Perp-systems and partial geometries

Frank De Clerck, Mario Delanote*, Nicholas Hamilton and Rudolf Mathon^{\dagger}

(Communicated by T. Grundhöfer)

Abstract. A perp-system $\mathscr{R}(r)$ is a maximal set of *r*-dimensional subspaces of PG(N,q) equipped with a polarity ρ , such that the tangent space of an element of $\mathscr{R}(r)$ does not intersect any element of $\mathscr{R}(r)$. We prove that a perp-system yields partial geometries, strongly regular graphs, two-weight codes, maximal arcs and *k*-ovoids. We also give some examples, one of them yielding a new pg(8, 20, 2).

1 Introduction

1.1 Strongly regular graphs and partial geometries. A strongly regular graph denoted by $srg(v, k, \lambda, \mu)$ is a graph Γ with v vertices, which is regular of degree k and such that any two adjacent vertices have exactly λ common neighbours while any two different non-adjacent vertices have exactly μ common neighbours. If Γ or its complement is a complete graph, then Γ is called a *trivial* strongly regular graph.

Let \mathscr{S} be a connected partial linear space of order (s, t), i.e. every two different points are incident with at most one line, every point is incident with t + 1 lines, while every line is incident with s + 1 points. The *incidence number* $\alpha(x, L)$ of an antiflag (x, L) (i.e. x is a point which is not incident with the line L) is the number of points on L collinear with x, or equivalently the number of lines through x concurrent with L.

A *partial geometry* with parameters s, t, α , which we denote by $pg(s, t, \alpha)$, is a partial linear space of order (s, t) such that for all antiflags (x, L) the incidence number $\alpha(x, L)$ is a constant $\alpha \neq 0$. A *semipartial geometry* with parameters s, t, α, μ , which we denote by $spg(s, t, \alpha, \mu)$, is a partial linear space of order (s, t) such that for all antiflags (x, L) the incidence number $\alpha(x, L)$ equals 0 or a constant $\alpha \neq 0$ and such that for any two points which are not collinear, there are $\mu > 0$ points collinear with both points. Partial geometries were introduced by Bose [2] and semipartial geometries by Debroey and Thas [7].

^{*}The author is a Research Fellow supported by the Flemish Institute for the Promotion of Scientific and Technological Research in Industry (IWT), grant No. IWT/SB/971002.

[†]Supported by NSERC grant OGP0008651

Partial geometries can be divided into four (non-disjoint) classes:

- 1. the partial geometries with $\alpha = 1$, the generalized quadrangles [13];
- 2. the partial geometries with $\alpha = s + 1$ or dually $\alpha = t + 1$; that is the 2-(v, s + 1, 1) designs and their duals;
- 3. the partial geometries with $\alpha = s$ or dually $\alpha = t$; the partial geometries with $\alpha = t$ are the *Bruck nets* of order s + 1 and degree t + 1;
- 4. *proper* partial geometries with $1 < \alpha < \min\{s, t\}$.

For the description of some examples and for further references see [6]. In this article we will only consider the proper partial geometries.

The *point graph* of a partial geometry is the graph whose vertices are the points of the geometry, two distinct vertices being adjacent whenever they are collinear.

The point graph of a partial geometry $pg(s, t, \alpha)$ is an

$$\operatorname{srg}\Big((s+1)\frac{st+\alpha}{\alpha}, s(t+1), s-1+t(\alpha-1), \alpha(t+1)\Big).$$

A strongly regular graph Γ with these parameters (and $t \ge 1$, $s \ge 1$, $1 \le \alpha \le \min\{s+1, t+1\}$) is called a *pseudo-geometric* (s, t, α) -graph. If the graph Γ is indeed the point graph of at least one partial geometry then Γ is called *geometric*.

1.2 Linear representations and SPG reguli. Let \mathscr{K} be a set of points in PG(N, q) and embed this PG(N, q) as a hyperplane into a PG(N + 1, q). Define a graph $\Gamma_N^*(\mathscr{K})$ with vertices the points of PG $(N + 1, q) \setminus PG(N, q)$. Two vertices are adjacent whenever the line joining them intersects PG(N, q) in an element of \mathscr{K} . This graph is a regular graph with $v = q^{N+1}$ and valency $k = (q-1)|\mathscr{K}|$. Delsarte [8] proved that this graph is strongly regular if and only if there are two integers w_1 and w_2 such that the complement of any hyperplane of PG(N, q) meets \mathscr{K} in w_1 or w_2 points and then the other parameters of the graph are $\lambda = k - 1 + (k - qw_1 + 1)(k - qw_2 + 1)$ and $\mu = k + (k - qw_1)(k - qw_2) = q^{1-N}w_1w_2$. By regarding the coordinates of the elements of \mathscr{K} as columns of the generator matrix of a code, the property that the complement of any hyperplane meets \mathscr{K} in w_1 or w_2 points is equivalent to the property that the code has two weights w_1 and w_2 . For an extensive discussion see [3].

