
Adv. Geom. 1 (2001), 245±261 Advances in Geometry
( de Gruyter 2001
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Abstract. We study smooth projective varieties X JPN of dimension 3, such that there are two
very ample invertible sheaves L, M on X, and there exist two sections of L, M which intersect
along a bielliptic curve C. We give a classi®cation of such threefolds X under some hypotheses
on the degree of C with respect to the two embeddings given by L, M.
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Introduction

The question of classifying projective varieties which possess hyperplane sections with
special properties is a classical one in Algebraic Geometry (e.g. see [7], [11], [21], [13]).
In particular a problem that has been widely studied also in recent times is that of
varieties with hyperelliptic, bielliptic or trigonal curve-sections (e.g. see [25], [6], [5],
[12], [22], [4], [2], [9], [10]).

A natural generalization of this kind of problem is to classify projective varieties
having particular curves C as intersection of sections of di¨erent very ample line
bundles, according to the following de®nition:

De®nition 1. Let X be a smooth, irreducible scheme of dimension d, de®ned over an
algebraically closed ®eld k of characteristic zero. Let L1; . . . ;Lr be very ample line
bundles on X. We say that a subscheme V JX , of dimension d ÿ r, is an abstract

complete intersection of L1; . . . ;Lr in X, ab.c.i. for short, if IV HOX is globally
generated by r sections A1 A H 0�X;L1�; . . . ;Ar A H 0�X;Lr�.

* Both authors have been partially supported by MURST in the framework of the National
Project ``Geometria Algebrica, Algebra Commutativa ed Aspetti Computazionali''; for the
second author: ``Lavoro svolto con il ®nanziamento dell'Univ. di Bologna. Finanziamento
Speciale alle Strutture''.



A classi®cation of the possibilities for X when d � 3 and C is a smooth hyperelliptic
curve is given in [8], which is what inspired us for the present paper.

To be precise, in this paper we consider the case of triples �X;L;M� such that:

��� X is a smooth irreducible scheme with dim X � 3, L and M are two very ample
line bundles such that there is an irreducible, smooth, bielliptic curve C HX

which is an ab.c.i. in X of two smooth, irreducible sections A A jMj and B A jLj.
We will always assume that M0L, in fact when M �L we have that C is a

curve-section of X (in the embedding given by L) and this case has already been
studied in [10]. Moreover, in view of [8], we assume that C is not hyperelliptic
(hence, in particular, we assume that for the genus g�C� of C we have g�C� > 2).

In order to introduce our results and to give some examples of the varieties we
are concerned with, let us introduce some notation. Let FV denote the restriction of
a sheaf F on X to a subscheme V JX . We de®ne dA �L2

A , dB �M2
B , of course

we have also dA �ML2 and dB �LM2. Without loss of generality we can always
suppose dA d dB.

Then a ®rst example of this kind of varieties is o¨ered by:

Example 1. Let X GP3 and consider a (canonical) bielliptic plane quartic curve

C HH of genus 3, where H is a plane in P3. Of course C is the complete intersection
of H and a quartic surface, hence if we put L � O�4�, M � O�1� we are in the situ-
ation of ���, and here dA � 16, dB � 4.

We will be able to describe the triples �X;L;M� as in ��� when either dA d 18 or
dB c 8; see the statements of Theorems A, B and C.

Notice that if dA d 19 (Theorem A) then X is a ®bration over a curve (either elliptic
or bielliptic); this fact allows us to extend our classi®cation to the case dim X d 4, see
the statement of Theorem A 0.

The case dA � 18 described in Theorem B seems to be a threshold, in fact for
dA c 18 more kinds of varieties satisfying the condition in ��� do appear.

Example 2. Let X GP3 and consider a (canonical) bielliptic curve C of genus 4
which is the complete intersection of a cone L over a plane (smooth) cubic curve
and a quadric not passing through the vertex of L. Hence if L � O�3�, M � O�2� we
have a situation as in ��� with dA � 18, dB � 12.

We remark that for dA � 18, we cannot a½rm that all the varieties listed in
Theorem B actually possess a curve C as in ���. On the other hand, we can see that
there are examples of threefolds as in ��� with 9c dB c dA c 17:

Example 3. Let p : X ! P3 be the blowing up of P3 at a point P, then
Pic X GZhH;Ei, where H is the strict transform of a generic plane in P3 (not
through P) and E is the exceptional divisor. We have that M � OX �2H ÿ E� and
L � OX �3H ÿ E� are very ample on X and we can choose sections A;B of them (see
Example 2) such that their intersection is a bielliptic curve C of genus 4. In this
case we have dB � 11, dA � 17.
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Example 4. Let X JP6 be a double covering p : X ! Y of the rational normal
threefold Y GP1 � P2 ! P5, rami®ed along a divisor of type OY �2; 2� (X is a Fano
threefold with Pic X GZ2, see e.g. [19]). Then deg X � 6 and X can be viewed as
obtained by taking a cone over Y from a point in P6 and intersecting it with a
quadric not passing through its vertex. Let MG p��OY �1; 1�� and LG p��OY �1; 2��.
We have OY �a; b� � O2

Y �1; 1� � a� 2b, hence OY �1; 2� � O2
Y �1; 1� � 5 and the generic

intersection OY �1; 2� � OY �1; 1� is an elliptic normal curve G5 in P4. Our curve C,
an ab.c.i. of M, L, will be a double covering of G5, hence it will be a (canonical)
bielliptic curve in P5.

Here we have dB � 10 and dA � 16 (since OY �a; b�2 � OY �1; 1� � b2 � 2ab).

The main tool we will use in the paper is adjunction theory, via the classi®cation of
varieties of small degree in [16], [17] and [18], the results in [20] and those in [9] about
surfaces with bielliptic curve sections, also taking into account the new results in [1].

