼ Rijjk ¼ 0; Kij ¼ K12 :¼ K ;

kaiik2 ¼ 4K þ 3f� c; haii; ajji ¼ 2K þ f� c;

kHk2 ¼ 2ðn þ 1Þ
n

K þ ðn þ 2Þ
n

f� c;

hH; aiji ¼ 0; hH; aii � ajji ¼ 0;

haij; akki ¼ haij ; aiki ¼ haij ; aiii ¼ haij; akli ¼ 0;

kaijk2 ¼ K þ f;

kaii � ajjk2 ¼ 4ðK þ fÞ;

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð7Þ

for i, j, k distinct and all l. From the first equation above, it follows that
hRðX ;Y ÞZ;Xi ¼ 0 for all orthonormal vectors X ;Y ;Z A TxM and this, together
with Schur’s lemma implies that M has constant curvature K, and K þ f > 0, again
by the above. This proves 1(a). From the second equation above we have

kaðX ;X Þk2 ¼ 4K þ 3f� c ¼ l2 > 0;

for all unit vectors X, and so f is l-isotropic. The second part of 1(b) and 1(c) follow
directly again from the formulas above. For part 2 we observe that the formulas
above are still valid and the conclusion follows easily.

We observe that if fc 0, then M has constant positive curvature, so, if M is
complete, it is compact. For such a submanifold we have the following:

Theorem 5.2. Let f : Mn ! QNðcÞ, nd 3, be a P.P. immersion of a complete mani-

fold with fc 0 and dimN1ðxÞ ¼ 1
2 nðn þ 1Þ. Then f is parallel. In particular it is a

Veronese embedding into some totally umbilic hypersurface of a totally geodesic

Qð1=2Þnðnþ3ÞðcÞ.

Proof. As observed above M is compact. We will show that f ¼ 0 computing the
Laplacian of a suitable function and using the Hopf lemma. Let us fix some nota-
tions. Let fe1; . . . ; en; enþ1; . . . ; eNg be a local orthonormal frame field, adapted to the

immersion, with enþ1 ¼ H
kHk ; enþ2 ¼ a11�a22

ka11�a22k ; . . . ; enðnþ3Þ=2 ¼
aðn�1Þn
kaðn�1Þnk (see the set g

above). We write hs
ij :¼ haij ; esi for the components of the second fundamental form,
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i; j A f1; . . . ; ng, s A fn þ 1; . . . ;Ng, hs
ijk :¼ hð‘ek

aÞðei; ejÞ; esi ¼ ‘ek
hs
ij for the

components of the covariant derivative of a, and hs
ijkl :¼ hð‘el

‘ek
aÞðei; ejÞ; esi ¼

‘el
hs
ijk ¼ ‘el

‘ek
hs
ij for the components of the second derivative of a. Then f is P.P. if

and only if

hs
ijkl ¼ hs

ijlk þ f½dkihs
lj � dlih

s
kj þ dkjh

s
il � dljh

s
ik�: ð8Þ

Consider now the function g :¼ kak2 � nkHk2 ¼ ðn � 1Þðn þ 2ÞðK þ fÞ, where
kak2 ¼

P
ijsðhs

ij Þ
2 is the length of the second fundamental form. Then, setting

H s ¼ hH; esi, As ¼ Aes , we have (see [9], pp. 90–91)

1

2
DðgÞ ¼

X
ijs

hs
ij ð‘ei

‘ej
H sÞ þ ncðkak2 � nkHk2Þ

�
X
st

½ðtraceðAs � AtauÞÞ2 � k½As;At�k2 þ nH t traceðAs � At � AsÞ

þ k‘ak2 � nkHkDðkHkÞ � nk‘ðkHkÞk2; ð9Þ

where k‘ak2 ¼
P

ijksðhs
ijkÞ

2. By the pseudo-umbilicity of f , the first term of the sum

reduces to nkHkDðkHkÞ and:

k‘ak2 ¼
X

ijk; i0 j

X
s>nþ1

ðhs
ijkÞ

2 þ
X

ijk; i0 j

ðhnþ1
ijk Þ2 þ nk‘ðkHkÞk2: ð10Þ

By the choice of the frame and equations (7), the Weingarten operators of the im-
mersion are given by:

Að1;1Þ ¼ kHk Id;

Aði; iÞ ¼ ðK þ fÞ1=2ðE11 � EiiÞ; i ¼ 2; . . . ; n;

Aði; jÞ ¼ ðK þ fÞ1=2ðEij þ EjiÞ; 1c i < jc n;

As ¼ 0;
1

2
ðn þ 1Þðn þ 2Þ < scN;

where ði; jÞ ¼ minfi; jg þ 1
2 ji � jjð2n þ 1� ji � jjÞ þ n, and Eij is the matrix with 1 in

the entry i; j and zero elsewhere. From this we get

X
s; t

½traceðAs � AtÞ�2 ¼ n2kHk4 þ 2ðn � 1Þðn þ 2ÞðK þ fÞ2;

X
s; t

k½As;At�k2 ¼ 2nðn � 1Þðn þ 2ÞðK þ fÞ2;

X
s; t

H t traceðAs � At � AsÞ ¼ n2kHk4 þ nðn � 1Þðn þ 2ÞðK þ fÞkHk2:
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Substituting in (5), and using (6), we get:

1

2
DðgÞ ¼ �nðn � 1Þðn þ 2ÞðK þ fÞfþ

X
i; j;k

X
s>nþ1

ðhs
ijkÞ

2 þ
X
i; j;k

ðhnþ1
ijk Þ2: ð11Þ

Since fc 0, we have DðgÞd 0 and hence, since M is compact, DðgÞ ¼ 0. In particu-
lar, from (8), f ¼ 0 and ‘a ¼ 0.

Remark 5.3. It is natural to ask if the compactness condition is essential in the theo-
rem above, at least to conclude that f is constant. In fact we can prove that this is the
case if n ¼ 3;N ¼ 9. However our proof involves such lengthy computations that
is practically impossible to generalize it to higher dimensions even using computer
programming.

6 Pseudo-parallel immersions and Jordan triple systems

Let H be a real N-dimensional inner product space, EHH an n-dimensional sub-
space and a : ElE ! E? be a symmetric bilinear map. For x A E?;X ;Y A E, we
define:

1. ax : E ! E, haxX ;Yi ¼ haðX ;Y Þ; xi,

2. r?ðX ;YÞ : E? ! E?, r?ðX ;YÞx ¼ aðX ; axYÞ � aðY ; axX Þ.

Let c A R. The triple system for ðH; cÞ with initial data ðE; aÞ is the bilinear map

l : ElE ! EndðEÞ; lðX ;Y Þ ¼ sðX ;YÞ þ rðX ;Y Þ

where

sðX ;YÞZ ¼ chX ;YiZ þ aaðX ;YÞZ; rðX ;YÞZ ¼ sðY ;ZÞX � sðX ;ZÞY :

We recall that the above triple system is called a Jordan triple system, J.T.S. for
short, if

r?ðX ;Y ÞaðZ;WÞ ¼ aðrðX ;Y ÞZ;WÞ þ aðZ; aðX ;YÞWÞ:

Let f : Mn ! QNðcÞ be an isometric immersion with second fundamental form a.
For x A M we consider the triple system for ðH ¼ TxQ

NðcÞ; cÞ with initial data
ðE ¼ TxM; aÞ. Using the basic equations, the above triple system may be written as

lðX ;YÞ ¼ chX ;Yi Idþ AaðX ;YÞ þ RðX ;YÞ:

It follows easily that the above system is a J.T.S. if and only if the immersion is
S.P. For P.P. immersions we have a similar characterization. Consider the triple sys-
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tem lf for ðH ¼ TxQ
NðcÞ; c þ fÞ with initial data ðE ¼ TxM; aÞ. This triple system

may be written as

lfðX ;Y Þ ¼ ðc þ fÞhX ;Yi Idþ AaðX ;YÞ þ RðX ;Y Þ � fðX5YÞ:

A simple calculation gives

Lemma 6.1. The immersion is P.P. if and only if the triple system lf is a J.T.S.