In [19] a new construction method for semipartial geometries is introduced. An *SPG regulus* is a set \mathscr{R} of *r*-dimensional subspaces $\pi_1, \ldots, \pi_k, k > 1$ of PG(N, q) satisfying the following conditions.

- **(SPG-R1)** $\pi_i \cap \pi_j = \emptyset$ for all $i \neq j$.
- **(SPG-R2)** If PG(r + 1, q) contains π_i then it has a point in common with either 0 or α (> 0) spaces in $\Re \setminus \{\pi_i\}$; if this PG(r + 1, q) has no point in common with π_i for all $j \neq i$, then it is called a *tangent space* of \Re at π_i .
- **(SPG-R3)** If a point x of PG(N,q) is not contained in an element of \mathscr{R} , then it is contained in a constant number $\theta \geq 0$ of tangent (r+1)-spaces of \mathscr{R} .

Embed PG(N,q) as a hyperplane in PG(N+1,q), and define an incidence structure $\mathscr{S} = (\mathscr{P}, \mathscr{L}, I)$ of points and lines as follows. Points of \mathscr{S} are the points of $PG(N+1,q) \setminus PG(N,q)$. Lines of \mathscr{S} are the (r+1)-dimensional subspaces of PG(N+1,q) which contain an element of \mathscr{R} , but are not contained in PG(N,q). Incidence is that of PG(N+1,q). Thas [19] proved that \mathscr{S} is a semipartial geometry $spg(q^{r+1}-1,k-1,\alpha,(k-\theta)\alpha)$. If $\theta = 0$, then $\mu = k\alpha$ and hence \mathscr{S} is a partial geometry $pg(q^{r+1}-1,k-1,\alpha)$.

Recently, Thas [21] proved that if N = 2r + 2 and a set $\Re = {\pi_1, ..., \pi_k}$ of *r*-dimensional spaces in PG(2*r* + 2, *q*) satisfies (SPG-R1) and (SPG-R2) then

$$\alpha(k(q^{r+2}-1) - (q^{2r+3}-1)) \leqslant k^2(q^{r+1}-1) - k(q^{2r+2} + q^{r+1}-2) + q^{2r+3} - 1.$$
(1)

If equality holds then \mathcal{R} is an SPG regulus, and conversely.

A *linear representation* of a partial linear space $\mathscr{S} = (\mathscr{P}, \mathscr{L}, I)$ of order (s, t) in AG(N + 1, s + 1) is an embedding of \mathscr{S} in AG(N + 1, s + 1) such that the line set \mathscr{L} of \mathscr{S} is a union of parallel classes of lines of AG(N + 1, s + 1) and hence the point set \mathscr{P} of \mathscr{S} is the point set of AG(N + 1, s + 1). The lines of \mathscr{S} define in the hyperplane at infinity Π_{∞} a set \mathscr{K} of points of size t + 1. A common notation for a linear representation of a partial linear space is $T_N^*(\mathscr{K})$. Note that the point graph of $T_N^*(\mathscr{K})$ is the graph $\Gamma_N^*(\mathscr{K})$. For an extensive discussion see [5]. If $T_N^*(\mathscr{K})$ is a partial geometry then every line of Π_{∞} intersects \mathscr{K} in either 0 or $\alpha + 1$ points and either N = 1 and \mathscr{K} is any subset of order $\alpha + 1$ of the line at infinity, or N = 2 and \mathscr{K} is a maximal arc, or \mathscr{K} is the complement of a hyperplane of PG(N, q) and hence $\alpha = s = q - 1$. See [18] for more details.

2 Perp-systems

Let ρ be a polarity in PG(N, q) ($N \ge 2$). Let n ($n \ge 2$) be the rank of the related polar space P. A partial *m*-system M of P, with $0 \le m \le n-1$, is a set $\{\pi_1, \ldots, \pi_k\}$ (k > 1) of totally singular *m*-dimensional spaces of P such that no maximal totally singular space containing π_i has a point in common with an element of $M \setminus \{\pi_i\}, i = 1, 2, \ldots, k$. If the set M is maximal then M is called an *m*-system. For the maximal size of M for each of the polar spaces P and for more information we refer to [14, 16].

We introduce an object which has very strong connections with *m*-systems and SPG reguli, not only because of the geometrical construction but also because of other similarities of their properties such as bound (1) for SPG reguli.

Again, let ρ be a polarity of PG(N, q). Define a partial *perp-system* $\Re(r)$ to be any set $\{\pi_1, \ldots, \pi_k\}$ of k (k > 1) mutual disjoint *r*-dimensional subspaces of PG(N, q) such that no π_i^{ρ} meets an element of $\Re(r)$. Hence each π_i is non-singular with respect to ρ . Note that $N \ge 2r + 1$.