In the followingGwill denote isomorphisms, while@will denote linear equivalence
of divisors. For the notation not de®ned in the paper we refer to [15].

We would like to thank the referee for the substantial help in correcting mistakes
and imperfections in the ®rst draft of the paper.

1 Preliminaries

Let us recall some useful results about bielliptic curves. The ®rst lemma will give us
a bound for the degree of an embedded bielliptic curve (for a reference see [9], 1.5
and 1.6).

Lemma 1.1. Let C be a bielliptic curve of genus gd 3 which is birational to some non-

degenerate curve of degree d in Pn. Then it must be d d n� gÿ 1. In particular, no

bielliptic plane curve is smooth, unless g � 3.

For bielliptic curves in P3 we have the following result.

Lemma 1.2. Let C be a smooth bielliptic curve in P3 such that either:

1. C is contained in a quadric surface, or

2. C is a complete intersection.

Then C is a complete intersection of a quadric and a cubic, i.e., a canonical curve of

genus 4 and degree 6.

Proof. Case 1. If the quadric containing C is smooth and C is a divisor of type �a; b�,
then C has degree a� b and genus �aÿ 1��bÿ 1�; by Lemma 1.1, this is possible,
for non-hyperelliptic curves, only if �a; b� � �3; 3�. If the quadric containing C is a
cone, things do not change much; there are two possible cases according to whether C

contains the vertex of the cone or not. Taking into account the degree and genus
formulae (e.g. see [15], p. 352) we get a contradiction with Lemma 1.1, except in the
case that the curve is the complete intersection of the cone with a cubic not passing
through its vertex.
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Case 2. If C is a complete intersection of two surfaces of degrees a and b, then
deg C � ab, and the genus of C, from the exact sequence

0! OP3�ÿaÿ b� ! OP3�ÿa�lOP3�ÿb� ! IC ! 0;

is g�C� � ab�a� b ÿ 4�=2� 1. Again by Lemma 1.1 the only possibility is that a � 2,
b � 3.

Let X be as in ���. By the Hodge Index Theorem we have

L2
A M2

A c �LA �MA�2; L2
B M

2
B c �LB �MB�2

from which we get (on X )

�L2M�M3 c �L �M2�2; �M2L�L3 c �L2 �M�2

i.e.,

dAM
3 c d 2

B ; dBL
3 c d 2

A : �1:1�

Remark. From (1.1) and dA d dB we trivially have M3 c dB.

Lemma 1.3. Let �X;M;L� and C be as in ���, then dA d 6.

Proof. By Lemma 1.1 (since g�C�d 3, nd 2) we have dA d 4, but the case dA � 5
cannot occur since we should have nc 3 and there are no smooth curves of degree 5
and genusd 3 in P3 or P2. If dA � 4, then, by Lemma 1.1 again, C must be a smooth
plane quartic, hence A should be a quartic surface in P3 and the situation is as in
Example 1: X � P3, L � OP3�1�, M � OP3�4�. In this case we would have dB � 16,
contradicting our hypothesis that dA d dB (of course we can have this kind of situ-
ation interchanging the roles of L and M).

Lemma 1.4. Let �X;M;L� and C be as in ��� and let h0�X;M� � n� 1, i.e.,
M embeds X into Pn, then

dB d n� g�C� ÿ 2d n� 1:

Proof. The second inequality is trivial since g�C�d 3. For the ®rst inequality, we
know that C HPnÿ1, because C � AVB is contained in a hyperplane section A of X;
in order to obtain the ®rst inequality by applying Lemma 1.1, it is enough to show
that C is non-degenerate in Pnÿ1. Suppose the contrary, then also B is contained in a
hyperplane section, i.e., we can write jAj � jB� B 0j where B 0 is e¨ective, and we get

B2�B� B 0� �L2M � dA d dB �LM2 � B�B� B 0�2;

hence we should have B3�B2B 0dB3� 2B2B 0 �BB 02, i.e., 0dBB 0�B�B 0� �ABB 0,
which is impossible since A and B are very ample and B 0 is e¨ective.
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2 The case dA dddd 18

The following holds:

Theorem A. Let �X;L;M� and C be as in ��� with dA d 19. Then either:
A.1. X is a scroll over C with respect to both polarizations, i.e., X is a P2 bundle

over C and on every ®ber F we have �F ;LF �G �F ;MF �G �P2;OP 2�1��.
A.2. X is a P2-bundle over an elliptic curve E and for every ®ber F GP2 we have

MF GOP 2�1� (i.e., �X;M� is a scroll), while LF GOP 2�2�.
A.3. X is a quadric bundle over an elliptic curve E and for every ®ber F GP1 � P1

we have MF GLF GOP1�P1�1; 1�.

Proof. By [9] we know that the possibilities for �A;LA� are the following:

1. �A;LA� is a scroll on a bielliptic curve C,

2. �A;LA� is a conic bundle on an elliptic curve E.

In case 1, from [3], Theorem 5.5.3, we have that the ®ber bundle structure on A

extends to one on X (in fact the only possible cases in which this does not happen are
when A is a quadric, which is not our case). In particular this gives that X is a
P2-bundle over the curve C. More speci®cally, [3], Theorem 7.9.5 gives that �X;M�
is a scroll as required.

By denoting with f a ®ber of A, we have

OP1�1� � �LA�f � �LF �f � OP 2�a�j f � OP1�a�;

hence a � 1, i.e., �X;L� is a scroll, as required.
In case 2, we proceed very much as in [8], case 3.3; we sketch here an outline of

the reasoning. The conic bundle structure p : A! E is given by the Remmert±Stein
factorization of fKA�LA

, and by [24], Propositions 3.1 and 3.2, the bundle KX�L�M
is spanned with the only possible exception (in our case) that X GP�E�, where E is a
rank 3 vector bundle on C and L, M are of the form xE �Li, i � 1; 2, where xE is the
tautological line bundle and the Li's are pull backs of line bundles on C. In this case
X is a scroll with respect to both polarizations, and we are in case A.1 of our theorem.

