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Abstract. In this paper we study positive operator monotone functions on
(0, 1) which have some differences from those on (0,∞) : we show that for a con-
cave operator monotone function f on (0, 1), the Kwong matrices Kf (s1, . . . , sn)
are positive semidefinite for all n and si ∈ (0, 1), and f(sp)1/p for 0 < p 5 1
and s/f(s) are operator monotone. We also give a sufficient condition for the
Kwong matrices to be positive semidefinite.

1. Introduction

Let f be a real-valued C1 function on an interval (a, b). For n distinct real numbers
t1, . . . , tn ∈ (a, b) a Loewner (or Pick) matrix Lf (t1, . . . , tn) associated with f is
the n× n matrix defined as

Lf (t1, . . . , tn) =

[
f(ti)− f(tj)

ti − tj

]
,

where the diagonal entries are understood as the first derivatives f ′(ti). In the
case where (a, b) j (0,∞), a Kwong (or an anti-Loewner) matrix Kf (t1, . . . , tn)
associated with f is the n× n matrix defined by

Kf (t1, . . . , tn) =

[
f(ti) + f(tj)

ti + tj

]
.
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A real-valued function f on an interval (a, b) is said to be matrix monotone of
order n if A = B implies f(A) = f(B) for n × n Hermitian matrices A and B
with eigenvalues in (a, b). If f is matrix monotone of every order then f is said
to be operator monotone. In operator/matrix theory of great importance are
operator monotone functions, which also play an essential role in related fields:
for instance, in quantum information theory.

In this paper we study positive operator monotone functions on (0, 1) which
give some differences from those on (0,∞) : we show that the similar results of
Loewner/Kwong matrices do not hold in this case, but for a concave operator
monotone function f on (0, 1), the Kwong matrices Kf (s1, . . . , sn) are positive
semidefinite for all n and si ∈ (0, 1), and f(sp)1/p for 0 < p 5 1 and s/f(s)
are operator monotone. We also give a sufficient condition of f on (0, 1) for the
Kwong matrices associated with f to be positive semidefinite.

These observations come from our preceding studies on Loewner and Kwong
matrices [4, 5, 9, 10, 14]. In the remainder of this section, we review some of
them: on Loewner matrices, Bhatia and the second-named author of this paper
[4] present a characterization for operator convexity of a positive function f on
(0,∞) in terms of the conditional negative definiteness of the Loewner matrices
Lf (t1, . . . , tn). Moreover, Hiai and Sano [9] give this generalization by considering
matrix monotonicity/convexity. On the other hand, Kwong [11] shows that if f
is a non-negative operator monotone function on (0,∞) then the Kwong matrices
Kf (t1, . . . , tn) are positive semidefinite for all n and ti ∈ (0,∞). Audenaert [2]
gives a characterization of f with Kf (t1, . . . , tn) positive semidefinite for all n
and ti ∈ (0,∞). By using this characterization, Hidaka and Sano [10] study the
conditional negative definiteness of the Kwong matrices, which is given by Bhatia
and Sano for operator convex functions and more. For a positive integer m and a
positive operator monotone function f on (0,∞), Tachibana and Sano [14] show
the positive semidefiniteness of the matrices[

f(ti)
m + f(tj)

m

tmi + tmj

]
and

[
f(ti)

m − f(tj)
m

tmi − tmj

]
.

2. Operator monotone functions on (0, 1)

In this section, we consider positive operator monotone functions on (0, 1).
First we recall basic facts on operator monotone functions; we refer the reader
to [3, 6]: it is known by Löwner [12] that f is matrix monotone on (a, b) of
order n if and only if the n × n Loewner matrices Lf (t1, . . . , tn) are positive
semidefinite for all t1, . . . , tn ∈ (a, b); therefore, f is operator monotone on (a, b)
if and only if the Loewner matrices Lf (t1, . . . , tn) are positive semidefinite for all
n and t1, . . . , tn ∈ (a, b). Another characterization by Löwner is that f has an
analytic continuation to the upper half-plane which maps the upper half-plane
into itself.

The following is easy to see by direct computations but useful in our argument.
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Lemma 2.1.

(1) Kf (t1, . . . , tn) + Lf (t1, . . . , tn) = 2

[
tif(ti)− tjf(tj)

t2i − t2j

]
= 2 C ◦ Ltf(t)(t1, . . . , tn)

= 2 L√tf(
√

t)(s1, . . . , sn), (2.1)

where C is the Cauchy matrix

[
1

ti + tj

]
, ◦ stands for the Hadamard or Schur

product and si = t2i .