Theorem 2.1. Let $\mathscr{R}(r)$ be a partial perp-system of PG(N, q) equipped with a polarity ρ . *Then*

$$|\mathscr{R}(r)| \leqslant \frac{q^{(N-2r-1)/2}(q^{(N+1)/2}+1)}{q^{(N-2r-1)/2}+1}.$$
(2)

Proof. Consider a partial perp-system $\Re(r) = {\pi_1, ..., \pi_k}$ (k > 1) of *r*-dimensional subspaces π_i of PG(N, q). We count in two different ways the number of ordered pairs $(p_i, \pi^{\rho}), \pi \in \Re(r)$ and p_i a point of π^{ρ} . If t_i is the number of (N - r - 1)-dimensional spaces π^{ρ} $(\pi \in \Re(r))$ containing p_i then

$$\sum t_i = |\mathscr{R}(r)| \frac{q^{N-r} - 1}{q-1}.$$

Next we count in two different ways the number of ordered triples $(p_i, \pi^{\rho}, \pi'^{\rho})$, with $\pi, \pi' \in \mathscr{R}(r)$ $(\pi \neq \pi')$ and p_i a point of $\pi^{\rho} \cap \pi'^{\rho}$. Then we obtain

$$\sum t_i(t_i - 1) = |\mathscr{R}(r)|(|\mathscr{R}(r)| - 1)\frac{q^{N-2r-1} - 1}{q-1}.$$

The number of points p_i equals

$$|I| = \frac{q^{N+1}-1}{q-1} - |\mathscr{R}(r)| \frac{q^{r+1}-1}{q-1}.$$

Then the inequality $|I| \sum t_i^2 - (\sum t_i)^2 \ge 0$ yields after some calculation the bound in the statement of the theorem.

Corollaries. If equality holds in (2) then $\Re(r)$ is called a perp-system. This is equivalent to the fact that every point p_i of PG(N,q) not contained in an element of $\Re(r)$ is incident with a constant number \overline{t} of (N - r - 1)-dimensional spaces π^{ρ} with

$$\overline{t} = \frac{\sum t_i}{|I|} = q^{(N-2r-1)/2}$$

Assume that N = 2r + 1, then a perp-system contains $\frac{q^{r+1}+1}{2}$ elements. In this case q has to be odd and every point not contained in an element of the perp-system is incident with exactly one space π^{ρ} ($\pi \in \mathcal{R}(r)$), which is an r-dimensional space.

Assume N > 2r + 1, then the right hand side of (2) is an integer if and only if $\frac{N+1}{N-2r-1}$ is an odd integer, say 2l + 1. This is equivalent to

$$N = 2r + 1 + \frac{r+1}{l}.$$

Hence l *divides* r + 1 *and*

$$2r+1 \leqslant N \leqslant 3r+2. \tag{3}$$

If N is even then equality in (2) implies that q is a square.

Assume that N = 3r + 2 then a perp-system contains $q^{(r+1)/2}(q^{r+1} - q^{(r+1)/2} + 1)$ elements. Hence if r is even then q has to be a square.

Theorem 2.2. Let $\Re(r)$ be a perp-system of PG(N,q) equipped with a polarity ρ and let $\overline{\Re(r)}$ denote the union of the point sets of the elements of $\Re(r)$. Then $\overline{\Re(r)}$ has two intersection sizes with respect to hyperplanes.

Proof. Suppose that p is a point of PG(N,q) which is not contained in an element of $\Re(r)$. Then p is incident with $q^{(N-2r-1)/2}(N-r-1)$ -dimensional spaces π^{ρ} ($\pi \in \Re(r)$). Therefore the hyperplane p^{ρ} contains

$$h_1 = \frac{q^{r+1} - 1}{q - 1} q^{(N-2r-1)/2} + \frac{q^r - 1}{q - 1} \left(\frac{q^{(N-2r-1)/2} (q^{(N+1)/2} + 1)}{q^{(N-2r-1)/2} + 1} - q^{(N-2r-1)/2} \right)$$

points of $\overline{\mathscr{R}(r)}$.

Suppose that p is contained in an element of $\Re(r)$. Since all elements of $\Re(r)$ are non-singular, we obtain that p^{ρ} contains

$$h_2 = \frac{q^r - 1}{q - 1} \frac{q^{(N-2r-1)/2}(q^{(N+1)/2} + 1)}{q^{(N-2r-1)/2} + 1}$$

points of $\overline{\mathcal{R}(r)}$.