When KX �L�M is spanned, p is induced by a morphism P : X ! E (given by
the Remmert±Stein factorization of fKX�L�M). Let F be a general ®ber of P, then F

is a smooth surface and, by [23], Corollary 1.5.2, �F ;AF � � �F ;MF � is one of the
following:

a) (P2;OP 2�1�);
b) (P2;OP 2�2�);
c) �Fe; �s� bf��, where s is a section of minimal degree s2 � ÿe and f is a ®bre.
In case a) it follows from [27, Claim p. 194] that every ®ber is isomorphic to

�P2;OP 2�1��, i.e., that �X;M� is a scroll over P1 and we are in case A.2.
In case b) we have that MF GOP 2�t� for some td 1, and recalling that �A;LA� is

a conic bundle necessarily we have t � 1. So up to interchanging the roles of L and
M we are again in case A.2.
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In case c), since MF is very ample, we must have �s� bf� � sd 1, i.e., bd 1� e,
and, for the same reason, if LF G as� bf, we must have a > 0 and ÿea� b d 1.
Since A is a conic bundle we have MF �LF � ÿea� b � ba � 2 which implies e � 0
and a� b� b � 1, i.e., LF �MF GOP1�P1�1; 1� and �X;L�, �X;M� are both quadric
®brations, i.e., we are in case A.3.

If we restrict to threefolds of minimal degree, Theorem A yields the following
result.

Proposition 2.1. Let �X;L;M� and C be as in ��� and suppose that �X;M� is a three-
fold of minimal degree. Then there are only three possible cases:

i) X is a quadric in P4 and LGOX �3�, M � OX �1� (here dA � 18, dB � 6,
g�C� � 4).

ii) X GP3 as in Example 1: L � O�4�, M � O�1� (here dA � 16, dB � 4, g�C� � 3).

iii) X GP1 � P2 and L � OX �3; 1�, M � OX �1; 1� (here dA � 15, dB � 7, g�C� � 3).

Proof. Let �X;M� be a threefold of minimal degree (i.e., a threefold of degree nÿ 2

in Pn), hence A A jMj � jOX �1�j is a surface of minimal degree. If AGP2, then we
are in case ii), so let Pic A � hs; f i: then we have LA GOA�as� bf � and suppose
that C @ as� bf is bielliptic. Since L is very ample we have b > ae and a > 1, where
e � ÿs2; we also have ad 3 since otherwise C would be rational or hyperelliptic.

From Theorem A, we have that L2
A � ÿa2e� 2ab � a�2bÿ ae�c 18. Hence, by

easy computations, we get

2ae� 2c 2bc ae� 18

a
:

If e � 0, then AGP1 � P1, i.e., a quadric surface, so, by Lemma 1.2, we get that
LA GOA�3; 3� and L2

A � 18, hence we are in case i) (see also Theorem B).
If e > 0, from the above inequalities it follows that we can only have e � 1, a � 3,

b � 4. In this case we should have LA GOA�3s� 4f �, so our problem is to deter-
mine if there is a very ample invertible sheaf L on X such that LA GOA�3s� 4f �.
Since �A;MA� is a scroll, we have MA GOA�s� kf � and X JPn with n � 2k � 1.
Moreover, Pic X � hH;Fi, where H A jMj and F is a ®ber, so we will have LG
OX �aH � bF �. From H � A@ s� kf and F � A@ f , we get a � 3 and b � 4ÿ 3k.

If LGOX �3H � �4ÿ 3k�F �, then

L3 � a3H 3 � 3a2bH 2F � 81ÿ 27k

and

dB �LM2 � 3k � 1:

From the ®rst equality we get kc2, hence either k � 1 and �A;MA� � �F1;OA�s� f ��,
but this contradicts the very ampleness of M, or k � 2 and X is embedded by M in
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P5, so X is the Segre embedding of P1 � P2, with MGOX �1; 1� and we are in case
iii), since LGOX �3H ÿ 2F�GOX �3; 1�.

We can generalize the result in Theorem A to the case when dim X � d d 3;
namely, suppose X is as in De®nition 1, and C HX is an ab.c.i. of L1; . . . ;Ldÿ1. Let
di � degLijC (without loss of generality we can suppose d1 d d2 d � � � d ddÿ1), let
A1; . . . ;Adÿ1 be sections of L1; . . . ;Ldÿ1 which realize C as an ab.c.i. and suppose
that all the varieties S1 � A2 V � � � VAdÿ1, Si2;...; ik �7

j0i2;...; ik
Aj, where fi2; . . . ; ikgH

f2; . . . ; d ÿ 1g and k � 2; . . . ; d ÿ 2, are smooth and irreducible. Then the following
holds.

Theorem A 000. Let �X;L1; . . . ;Ldÿ1� and C be as above and suppose C to be a smooth

irreducible bielliptic curve. Then if d1 d 19 either:
A 0.1. X is a scroll over C with respect to all the polarizations, i.e., X is a Pdÿ1

bundle over C and on every ®ber F we have �F ;LijF �G �Pdÿ1;OP dÿ1�1��, or
A 0.2. X is a Pdÿ1-bundle over an elliptic curve E, and for every ®ber F GPdÿ1

we have: LijF GOP dÿ1�1�, for all i � 2; . . . ; d ÿ 1 (i.e., �X;Li� is a scroll), and

L1jF GOP dÿ1�2�, or

A 0.3. X is a quadric bundle over an elliptic curve E, and for every ®ber F we have

�F ;LijF �G �F ;MijF �G �Qdÿ1;OQdÿ1
�1��, where Qr is an r-dimensional hyperquadric

in Pr�1.