The above fact has several interesting consequences and we will discuss two of
them. The first, punctual in nature, is similar to the semi-parallel case. The second,
global in nature, seems new even for the semi-parallel case.

Lemma 6.2. Let f : Mn ! QNðcÞ be a P.P. immersion. If f is pseudo-umbilic, then for

every p in M and X ;Y A TpM we have

1. ðc þ fðpÞ þ kHk2Þððc þ fðpÞÞhX ;Yi2 þ kaðX ;YÞk2Þd 0,

2. ðc þ fðpÞ þ kHk2ÞhRðX ;YÞX � fðpÞðX5Y ÞX ;Yic 0.

Moreover equality holds in the first (respectively in the second ) inequality if and only if

AaðX ;Y Þ ¼ �ðc þ fðpÞÞhX ;Yi IdTpM (respectively RðX ;YÞ ¼ fðpÞðX5YÞÞ.

Proof. Recall that f is pseudo-umbilic if

haðX ;YÞ;Hi ¼ hX ;YihH;Hi;

for all tangent vectors X ;Y . Since lf ¼ s þ r is a J.T.S., it follows from Theorem 1,
pp. 268 of [4] that

traceðsðsðX ;YÞX ;Y ÞÞd 0 and traceðsðrðX ;Y ÞX ;YÞÞc 0 ð12Þ

for every p A M and X ;Y A TpM and equalities hold if and only if sðX ;YÞ ¼ 0 and
rðX ;Y Þ ¼ 0, respectively. Thus if fe1; . . . ; eng is an orthonormal basis of TpM we
have

1

n
traceðsðsðX ;Y ÞX ;YÞÞ ¼ 1

n

Xn

i¼1

hsðsðX ;YÞX ;YÞei; eii

¼ ðc þ fðpÞÞhsðX ;Y ÞX ;Yiþ haðsðX ;YÞX ;YÞ;Hi

¼ ðc þ fðpÞÞhX ;Yi2 þ ðc þ fðpÞÞkaðX ;YÞk2

þ ðc þ fðpÞÞhX ;YihaðX ;YÞ;Hiþ hAaðX ;YÞX ;AHYi

¼ ðc þ fðpÞ þ kHk2Þððc þ fðpÞÞhX ;Yi2 þ kaðX ;Y Þk2Þ;

which gives the first inequality. The second one follows from analogous computa-
tions starting from traceðsðrðX ;YÞX ;Y ÞÞc 0.
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Corollary 6.3. Let f : Mn ! QNðcÞ be a P.P. immersion. If f is minimal and

c þ fc 0, then f is totally geodesic.

Theorem 6.4. Let f : Mn ! QNðcÞ be a P.P. immersion, Mn complete and simply

connected, with c þ f > 0, fd 0. Then Mn is a Riemannian product of manifolds of

the following type:

1. Manifolds homeomorphic to spheres,

2. Manifolds di¤eomorphic to Euclidean spaces,

3. Manifolds biholomorphic to complex projective planes,

4. Symmetric spaces of compact type.

Moreover, if f is not identically zero, then Mn is of the first or second type.

Proof. It is known that for all J.T.S. l with positive constant c, there is a standard
embedding of a symmetric R-space f : Mn ! QNðcÞ and a point x A Mn such that
the associated J.T.S. at that point is the given one (see [24]). Applying this fact to our
situations we get that, for p A Mn, the system lfðpÞ is realizable as the J.T.S. of
a symmetric R-space in SNðc þ fðpÞÞ. In particular the operator R ¼ R � f Id :
L2TpM ! L2TpM is the curvature operator of a symmetric space of compact type,
hence a non-negative operator. In particular R ¼ R þ fðpÞ is non-negative, and
positive if fðpÞ is positive. The conclusion follows from the classification of complete
simply-connected manifolds with non-negative curvature operator (see [MN] for a
survey on the subject).
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