(2) Kf (t1, . . . , tn)− Lf (t1, . . . , tn) = 2

[
tif(tj)− tjf(ti)

t2i − t2j

]
= 2 D

[
ti/f(ti)− tj/f(tj)

t2i − t2j

]
D

= 2 C ◦
(
DLt/f(t)(t1, . . . , tn)D

)
(2.2)

= 2 DL√t/f(
√

t)(s1, . . . , sn)D, (2.3)

where C and si are the same as in (1) and D is the diagonal matrix given as
D = diag (f(t1), . . . , f(tn)) .

For our study we prepare the representation of positive operator monotone
functions f on (0, 1). We follow the observation as in [8, p.183]. Let ψ(t) be
the function from (−1, 1) onto (0, 1) defined by ψ(t) = (t + 1)/2 = s. Since the
function g(t) := f(ψ(t)) is operator monotone on (−1, 1), by [7, Theorem 4.4]
g(t) is of the form

g(t) = g(0) + g′(0)

∫
[−1,1]

t

1− λt
dµ(λ), t ∈ (−1, 1)

for a probability measure µ on [−1, 1]. Since g(−1) := limt↓−1 g(t) = lims↓0 f(s) =
0 by assumption, it follows that∫

[−1,1]

1

1 + λ
dµ(λ) <∞.

In particular, µ({−1}) = 0 and

g(t)− g(−1) = g′(0)

∫
(−1,1]

1 + t

(1− λt)(1 + λ)
dµ(λ).

Hence, putting t = ψ−1(s) and λ = ψ−1(ζ), we have

f(s)− f(0) =

∫
(0,1]

s

s+ ζ − 2sζ
dm0(ζ),

where m0 is the measure on (0, 1] defined as m0 = µ̃ ◦ ψ−1 where dµ̃(λ) =
g′(0)/(1 + λ)dµ(λ), and if we define the measure m on [0, 1] as m = f(0)δ0 +m0

then we have:
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Theorem 2.2. A positive operator monotone function f(s) on (0, 1) is of the
form

f(s) =

∫
[0,1]

s

s+ ζ − 2sζ
dm(ζ),

where m is a positive measure on [0, 1].

For 0 5 ζ 5 1 we consider the positive operator monotone function on (0, 1)

fζ(s) :=
s

(1− 2ζ)s+ ζ
=

s

s+ ζ − 2sζ
. (2.4)

Theorem 2.3. Let fζ(s) be the function in (2.4). Then s/fζ(s) is operator mono-
tone if and only if ζ 5 1/2.

Proof. It suffices to determine when −fζ(s)/s is operator monotone, which is
equivalent to that 1− 2ζ = 0. �

Corollary 2.4. Let f(s) be a positive operator monotone function on (0, 1) which
is of the form

f(s) =

∫
[0,1/2]

fζ(s) dm(ζ) =

∫
[0,1/2]

s

(1− 2ζ)s+ ζ
dm(ζ), (2.5)

where m is a positive measure on [0, 1/2]. Then s/f(s) is operator monotone on
(0, 1).

The following corresponds to Kwong [11].

Theorem 2.5. If f(s) is the operator monotone function in (2.5), then all Kwong
matrices associated with f are positive semidefinite.

Proof. By assumption and Corollary 2.4, Loewner matrices associated with f(s)
and s/f(s) are positive semidefinite; therefore, (2.2) and Schur’s Theorem yield
the conclusion. Note that when s/f(s) is operator monotone so is

√
s/f(

√
s);

hence, (2.3) also implies the assertion. �

We remark that similar argument for operator monotone functions on (0,∞)
is given by Nakamura [13]. For the functions fζ(s), we could say more:

Theorem 2.6. Let fζ(s) be the function in (2.4). Then all Kwong matrices
associated with fζ are positive semidefinite if and only if ζ 5 1/2.

For the proof, we recall the following characterization:

Proposition 2.7. ([10, Proposition 3.1]) For a non-negative function f(s) on
(0, 1), Kf (s1, s2) are positive semidefinite for all s1, s2 ∈ (0, 1) if and only if
f(s)/s is decreasing and sf(s) is increasing.

Proof of Theorem 2.6. The if part follows from Theorem 2.5. On the other hand,
for the only if part, Proposition 2.7 implies that fζ(s)/s = 1/{(1− 2ζ)s+ ζ} on
(0, 1) should be decreasing, hence ζ 5 1/2; therefore the proof is complete. �

The following is a counterpart to Audenaert [2].
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Theorem 2.8. Let f(s) be a positive function on (0, 1). If
√
sf(

√
s) or

√
s/f(

√
s)

is the operator monotone function in (2.5), then all Kwong matrices associated
with f are positive semidefinite.