Proof. The proof works by complete induction on d. For d � 3 this is just Theorem
A. When d d 4, suppose that the result is known for every d 0c d ÿ 1 and consider
the varieties Si2;...; ik . We can apply the result in [9] to the surface �S1;L1jS1

�, as we did
at the beginning of the proof of Theorem A, in order to get that either �S1;L1jS2

� is
a scroll on a bielliptic curve C or �S1;L1jS2

� is a conic bundle on an elliptic curve E.
By Theorem A, we get that, for any i2 � 2; . . . ; d ÿ 1, we can have three cases:
1. the threefolds �Si2 ;Li2 jSi2

� and �Si2 ;L1jSi2
� are scrolls;

2. the threefolds �Si2 ;Li2 jSi2
� are scrolls and �Si2 ;L1jSi2

� is a Veronese bundle (i.e.,
the ®bers are embedded as Veronese surfaces);

3. �Si2 ;Li2 jSi2
� and �Si2 ;L1jSi2

� are all quadric bundles on an elliptic curve.

In cases 1 and 2, by using [3], Theorem 5.5.2, we can extend the P i-bundle struc-
ture from Si2;...; ik to Si2;...; ik ;ik�1

, and from Si2;...; idÿ2
to X to get that X is either as in A 0.1

or as in A 0.2 (in order to check what is the value a for which Li2 jF GOP dÿ1�a� one
can proceed as in the proof of Theorem A).

In case 3 we can use [26], Proposition III (as in the analogous case in [10], Theorem
A) to extend the quadric ®bration from Si2;...; ik to Si2;...; ik ; ik�1

, and from Si2;...; idÿ2
to X in

order to get that X is as in A 0.3.

As we noticed in the introduction, dA � 18 seems to be a threshold (as it is in the
case of varieties with a bielliptic curve-section, [9], [10]), in fact in this case we have
many possibilities for our threefolds, as the following shows.
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Theorem B. Let �X;L;M� and C be as in ��� with dA � 18 and C bielliptic. Then, if X

is not as in Theorem A, it is one of the following:
B.1. X GP3 as in Example 2: L � O�3�, M � O�2�,
B.2. X GQ, where Q is a quadric hypersurface in P4 and L � OQ�3�, M � OQ�1�,
B.3. X is a Fano threefold of principal series with r � Pic X � 1 and p : X ! P3 is

a double covering with a sextic surface as discriminant divisor; M � ÿKX � p�O�1�
and L � p�O�3�,

B.4. X is a Fano threefold of principal series with r � 2 and M � ÿKX ,
B.5. �X;M� is a conic bundle on a smooth surface,
B.6. �X;M� is a quadric bundle over P1,
B.7. �X;M� is a scroll, either over P2, or P1 � P1, or F1,
B.8. �X;M� is the blow up at two points of its reduction �Q;OQ�2��, Q as in B.2 and

the two points not lying on a line of Q,
B.9. �X;M� is the blow up at one point of its reduction �P�E�; 2hÿ p�OP1�1��, where

E � OP1�1�lOP1�1�lOP1�1�, h is the tautological bundle of E and p : P�E� ! P1 is

the bundle projection.

Proof. Under our hypotheses it follows by [9], Theorem 3.5, that �A;LA� is either
�P1 � P1;OP1�P1�3; 3�� or a double plane. Since also P1 � P1 has a double plane
structure, the two cases can be treated together.

Let g � g�C�, from Lemma 1.1 we have that dA � 18d g� 2, hence gc 16.
Moreover, since LA G p��OP 2�3��, where p : A! P2 is the double covering, again
from [9] we get that pjC is a 2 : 1 morphism onto an elliptic curve, hence the
cardinality of p�C�VG, where G is the rami®cation curve of p, is exactly 2gÿ 2.
Then, by Bezout, 3 deg G � 2gÿ 2, and so gÿ 11 0 mod 3. Thus the only possible
values for g are: 4, 7, 10, 13, and 16. Since KA G p��OP 2�a��, with adÿ2, and
deg G � 2�a� 3�, the values of a corresponding to the ®ve possible values of g are,
respectively, ÿ2, ÿ1, 0, 1, 2. Now, �X;M� is a threefold with a very ample divisor
which is a double covering of P2. From the classi®cation of such threefolds in [20],
we get: cases B.1 and B.2 for g � 4, a � ÿ2; cases B.3, B.4 for g � 10, a � 0; case B.5
for g � 13; 16, a � 1; 2 and cases B.6 to B.9 when g � 7, a � ÿ1.

In order to prove the theorem we only have to show that the only two other cases
which appear for a � ÿ1 in [20, Theorem 3.2], namely cases 3.2.3 and 3.2.5, cannot
occur in our case.

In case 3.2.3, X is as in Example 3, with MGOX �3H ÿ E�. Then we should have
LGOX �2H ÿ E� by Lemma 1.2, but this is not possible because it would yield
dB � 17, dA � 11.

In case 3.2.5, �X;M�G �P1 � P2;OP1�P 2�2; 2��, and it cannot occur for degree
reasons. In fact if M � OP1�P 2�2; 2�, say (2,2) for short, and L � �a; b�, then

18 � dA �ML2 � �2; 2��a; b��a; b� � 2b�b� 2a�;

i.e., 9 � b�b� 2a�, whose only solutions are �0; 3�, which does not correspond to
a very ample divisor on X GP1 � P2, and �4; 1�, which should imply that C is
hyperelliptic.
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3 The case dB cccc 8

We have the following result.