Remark. Theorem 2.2 implies that $\Re(r)$ yields a two-weight code and a strongly regular graph $\Gamma^*(\overline{\Re(r)})$ [3]. One easily checks that this graph is a pseudo-geometric

$$\left(q^{r+1}-1,\frac{q^{(N-2r-1)/2}(q^{(N+1)/2}+1)}{q^{(N-2r-1)/2}+1}-1,\frac{q^{r+1}-1}{q^{(N-2r-1)/2}+1}\right)\text{-}\mathsf{graph}.$$

Recall that the existence of the perp-system $\Re(r)$ implies that $\frac{N+1}{N-2r-1}$ is odd, say 2l + 1, which implies that $\frac{2(r+1)}{N-2r-1} = 2l$, hence is even; so $\frac{q^{r+1}-1}{q^{(N-2r-1)/2}+1}$ is a positive integer.

Theorem 2.3. Let $\mathscr{R}(r)$ be a perp-system of PG(N,q) equipped with a polarity ρ . Then the graph $\Gamma^*(\overline{\mathscr{R}(r)})$ is geometric.

Proof. The vertices of $\Gamma^*(\overline{\mathscr{R}(r)})$ are the points of $PG(N + 1, q) \setminus PG(N, q)$. The incidence structure \mathscr{S} with this set of points as point set and with lines the (r + 1)-dimensional subspaces of PG(N + 1, q) which contain an element of $\mathscr{R}(r)$ but that are not contained in PG(N, q), is a partial linear space with point graph $\Gamma^*(\overline{\mathscr{R}(r)})$. It is well-known that the point graph $\Gamma^*(\overline{\mathscr{R}(r)})$ of \mathscr{S} being pseudo-geometric implies that \mathscr{S} is a partial geometry. For a proof of this result we refer to [10].

Remark. Actually $\Re(r)$ is an SPG regulus with $\theta = 0$. In Section 5 we will come back to these partial geometries for the extremal cases of *N*. However we will first discuss a few properties that are similar to those for *m*-systems.

3 Perp-systems and intersections with generators

Assume that the polarity ρ is a non-singular symplectic polarity in PG(N, q), hence N is odd. Let $|\Sigma(W(N,q))|$ denote the number of generators of the symplectic polar space W(N,q) (see for example [12] for more information on classical polar spaces and their notation). Then, as for *m*-systems, we can calculate the intersection of a perp-system with a generator of W(N,q).

Theorem 3.1. Let $\Re(r)$ be a perp-system of the finite classical polar space W(N,q) and let $\overline{\Re(r)}$ denote the union of the point sets of the elements of $\Re(r)$. Then for any maximal isotropic subspace (also called generator) G of W(N,q)

$$|G \cap \overline{\mathscr{R}(r)}| = \frac{q^{(N-2r-1)/2}(q^{r+1}-1)}{(q^{(N-2r-1)/2}+1)(q-1)}.$$

Proof. Recall that $|\Sigma(W(N,q))| = (q^{(N+1)/2} + 1)|\Sigma(W(N-2,q))|$. We count in two ways the number of ordered pairs (p, G_i) with $p \in \overline{\mathscr{R}(r)}$ and G_i a generator of the polar space W(N,q) such that $p \in G_i$. If $t_i = |G_i \cap \overline{\mathscr{R}(r)}|$ then

$$\sum t_i = |\mathscr{R}(r)| \frac{q^{r+1} - 1}{q - 1} |\Sigma(W(N - 2, q))|$$

= $\frac{q^{(N-2r-1)/2}(q^{(N+1)/2} + 1)(q^{r+1} - 1)}{(q^{(N-2r-1)/2} + 1)(q - 1)} (q^{(N-1)/2} + 1)|\Sigma(W(N - 4, q))|.$

Next we count in two ways the number of ordered triples (p, p', G_i) , with p and p' different points of $\overline{\mathscr{R}(r)}$ contained in the generator G_i . Then we obtain

$$\sum t_i(t_i - 1) = |\mathscr{R}(r)| \frac{q^{r+1} - 1}{q - 1} \left(\frac{q^r - q}{q - 1} + (|\mathscr{R}(r)| - 1) \frac{q^r - 1}{q - 1} \right) |\Sigma(W(N - 4, q))|$$
$$= |\mathscr{R}(r)| \frac{q^{r+1} - 1}{q - 1} \left(|\mathscr{R}(r)|) \frac{q^r - 1}{q - 1} - 1 \right) |\Sigma(W(N - 4, q))|.$$

And so

$$\sum t_i^2 = \frac{q^{(N-2r-1)/2}(q^{(N+1)/2}+1)(q^{r+1}-1)}{(q^{(N-2r-1)/2}+1)(q-1)} \\ \cdot \left(q^{(N-1)/2} + \frac{q^{(N-2r-1)/2}(q^{(N+1)/2}+1)(q^r-1)}{(q^{(N-2r-1)/2}+1)(q-1)}\right) |\Sigma(W(N-4,q))|.$$

Finally we obtain for the cardinality of the index set

$$|I| = |\Sigma(W(N,q))| = (q^{(N+1)/2} + 1)(q^{(N-1)/2} + 1)|\Sigma(W(N-4,q))|.$$

An easy calculation now shows that $|I| \sum t_i^2 - (\sum t_i)^2 = 0$. Therefore

$$t_i = \bar{t} = \frac{\sum t_i}{|I|} = \frac{q^{(N-2r-1)/2}(q^{r+1}-1)}{(q^{(N-2r-1)/2}+1)(q-1)}.$$

Remark. The counting arguments of the proof of Theorem 3.1 do not work for the other classical polar spaces.