Proof. Since
s√

sf(
√
s)

=

√
s

f(
√
s)

or
s√

s/f(
√
s)

=
√
sf(

√
s), the assumption and

Corollary 2.4 yield the operator monotonicity of both functions. Hence, by (2.1)
and (2.3), Kf (s1, . . . , sn)± Lf (s1, . . . , sn) are positive semidefinite for any n and
si ∈ (0, 1). By adding them, Kf (s1, . . . , sn) are positive semidefinite for any n
and si ∈ (0, 1). Therefore we get the conclusion. �

For 0 5 ζ 5 1 we consider the function on (0, 1)

gζ(s) :=
fζ(s

2)

s
=

s

(1− 2ζ)s2 + ζ
. (2.6)

Theorem 2.9. Let gζ(s) be the function in (2.6). Then gζ(s) is operator mono-
tone if and only if 1/2 5 ζ, and all Kwong matrices associated with gζ are positive
semidefinite if and only if ζ 5 1/2.

Proof. We first show the second statement: note that
√
sgζ(

√
s) = fζ(s) and√

s

gζ(
√
s)

=
s

fζ(s)
are operator monotone when ζ 5 1/2 by Theorem 2.3. Hence,

by Theorem 2.8, the if part is proved. The only if part follows from Proposition
2.7 since gζ(s)/s should be decreasing.

For α := 1− 2ζ, by the identity

1

a− b

(
a

αa2 + ζ
− b

αb2 + ζ

)
=

1

a− b

(a− b)ζ − αab(a− b)

(αa2 + ζ)(αb2 + ζ)

=
ζ − αab

(αa2 + ζ)(αb2 + ζ)
,

we have

Lgζ
(s1, . . . , sn) = ζD1ED1 + (−α)D2ED2 (2.7)

where D1 and D2 are the diagonal matrices defined as

D1 = diag

(
1

αs2
1 + ζ

, . . . ,
1

αs2
n + ζ

)
, D2 = diag

(
s1

αs2
1 + ζ

, . . . ,
sn

αs2
n + ζ

)
,

and E is the matrix with all its entries equal to 1. If ζ = 1/2 or α 5 0, then by
(2.7) Lgζ

(s1, . . . , sn) is positive semidefinite since E is positive semidefinite; that
is, gζ(s) is operator monotone. We also note that

gζ(s) =
1

2
√
ζ

( s√
ζ −

√
−αs

+
s√

ζ +
√
−αs

)
,

which is the sum of operator monotone functions when ζ = 1/2. By (2.7),

D−1
1 Lgζ

(s1, s2)D
−1
1 = [ζ − αsisj] ,

and

detD−1
1 Lgζ

(s1, s2)D
−1
1 = −αζ(s1 − s2)

2 5 0,
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if ζ < 1/2. Hence in this case Lgζ
(s1, s2) is not positive semidefinite; therefore

gζ(s) is not operator monotone, and the proof is complete. �

Example 2.10. Let h(s) := tan(π/2)s on (0, 1), which is a well-known operator
monotone function. Since h(s)/s is increasing, it follows from Proposition 2.7
that Kwong matrices associated with h is not positive semidefinite. Similarly
Kwong matrices associated with h(s2)/s is not positive semidefinite.

Furthermore, we see:

Theorem 2.11. If f(s) is the operator monotone function in (2.5), then f(sp)1/p

is operator monotone on (0, 1) for 0 < p 5 1.

Proof. We give a proof as in [1, p. 216]; suppose that f(s) is of the form

f(s) =

∫
[0,1/2]

fζ(s) dm(ζ) =

∫
[0,1/2]

s

(1− 2ζ)s+ ζ
dm(ζ).

Then f has an analytic continuation f(z) to the upper half-plane which maps the
upper half-plane into itself. Since Arg fζ(z) 5 Arg z,Arg f(z) 5 Arg z. Hence,
the analytic function f(zp)1/p is well-defined and maps the upper half-plane into
itself; therefore f(sp)1/p is operator monotone. �

In particular Theorem 2.11 implies:

Corollary 2.12. Let f(s) be the operator monotone function in (2.5). Then for
any positive integer m, [

f(si)
m − f(sj)

m

sm
i − sm

j

]
are positive semidefinite for all n and s1, . . . , sn in (0, 1).

Note that under the same assumption we can prove by the similar argument
as in [14] that for any positive integer m,[

f(si)
m + f(sj)

m

sm
i + sm

j

]
are positive semidefinite for all n and s1, . . . , sn in (0, 1).
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