Theorem C. Let �X;L;M� and C be as in ��� with dB c 8. If X is not as in Theorem A,
then it is one of the following:

C.1. X GP3 and M � O�1�, L � O�4�.
C.2. X GQ, where Q is a quadric hypersurface in P4 and L � OQ�3�, M � OQ�1�

(this is also case B.2, since here dA � 18).
C.3. X HP4 is a cubic hypersurface and L � OX �2�, M � OX �1�.
C.4. X HP5, X GP1 � P2 and L � OX �3; 1�, M � OX �1; 1� (see Proposition 2.1).
C.5. X HP5 is a complete intersection of two hyperquadrics and L � OX �2�,

M � OX �1�.
C.6. X HP5 is a rational quadric bundle, M � OX �1� and L � OX �2Aÿ F�, where

A A jMj and F is a ®ber. Here dB � 8 and dA � 12.
Cases C.1 to C.5 actually occur.

Proof. We will work by considering dA c 18 since the other cases are covered by
Theorem A. By the remark in section 1, we have that if 8d dB then M3 c 8. All
the varieties of degreec 8 are classi®ed in [16] and [17], taking into account also
the missed case considered in [1], hence we have to check which are the ones that
can possess a bielliptic curve as an ab.c.i. with dB c 8 and dA c 18. Notice that from
�1:1� we also have that

dAM
3 c d 2

B c 64; �3:1�

which gives a better bound on dA as soon as M3 d 4.
We will proceed by examining the possibilities for X with respect to the degree M3

and the codimension s with respect to the embedding given by M.
We notice that if M3 d 4 the cases when �X;M� is a hypersurface in P4 or a rational

normal threefold are ruled out by Lemma 1.2 and by Proposition 2.1, respectively.
M3 � 1. Here the only possibility is trivially case C.1 (see Proposition 2.1 and

Example 1).
M3 � 2. By Lemma 1.2, the only possibility is trivially C.2.
M3 � 3. The only possibilities for a threefold of degree 3 are either a cubic hyper-

surface in P4 (and then by Lemma 1.2 we are in case C.3), or a rational normal scroll
X HP5 and then we are in case C.4 by Proposition 2.1.

M3 � 4. The only possibility for X is to be the complete intersection of two
quadric hypersurfaces in P5; in this case, by the Lefschetz theorem (e.g. see [15]), we
have Pic X GZhOX �1�i, hence LGOX �a� with a > 1 and C is embedded by M as a
complete intersection curve of type �2; 2; a� in P4 with degree dB � 4ac 8. Then the
only possibility is a � 2 which corresponds to case C.5.

M3 � 5. According to the classi®cation in [16], our threefold X can only have
codimension s � 3; 2.

s � 3. X JP6 is a Del Pezzo threefold which is a section of the Grassmannian
G�1; 4�, MGOX �1� and Pic X GZM (see [19]). Moreover �A;MA� is a Del Pezzo
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surface and MA GÿKA, hence LA GMa
A and then

dB �MALA � aM2 � 5ac 8;

which implies a � 1. So MGL and C should be elliptic, a contradiction.
s � 2. X JP5 is a rational quadric bundle, and A A jMj is a Del Pezzo surface

of degree 1, i.e., it is isomorphic to the blow up of P 2 at eight points (and MA is
given by the linear system of the quartic curves passing at least doubly through one
point and simply through the others). Since Pic X GZhA;Fi, where F is a ®ber (e.g.,
see [19], Theorem 1.4.3 and [16] 0.6)), let LGOX �aA� bF � and consider Pic AG
ZhE0;E1;E2; . . . ;E8i, with MA GOA�4E0ÿ E1 ÿ E2 ÿ � � � ÿ 2E8�, F jA @E0ÿE8 and
LA�OA�aAA�bFA��OA��4a�b�E0ÿaE1ÿ � � � ÿ aE7ÿ�2a�b�E8�. From M3�5,
M2OX �F � �MAOA�FA� � 2, by Lemma 1.4 and dB c 8, we have

8d dB �LM2 � aM3 � bOX �F �M2 � 5a� 2b d 6:

By computing the genus g of C as a divisor in jLAj we have that these inequalities
only hold for dB � 8, a � 2, b � ÿ1, g � 5, dA � 12.

This situation corresponds to case C.6.
M3 � 6. According to the classi®cation in [16], we can only have s � 4; 3; 2.

s� 4. One possibility is that XGP1�P1�P1 (a Segre variety) and MGOX �1; 1; 1�.
Let LGOX �a1; a2; a3�, with 1ca3ca2ca1. We can rule out this case by computing
dB �LM2. We consider plurihomogeneous coordinates hx0; x1; y0; y1; z0; z1i on X,
two divisors in jMj are given e.g. by x0 y0z0 and x1 y1z1 and their intersection is given
by the following six lines (given parametrically):

G1 � �a; b; 0; 1; 1; 0�; L1 � �a; b; 1; 0; 0; 1�;
G2 � �0; 1; a; b; 1; 0�; L2 � �1; 0; a; b; 0; 1�;
G3 � �0; 1; 1; 0; a; b�; L3 � �1; 0; 0; 1; a; b�:

So we have that Gi and Li intersect a divisor of jLj in ai points. Summing up we
get dB � 2�a1� a2� a3� and dB c 8 implies that �a1; a2; a3� � �2; 1; 1� (since L0M),
but in this case the curve C would be hyperelliptic (for any point P in the ®rst factor,
there are 2 points on C in the corresponding P1 � P1, so when P varies in P1 it
describes a g1

2 on C). Hence, as claimed, this case is not possible.
Another possibility is that X GP�TP 2�. Then X can also be viewed as a hyperplane

section of the Segre variety of P2 � P 2 HP8. In this case (e.g., see [14]), Pic X G
Pic �P2 � P2�GZ2 (where the isomorphism is given by the restriction map). With
obvious notation, we have that MGOX �1; 1�. Let LGOX �a; b�, we should have
dB �L �M2 � 3a� 3bc 8 which is impossible for positive values of �a; b�0 �1; 1�,
hence also this case cannot occur.