Let *P* be a finite classical polar space of rank $n \ge 2$. In [20] Thas introduced the concept of a *k*-ovoid of *P*, that is a point set \mathscr{K} of *P* such that each generator of *P* contains exactly *k* points of \mathscr{K} . Note that a *k*-ovoid with k = 1 is an ovoid. By Theorem 3.1 a perp-system $\mathscr{R}(r)$ of W(N,q) yields a *k*-ovoid with $k = \frac{q^{(N-2r-1)/2}(q^{r+1}-1)}{(q^{(N-2r-1)/2}+1)(q-1)}$. In Section 5 we will give an example of a perp-system $\mathscr{R}(1)$ in $W_5(3)$ yielding a new 3-ovoid.

4 Perp-systems arising from a given one

The next lemma is commonly known but we give a proof for the sake of completeness.

Lemma 4.1. Let *B* be a non-degenerate reflexive sesquilinear form on the vector space $V(N + 1, q^n)$ of dimension N + 1 over the field $GF(q^n)$, and let *T* be the trace map from $GF(q^n)$ to GF(q). Then the map $B' = T \circ B$ is a non-degenerate reflexive sesquilinear form on the vector space V((N + 1)n, q).

Proof. The fact that B' is sesquilinear on V((N + 1)n, q) follows immediately from B being sesquilinear and T being additive.

Assume that x is some non-zero element of the vector space $V(N + 1, q^n)$. Then the map $y \mapsto B(x, y)$ maps the vector space *onto* $GF(q^n)$. Since there exist elements of $GF(q^n)$ that have non-zero trace, there must be some y such that $T \circ B(x, y) \neq 0$. Hence B' is non-degenerate.

It remains to be shown that B' is reflexive, that is B'(x, y) = 0 implies B'(y, x) = 0. By the classification of the non-degenerate reflexive sesquilinear forms, B is either symmetric (B(x, y) = B(y, x)), anti-symmetric (B(x, y) = -B(y, x)) or Hermitean $(B(x, y) = B(y, x)^{\sigma}$ for some $\sigma \in \operatorname{Aut}(\operatorname{GF}(q))$. In the first and second case it is obvious that $B' = T \circ B$ is reflexive. When B is Hermitean, then $B'(x, y) = T \circ B(x, y) = T \circ (B(y, x)^{\sigma}) = (T \circ B(y, x))^{\sigma} = B'(y, x)^{\sigma}$, and so is reflexive.

Remark. It is well known that a non-degenerate reflexive sesquilinear form on a vector space $V(N+1,q^n)$ gives rise to a polarity of the related projective space $PG(N,q^n)$ and conversely.

Note however that a polarity of PG(Nn + n - 1, q) obtained from a polarity of $PG(N, q^n)$ by composition with the trace map is not necessarily of the same type as

the original polarity. For instance a Hermitean polarity may under certain conditions give rise to an orthogonal polarity. See [15, Section 9] for examples.

Theorem 4.2. Let $\Re(r)$ be a perp-system with respect to some polarity of $PG(N, q^n)$ then there exists a perp-system $\Re'((r+1)n-1)$ with respect to some polarity of PG((N+1)n-1,q).

Proof. Let ρ be a polarity such $\Re(r)$ is a perp-system with respect to ρ . Let *B* be the non-degenerate reflexive sesquilinear form on $V(N + 1, q^n)$ associated with ρ . Then $B' = T \circ B$ induces as in the previous lemma a polarity of PG((N + 1)n - 1, q). The elements of $\Re(r)$ can be considered as ((r + 1)n - 1)-dimensional subspaces of PG((N + 1)n - 1, q). Denote this set of subspaces by $\Re'((r + 1)n - 1)$. We show that $\Re'((r + 1)n - 1)$ is a perp-system of PG((N + 1)n - 1, q) with respect to the polarity ρ' induced by B'.

First note that the size of $\mathscr{R}'((r+1)n-1)$ is the correct size to be a perp-system of PG((N+1)n-1,q). Then consider an element M of $\mathscr{R}(r)$ and let M' be the corresponding element of $\mathscr{R}'((r+1)n-1)$. The tangent space M^{\perp_B} of M is defined to be

$$M^{\perp_B} = \{ x \in \operatorname{PG}(N, q^n) \mid B(x, y) = 0 \text{ for all } y \in M \}.$$

It has projective dimension N - r - 1 over $GF(q^n)$, and considered as a subspace of PG((N+1)n - 1, q) has projective dimension (N - r)n - 1. Also

$$M'^{\perp_{B'}} = \{ x \in PG((N+1)n - 1, q) \mid B'(x, y) = 0 \text{ for all } y \in M' \}$$

has projective dimension (N - r)n - 1 over GF(q). Now if x is such that B(x, y) = 0then B'(x, y) = 0, so it follows that the tangent space of M' with respect to B' is exactly the tangent space of M with respect to B considered as a subspace of PG((N + 1)n - 1, q). Hence since M^{\perp_B} is disjoint from the set of points of elements of $\Re(r)$, also $M'^{\perp_{B'}}$ is disjoint from the set of points of elements of $\Re'((r+1)n-1)$. \Box

Remark. It is possible to calculate the type of the polar space obtained by taking the trace of a reflexive sesquilinear form (cf. [15]). But in some sense perp-systems do not care about the type of the underlying polar space since the size of a perp-system is only dependent on the dimension of the projective space it is embedded in. Actually the perp-system $\Re(1)$ in PG(5,3) that we describe in the next section is related to a symplectic polarity as well as to an elliptic one.

5 Examples

We recall, see (3), that if $\Re(r)$ is perp-system in PG(N,q) then $2r + 1 \le N \le 3r + 2$. The authors have no knowledge of examples for N not equal to one of the bounds.

5.1 Perp-systems in PG(2r + 1, q). Assume that N = 2r + 1, then a perp-system $\Re(r)$ in PG(2r + 1, q) yields a

$$pg\left(q^{r+1}-1,\frac{q^{r+1}-1}{2},\frac{q^{r+1}-1}{2}\right),$$

which is a Bruck net of order q^{r+1} and degree $\frac{q^{r+1}+1}{2}$. Note that q is odd and that a Bruck net of order q^{r+1} and degree $\frac{q^{r+1}+1}{2}$ coming from a perp system $\Re(r)$ in PG(2r+1,q) is in fact a net that is embeddable in an affine plane of order q^{r+1} . Actually, assume that Φ is an r-spread of PG(2r+1,q), then $|\Phi| = q^{r+1} + 1$ and taking half of the elements of Φ yields a net with requested parameters. However this does not immediately imply that there exists a polarity ρ such that these $\frac{q^{r+1}+1}{2}$ elements form a perp system with respect to ρ . However examples do exist. Take an arbitrary involution without fix points on the line at infinity $PG(1, q^{r+1})$ of $AG(2, q^{r+1})$. Using Theorem 4.2 this yields a perp-system $\mathscr{R}'(r)$ in PG(2r+1, q).

5.2 Perp-systems in PG(3r + 2, q). We will now describe perp-systems $\Re(r)$ in PG(3r+2,q). Note that the partial geometry related to such a perp-system is a

$$pg(q^{r+1}-1, (q^{r+1}+1)(q^{(r+1)/2}-1), q^{(r+1)/2}-1).$$

Such a partial geometry has the parameters of a partial geometry of type $T_2^*(\mathscr{K})$ with \mathscr{K} a maximal arc of degree $q^{(r+1)/2}$ in a projective plane $PG(2, q^{r+1})$. As we will see in what follows there do exist partial geometries related to perp-systems and isomorphic to a $T_2^*(\mathscr{K})$ while there exist partial geometries coming from perp-systems $\mathscr{R}(r)$ in PG(3r+2,q) that are not isomorphic to a $T_2^*(\mathscr{K})$.

Example 1. A perp-system $\mathscr{R}(0)$ in PG(2, q^2) equipped with a polarity ρ is equivalent to a self-polar maximal arc \mathscr{K} of degree q in the projective plane PG(2, q^2); i.e. for every point $p \in \mathcal{K}$, the line p^{ρ} is an exterior line with respect to \mathcal{K} . The partial geometry is a $pg(q^2 - 1, (q^2 + 1)(q - 1), q - 1)T_2^*(\mathscr{K})$. Note that a necessary condition for the existence of a maximal arc of degree d in PG(2,q) is $d \mid q$; this condition is sufficient for q even [9, 17], while non-trivial maximal arcs (i.e. d < q) do not exist for *q* odd [1].

Self-polar maximal arcs do exist as is proven in the next lemma.

Lemma 5.1. In PG $(2, q^2)$ there exists a self-polar maximal arc of degree q for all even q.