s � 3. X is a Fano threefold with Pic XGZ2, which is a double covering p : X!Y

of the rational normal threefold Y GP1 � P2 ! P5, rami®ed along a divisor of type
OY �2; 2� (see also Example 4). We have MG p��OY �1; 1��. Let LG p��OY �a; b��,
the inequality dB �L �M2 c 8 implies OY �a; b� � O2

Y �1; 1�c 4, which is possible only
when �a; b� � �2; 1�. But in this case the curve OY �a; b� � OY �1; 1� (on Y ) is a rational
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normal quartic, hence C (which is a double covering of it, via p) would be hyper-
elliptic. Thus also this case cannot occur.

s � 2. We have two possibilities for X. The ®rst is X GP�E�, where E is a rank 2
locally free sheaf on P2 given by the exact sequence 0! OP 2 ! E! IY �4� ! 0, Y

is a set of 10 general points in P2, and M is the tautological sheaf on P�E�. In this
case A is isomorphic to the blow-up of P2 along Y and MA is associated to the linear
system of quartic curves passing through Y. We have that Pic X GZhA;Pi, where
P denotes the divisor over a generic line in P2 in the bundle structure of X, so
A2 �P � 4, A �P2 � 1 and P3 � 0 on X. Let LGOA�aA� bP), then we must have

8d dB �LM2 � 6a� 4b

(which, since a > 0, implies that b c 0) and

0cL3 � 3a�2a2 � 4ab � b2�;

which yields ad
ÿ2b � 2b2

2
.

�������p
These inequalities have integer solutions only for

b � 0;ÿ1. If b � 0, the only possibility is that L �M, that we do not consider. If
b � ÿ1, then ac 2 by the ®rst inequality, hence a � 2 because for a � 1 we would
have L not very ample (this can be easily seen on LA). Therefore we get dA �
L2M � 6a2 ÿ 4a� 1 � 17 and this is not possible because dA c 10 by �3:1�. Hence
this case cannot occur.

The other possibility is that X is a complete intersection of type �2; 3�. In this
case, since Pic X GZ, we have MGOX �1� and LGOX �b�. Then we should have
that C is a complete intersection of type �2; 3; b� in P4; a simple computation (e.g.,
using the resolution of the ideal sheaf IC) shows that such curves have genus 3b2 � 1
(and degree 6b), hence they cannot be bielliptic by Lemma 1.1.

M3 � 7. In this case, according to [16], we can only have s � 5; 4; 3; 2.
s � 5. X is the blowing up p : X ! P3 of P3 at one point P (see also Example 3).

We have that M � OX �2HÿE�. Let L � OX �aHÿbE�, we must have dB �M2L �
4aÿ b c 8. Since ad b and, for the very ampleness of L, we must also have b d 1,
we get that either �a; b� � �2; 1�, and this yields L �M, or �a; b� � �2; 2� in which
case L is not very ample (L would contract every line passing through P). So this
case cannot occur too.

s � 4. X is the blowing up p : X ! P3 of P3 along an elliptic normal curve G. We
have that M � OX �3H ÿ E� where H is the strict transform of a generic plane of P3

and E is the exceptional divisor. If A is a general element in jMj, i.e., A is isomorphic
to a smooth cubic surface containing G, let Pic AGZhE0;E1; . . . ;E6i. We can
choose the generators of Pic A in order to have that G@ 3E0 ÿ E1 ÿ E2 ÿ � � � ÿ E5,
hence MA GOA�9E0 ÿ 3E1 ÿ � � � ÿ 3E6 ÿ G�GOA�6E0 ÿ 2E1 ÿ � � � ÿ 2E5 ÿ 3E6�.

If LGOX �aH ÿ bE� (since Pic X GZhH;Ei) we have LA GOA�3�aÿ b�E0ÿ
�aÿ b�E1 ÿ � � � ÿ �aÿ b�E5 ÿ aE6�, hence dB �M2L � 5aÿ 8b c 8. On the other
hand we must also have ad 2b (since the ideal of G is the complete intersection of
two quadric forms). Hence we get 8d dB d 2b, i.e., b c 4 (recall also that b > 0
to have very ampleness), moreover ad 2b � 1 can satisfy 5aÿ 8b c 8 only for
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�a; b� � �3; 1�, i.e., for L �M, and we are not interested in this case. Thus we only
have to consider �a; b� � �2b; b�, b � 1; 2; 3; 4, but for these values L is not very
ample (it is given by the generators of �IG�b). So this case does not occur.

s � 3. The ®rst possibility is that X is a scroll over an elliptic curve G. Let us
consider A A jMj, which is a ruled surface on G with Pic AGZhG0;Fi and
MA � OA�G0 � bF �. We must have M2

A � 2bÿ e � 7 and (for the very ampleness)
bd e� 3, hence either e � 1, b � 4 or e � ÿ1, b � 3. Let LA GOA�aA� bF�G
OA�aG0 � �ab� b�F�, we must have �aA� bF �G0 d 3 hence ÿae� ab� b d 3,
moreover dB �LA �MA c 8. If e � ÿ1, b � 3 these two inequalities yield 3ÿ 4ac
b c 8ÿ 7a, while if e � 1, b � 4 they yield 3ÿ 3ac b c 8ÿ 7a. Both cases imply
a � 1, which is absurd since C would be elliptic.

Another possibility is that X is a quadric bundle over P1 and AGAe, where Ae

is the blow-up of a Hirzebruch surface Fe at 9 points, with e � 0; 1; 2 or 3. Then
Pic X GZhA;Fi, where F is a generic ®ber, and, with obvious notation, Pic AG
ZhC0;FA;E1; . . . ;E9i. Let MA � OA�2C0 � bFA ÿ E1 ÿ � � � ÿ E6�, where b � 4� e,
and L � OA�aA� bF �, so that LA � OA�2aC0 � �b� b�FA ÿ aE1 ÿ � � � ÿ aE9�.