Proof. We show that certain maximal arcs constructed by Denniston admit a polarity. In what follows the Desarguesian plane $PG(2, 2^e)$ is represented via homogeneous coordinates over the Galois field $GF(2^e)$. Let $\xi^2 + \alpha\xi + 1$ be an irreducible polynomial over $GF(2^e)$, and let \mathscr{F} be the set of conics given by the pencil

$$F_{\lambda}: x^2 + \alpha xy + y^2 + \lambda z^2 = 0, \quad \lambda \in \operatorname{GF}(2^e) \cup \{\infty\}.$$

Then F_0 is the point (0, 0, 1), F_{∞} is the line $z^2 = 0$ (which we shall call the *line at in-finity*). Every other conic in the pencil is non-degenerate and has nucleus F_0 . Further, the pencil is a partition of the points of the plane. For convenience, this pencil of conics will be referred to as the *standard pencil*.

In 1969, Denniston showed that if A is an additive subgroup of $GF(2^e)$ of order n, then the set of points of all F_{λ} for $\lambda \in A$ forms a $\{2^e(n-1) + n; n\}$ -arc \mathcal{K} , i.e. a maximal arc of degree n in PG(2, 2^e) [9].

In [11, Theorem 2.2.4], Hamilton showed that if \mathscr{F} is the standard pencil of conics, A an additive subgroup of $GF(2^e)$, and \mathscr{K} the Denniston maximal arc in $PG(2, 2^e)$ determined by A and \mathscr{F} , then the dual maximal arc \mathscr{K}' of \mathscr{K} has points determined by the standard pencil and additive subgroup

$$A' = \{ \alpha^2 s \, | \, s \in \operatorname{GF}(2^e)^* \text{ and } T(\lambda s) = 0 \text{ for each } \lambda \in A \} \cup \{ 0 \},$$

where T denotes the trace map from $GF(2^e)$ to GF(2).

In the case when *e* is even and $GF(q^2) = GF(2^e)$, it follows that if *A* is the additive group of GF(q) then $A' = \alpha^2 A$. Simple calculations then show that the homology matrix

$$H = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

is a collineation that maps the Denniston maximal arc determined by A to that determined by A'. Furthermore, $HH^{-t} = H^{-t}H = I$, where H^{-t} is the inverse transpose of H. It follows that the function, mapping the point (x, y, z) to the line with coordinate (x, y, z)H, is a polarity that maps the Denniston maximal arc of degree q determined by the additive group A of GF(q) to its set of external lines.

By expanding over a subfield we can obtain an SPG regulus (with $\theta = 0$) from a maximal arc \mathscr{H} , but the corresponding partial geometry is isomorphic to $T_2^*(\mathscr{H})$.

A self-polar maximal arc of degree q^n in PG $(2, q^{2n})$ is a perp-system $\Re(0)$. Applying Theorem 4.2 gives a perp-system with r = n - 1 in PG $(3n - 1, q^2)$ and a perp-system with r = 2n - 1 in PG(6n - 1, q).

Example 2. A perp-system $\Re(1)$ in PG(5, q) equipped with a polarity ρ will yield a $pg(q^2 - 1, (q^2 + 1)(q - 1), q - 1)$. The fourth author found by computer search such a system M in PG(5, 3) yielding a pg(8, 20, 2).

We represent the set M as follows. A point of PG(5,3) is given as a triple *abc* where a, b and c are in the range 0 to 8. Taking the base 3 representation of each digit then gives a vector of length 6 over GF(3). Each of the following columns of 4 points corresponds to a line of the set in PG(5,3).

310 610

This set M is the unique perp-system with respect to a symplectic polarity in PG(5,3) but also with respect to an elliptic orthogonal polarity. The set has many interesting properties.

- (i) The stabilizer of M in PG(5,3) has order 120 and has two orbits on M of size 24 and 60 containing 6 and 15 lines, respectively. The group G of the pg(8, 20, 2) has order 120 \cdot 729, acts transitively on the points and has two orbits on the lines. Since each line of M generates a spread of lines in pg(8, 20, 2) it contains a parallelism. The subgroup of G fixing this parallelism is isomorphic to S_5 .
- (ii) There are 7 solids S_i in PG(5,3) which contain 3 lines of M each. The S_i meet in a common line L (disjoint from the lines of M).
- (iii) Every point of $PG(5,3)\setminus M$ is incident with a unique line with 3 points in M. These 280 lines meet each of the 21 lines of M 40 times and each pair of lines 4 times, hence forming a 2-(21,3,4) design.
- (iv) The set *M* contains exactly 21 lines of PG(5, 3), these lines form a partial spread. PG(5, 3)*M* contains exactly 21 solids of PG(5, 3), these solids intersect mutually in a line, and there are exactly 3 solids through any point of PG(5, 3)*M*. An exhaustive computer search established that any set of 21 solids in PG(5, 3) satisfying the above properties is isomorphic to the complement of our set *M*.