By Lemma 1.4 we have that dB d 7, so

7c dB �MALA � ÿ4ae� 2�b� b� ÿ 2abÿ 9ac 8:

From this condition we get

2�b � e� � 1

2e� 1
c ac

2�b � e�
2e� 1

;

which yields b d e� 1. From dA d dB we must have:

7c dA �L2
A � ÿ4a2e� 4a�b� b� ÿ 9a2:

Simple but tedious computations show that the former condition contradicts the
latter one, for all e A f0; 1; 2; 3g.

The last possibility is that X GP�E�, where E is a rank 2 locally free sheaf on P2

given by the exact sequence 0! OP 2 ! E! IY �4� ! 0 with Y a set of 9 general
points in P2, and M is the tautological sheaf on P�E� (see also the similar case for
M3 � 6, s � 2). We have that Pic X GZhA;Pi, where P is the divisor over a
generic line in P 2 in the bundle structure of X, so A2 �P � 4, A �P2 � 1 and P3 � 0
on X. If LGOX �aA� bP�, then we have

8d dB �LM2 � 7a� 4b

which, since a > 0, implies that b c 0. On the other hand for b � 0 we must have
a � 1 which yields M �L. So actually we have b < 0 and ad 2. Since C is in P5,
by Lemma 1.1 we get dB d 5� g�C� ÿ 1d 7, which, since dB c dA c d 2

B=M
3 � 7,

implies that either dB � dA � 7, or dB � 8 and 8c dA c 9. From

dA �L2M � 7a2 � 8ab � b2

it is just a computation to show that no values for a, b can give the required values
of dA, dB.
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s � 2. We have three possibilities for X. A ®rst one is X GP�E�, where E is a rank
2 locally free sheaf on a smooth cubic surface S HP3 given by the exact sequence
0! OS ! E! IY ;S�2� ! 0 with Y a set of 5 general points on S, and M is the
tautological sheaf on P�E� (see also the case above). So p : X ! S is a scroll
structure with respect to M, and Pic X GZhA;F0; . . . ;F6i, where A A jMj, Pic S G
ZhE0;E1; . . . ;E6i (e.g. see [15]) and Fi � pÿ1�Ei�. We have that A is the blow up of S

at Y, so if E7; . . . ;E11 are its exceptional divisors and (with a slight abuse of notation)
Pic AGZhE0;E1; . . . ;E11i, we have MA GOA�6E0ÿ2E1ÿ � � � ÿ2E6ÿE7ÿ � � � ÿE11�.

Let LGOX �aA� bF0ÿ g1F1ÿ � � � ÿ g6E6�, then LAGOA��6a� b�E0ÿ�2a� g1�E1

ÿ � � � ÿ �2a� g6�E6 ÿ aE7 ÿ � � � ÿ aE11�; we have dB �MALA � 7a� b ÿ 2
P6

i�1 gi

and dA �L2
A � 7a2 � 12ab � b2 ÿ 4a

P6
i�1 gi ÿ a

P6
i�1 g2

i . By Lemma 1.4 we have
8d dB d g� 3, while from �3:1� we get dA c 9. Moreover for the genus of C, we
have

g � 6a� b ÿ 1

2

� �
ÿ
X6

i�1

2a� gi

2

� �
ÿ 5

a

2

� �
;

which gives 2g � dA ÿ aÿ 3b �P6
i�1 gi � 2. From the bound on dA we get

2a� 6b ÿ 2
X6

i�1

gi d 22ÿ 4g

while from the bounds on dB we have 3c gc 5. Hence we get

7c 5a �
�

2a� 6b ÿ 2
X6

i�1

gi

�
c 8;

which is clearly impossible for g � 3 or 4, since ad 1 and the part in parentheses is
d22ÿ 4g. When g � 5, which implies dB � 8, the bound above can be satis®ed only
for a � 1, but in this case dB � 7� 6b ÿ 2

P6
i�1 gi, which cannot be eight. So also this

case cannot occur.
A second possibility for s � 2 is that X is the blowing up p : X ! Y of a smooth

3-fold Y HP6, which is the complete intersection of three quadrics, at a point P AY

(i.e., X is obtained by projecting Y into P5 from P). Here Pic X GZhH;Ei, where
H is the strict transform of a generic hyperplane section of Y and E is the excep-
tional divisor. We have MGOX �1�GOX �H ÿ E�, and from �H ÿ E�3 � 7, together
with H 3 � H � �H ÿ E�2 � 8 we get H 2 � E � H � E2 � 0 and E3 � 1. Now let LG
OX �aH ÿ bE�, since 0 < dB c 8 and dA > 0, we have:

0 < dB � �H ÿ E�2�aH ÿ bE� � 8aÿ bc 8;

0 < dA � �H ÿ E��aH ÿ bE�2 � 8a2 ÿ b2:

So bd 8aÿ 8 and b2 < 8a2, hence 64a2 ÿ 32a� 64 < 8a2, which is never true, and
this case is impossible.
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Eventually, the last possibility is that X is a cubic ®bration on P1, where
MGOX �1�, and this structure is given by the adjunction map fjKX�Mj ! P1, with
cubic surfaces S (in a P3) as generic ®bers. We have that �A;MA� is ®bered by
elliptic curves on P1 and no ®ber splits, see [16]. Hence also the ®bers of X do not
split and Pic X GZhA;Si. We have A3 � 7, A2S � 3, AS2 � S3 � 0. Let LG
OX �aA� bS�, by Lemma 1.4, we have dB d 6, so

6c dB �LM2 � 7a� 3bc 8

and, by the inequalities �1:1� and �3:1� we get

0 < dA �L2M � a�7a� 6b�c 9;

0 <L3 � 7a3 � 9a2b � a2�7a� 9b�c 13:

From the ®rst inequalities we get b < 0, ad 2 (for b � 0, a � 1 we would have
L �M), from the third we get a � 2 or a � 3 and 7a� 9b > 0. With a � 2 the
®rst inequalities gives ÿ8c 3bcÿ6, i.e., b � ÿ2, but this contradicts 7a� 9b > 0.
If a � 3, then ÿ15c 3bcÿ13, so b � ÿ5, but this is impossible since dA > 0.