Note that the related partial geometry pg(8, 20, 2) has the same parameters as one of type $T_2^*(\mathscr{K})$, with \mathscr{K} a maximal arc of degree 3 in PG(2, 9) which can not exist by [1], but that was already proved for this small case by Cossu [4]. The graph $\Gamma_5^*(\overline{M})$ which is a srg(729, 168, 27, 42) seems to be new although graphs with the same parameters are known.

References

- S. Ball, A. Blokhuis, F. Mazzocca, Maximal arcs in Desarguesian planes of odd order do not exist. *Combinatorica* 17 (1997), 31–41. MR 98h:51014 Zbl 880.51003
- R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs. *Pacific J. Math.* 13 (1963), 389–419. MR 28 #1137 Zbl 118.33903
- [3] R. Calderbank, W. M. Kantor, The geometry of two-weight codes. Bull. London Math. Soc. 18 (1986), 97–122. MR 87h:51022 Zbl 582.94019

- [4] A. Cossu, Su alcune proprietà dei {k, n}-archi di un piano proiettivo sopra un corpo finito. *Rend. Mat. e Appl.* (5) 20 (1961), 271–277. MR 25 #3419 Zbl 103.38106
- [5] F. De Clerck, H. Van Maldeghem, On linear representations of (α, β)-geometries. European J. Combin. 15 (1994), 3–11. MR 95a:51003 Zbl 794.51005
- [6] F. De Clerck, H. Van Maldeghem, Some classes of rank 2 geometries. In: Handbook of incidence geometry, 433–475, North-Holland 1995. MR 96i:51008 Zbl 823.51010
- [7] I. Debroey, J. A. Thas, On semipartial geometries. J. Combin. Theory Ser. A 25 (1978), 242–250. MR 80a:05050 Zbl 399.05012
- [8] P. Delsarte, Weights of linear codes and strongly regular normed spaces. *Discrete Math.* 3 (1972), 47–64. MR 46 #3375 Zbl 245.94010
- [9] R. H. F. Denniston, Some maximal arcs in finite projective planes. J. Combin. Theory Ser. A 6 (1969), 317–319. MR 39 #1345 Zbl 167.49106
- W. Haemers, A new partial geometry constructed from the Hoffman-Singleton graph. In: *Finite geometries and designs (Proc. Conf., Chelwood Gate, 1980)*, 119–127, Cambridge Univ. Press 1981. MR 82j:05036 Zbl 463.05025
- [11] N. Hamilton, *Maximal arcs in projective planes and associated structures in projective spaces.* PhD thesis, University of Western Australia, 1995.
- [12] J. W. P. Hirschfeld, J. A. Thas, General Galois geometries. Oxford Univ. Press 1991. MR 96m:51007 Zb1 789.51001
- [13] S. E. Payne, J. A. Thas, *Finite generalized quadrangles*. Pitman, Boston 1984. MR 86a:51029 Zb1 551.05027
- [14] E. E. Shult, J. A. Thas, *m*-systems of polar spaces. J. Combin. Theory Ser. A 68 (1994), 184–204. MR 95h:51005 Zbl 824.51004
- [15] E. E. Shult, J. A. Thas, Constructions of polygons from buildings. *Proc. London Math. Soc.* (3) 71 (1995), 397–440. MR 96c:51023 Zbl 835.51002
- [16] E. E. Shult, J. A. Thas, *m*-systems and partial *m*-systems of polar spaces. *Des. Codes Cryptogr.* 8 (1996), 229–238. MR 97c:51004 Zbl 877.51005
- [17] J. A. Thas, Construction of maximal arcs and partial geometries. *Geometriae Dedicata* 3 (1974), 61–64. MR 50 #1931 Zbl 285.50018
- [18] J. A. Thas, Partial geometries in finite affine spaces. *Math. Z.* 158 (1978), 1–13. MR 58 #303 Zbl 359.50018
- [19] J. A. Thas, Semipartial geometries and spreads of classical polar spaces. J. Combin. Theory Ser. A 35 (1983), 58–66. MR 85a:51006 Zbl 517.51015
- [20] J. A. Thas, Interesting pointsets in generalized quadrangles and partial geometries. *Linear Algebra Appl.* 114/115 (1989), 103–131. MR 90b:51015 Zbl 663.05014
- [21] J. A. Thas, SPG systems and semipartial geometries. Adv. Geom. 1 (2001), 229–244.

Received 10 November, 2000

- F. De Clerck, M. Delanote, N. Hamilton, Department of Pure Mathematics and Computer Algebra, Ghent University, Galglaan 2, B-9000 Gent, Belgium Email: {fdc,md,nick}@cage.rug.ac.be
- R. Mathon, Department of Computer Science, The University of Toronto, Ontario, Canada M5S3G4 Email: combin@cs.toronto.edu