M3 � 8. The bounds M3 c dB c 8 imply dB � 8 while the bounds dB c dA c
d 2

B=M
3 imply dA � 8. Moreover, dBL

3 c d 2
A , gives L3 c 8. We can exclude that

L3 < 8 by looking at all the cases we have seen before (we have considered all the
polarized threefolds of degreec 7), so we only have to study the case dB � dA �
M3 �L3 � 8.

Now, let A A jMj as always, we have that �A;LA� is a surface of degree 8 with
a bielliptic curve section. Such surfaces are classi®ed in [9], Theorem 4.1, with the
exception of the elliptic conic bundles discovered in [1], and we will use these results
to complete our proof.

We can easily check that under the degree assumptions above X cannot be a
quadric bundle on P1. In fact in this case, see e.g., [16], 0.6, the ®bers are all irre-
ducible and Pic X GZhA;Fi, where F is a ®ber, A3 � 8, A2F � 2 and AF 2 � F 3 � 0.
Hence, if LGOX �aA� bF�, we should have L3 � 8a3 � 6a2b � 2a2�4a� 3b� � 8
which is easily seen to be impossible.

Now we proceed as in the previous cases. According to [17] we can only have
s � 6; 5; 4; 3; 2.

s � 6. In this case X is the double embedding of P3 into P9, i.e., X GP3 and
MGOP3�2� (see also Example 2). By Lemma 1.2 we should have LGOP3�3�, but
then we would have dB � 12, dA � 18.

s � 5. X is a hyperplane section of the Segre embedding of P1 �Q3 into P9, where
Q3 is a quadric hypersurface in P4. In this case X would be a quadric bundle, but we
have just seen that this is impossible.

s � 4. We have four possibilities for X. First, X is a scroll on an elliptic curve E.
This would imply that also A is an elliptic scroll on E, then its irregularity would be
q�A� � 1, but this is impossible by [9], Theorem 4.1.

Two other possibilities are that X is either the complete intersection of a hyper-
quadric with a Segre variety V which is the embedding of P1 � P3, or a double
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covering of a hyperplane section of V . But in both cases X would be a rational
quadric bundle and we have already excluded this possibility.

The last case is that X GP�E�, where E is a rank 2 locally free sheaf on P2 given
by the exact sequence 0! OP 2 !L! IY �4� ! 0, Y is a set of 8 general points
in P2, and M is the tautological sheaf on P�E�. In this case A is isomorphic to the
blow-up of P2 along Y and MA is associated to the linear system of quartic curves
passing through Y. We should have that �A;LA� is a surface of degree 8 which
appears in the classi®cation of [9], Theorem 4.1 (since its hyperplane section is a
bielliptic curve), but this is possible only for MA �LA, which implies M �L, so also
this case cannot occur.

s � 3. We have three possibilities for X. First, X could be a rational quadric
bundle, but this is the case we have excluded.

The second case is that p : X ! Q is a scroll on a quadric surface Q. So Pic X G
ZhA;F1;F2i, where A A jMj and Fi � pÿ1�Gi�, Pic QGZhG1;G2i. We have A2Fi �
AF1F2 � 1 and AF 2

i � F 2
i Fj � 0, i; j � 1; 2. Let LGOX �aA� bF1 � gF2�, then we

must have

dB �LM2 � 8a� b � g � 8;

dA �L2M � 2a�4a� b � g� � 2bg � 8;

L3 � a�8a2 � 3a� 3b � 6bg� � 8:

By the third equality a must divide 8 and it is easy to check that any such value of
a does not satisfy the ®rst and second equations in b, g.

The last possibility is that X is the complete intersection of three quadric hyper-
surfaces in P6. In this case Pic X GZ, then LGOX �a� and L3 � 8a2 � 8 which
yields L �M.

s � 2. X could be the complete intersection of a quadric and a quartic hyper-
surface. Then, since LGOX �a� and L3 � 8a2 � 8, we can exclude this case as we
did above.

Another possibility is that X is a Del Pezzo ®bration on P1 given by its adjunction
map fjKX�Mj : X ! P1. The generic ®ber of f is a Del Pezzo surface S isomorphic to
a complete intersection of two quadrics in P4. We have that Pic X GZhA;Si,
A3 � 8, A2S � 4, AS2 � S3 � 0, and let LGOX �aA� bS�. Hence: dA �L2M �
8a2 � 8ab� 8a�a� b� � 8, which is possible only for b � 0, a � 1, but this would
imply L �M once more.

The last case to be considered is the one missed in [17], [18] (and hence also in [9])
which we mentioned at the beginning of the proof, namely when X is such that �A;MA�
is a degree 8 conic bundle on an elliptic curve (see [1]). In this case, by working in a
similar way as we did in the proof of Theorem A, case 2, we get that X must be as in
Theorem A, but these cases have been excluded by our hypotheses.

To complete the proof of our theorem, we have only to notice that the existence of
threefolds X as described in the ®rst four cases is obvious and the case C:5 occurs
when C is a canonical bielliptic curve of genus 5. Unfortunately we have not been
able to determine whether a threefold X as in case C:6 exists or not.
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