

Ann. Funct. Anal. 4 (2013), no. 1, 61–63
ANNALS OF FUNCTIONAL ANALYSIS
ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

A CHARACTERISATION OF C*-ALGEBRAS THROUGH POSITIVITY OF FUNCTIONALS

MARCEL DE JEU^{1*} AND JUN TOMIYAMA²

Communicated by T. Loring

ABSTRACT. We show that a unital involutive Banach algebra, with identity of norm one and continuous involution, is a C^* -algebra, with the given involution and norm, if every continuous linear functional attaining its norm at the identity is positive.

If \mathcal{A} is an involutive Banach algebra, then a linear map $\omega : \mathcal{A} \to \mathbb{C}$ is called positive if $\omega(a^*a) \geq 0$, for all $a \in \mathcal{A}$. If the involution is isometric, and \mathcal{A} has an identity 1 of norm one, then ω is automatically continuous, and $\|\omega\| = \omega(1)$, see [4, Lemma I.9.9]. More generally, cf. [3, Theorem 11.31], even if the involution is not continuous, a positive linear functional is always continuous; if the involution is continuous, and $\|a^*\| \leq \beta \|a\|$, for all $a \in \mathcal{A}$, then $\|\omega\| \leq \sqrt{\beta} \omega(1)$. For a unital C^* -algebra \mathcal{A} , there is a converse: if $\omega : \mathcal{A} \to \mathbb{C}$ is continuous, and $\omega(1) = \|\omega\|$, then ω is positive (cf. [4, Lemma III.3.2]). Thus the positive continuous linear functionals on a unital C^* -algebra are precisely the continuous linear functionals attaining their norm at the identity. Consequently, any Hahn–Banach extension of a positive linear functional, defined on a unital C^* -subalgebra, is automatically positive again. As is well known, this is a basic characteristic of C^* -algebras that makes the theory of states on such algebras a success.

If \mathcal{A} is a unital involutive Banach algebra with identity of norm one, but not a C^* -algebra, then this converse, as valid for unital C^* -algebras, need not hold: even when the involution is isometric, there can exist continuous linear functionals on \mathcal{A} that attain their norm at the identity, but which fail to be positive. For example, for $H^{\infty}(\mathbb{D})$, the algebra of bounded holomorphic functions on the open unit disk, supplied with the supremum norm and involution $f^*(z) = \overline{f(\overline{z})}$ ($z \in$

Date: Received: 5 September 2012; Accepted: 23 September 2012.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46K05; Secondary 46H05.

Key words and phrases. Involutive Banach algebra, C^* -algebra, positive functional.

 $\mathbb{D}, f \in H^{\infty}(\mathbb{D})$), all point evaluations attain their norm at the identity, but only the evaluation in points in (-1, 1) are positive. As another example, consider $\ell^{1}(\mathbb{Z})$, the group algebra of the integers. Then its dual can be identified with $\ell^{\infty}(\mathbb{Z})$, and the continuous linear functionals attaining their norm at the identity are then the bounded maps $\omega : \mathbb{Z} \to \mathbb{C}$, such that $\omega(0) = \|\omega\|_{\infty}$. Not all such continuous linear functionals are positive (of course, Bochner's theorem describes the ones that are positive). For example, if $\lambda \in \mathbb{C}, |\lambda| \leq 1$, then $\omega_{\lambda} \in \ell^{\infty}(\mathbb{Z})$, defined by $\omega(0) = 1, \omega(1) = \lambda$, and $\omega(n) = 0$ if $n \neq 0, 1$, attains its norm at the identity of $\ell^{1}(\mathbb{Z})$. However, if we define $\ell_{0} : \mathbb{Z} \to \mathbb{C}$ by $\ell_{0}(0) = 1, \ell_{0}(1) = 1$, and $\ell_{0}(n) = 0$ if $n \neq 0, 1$, then $\ell_{0} \in \ell^{1}(\mathbb{Z})$, but $\omega_{0}(\ell_{0}^{*}\ell_{0}) = 2 + \lambda$ need not even be real.

It is the aim of this note to show that the existence of examples as above is no coincidence: there necessarily exist continuous linear functionals that attain their norm at the identity, yet are not positive, *because* the algebra in question has a continuous involution, but is not a C^* -algebra. This is the main content of the result below which, with a rather elementary proof, follows from the far less elementary Vidav–Palmer theorem [1, Theorem 38.14]. We formulate the latter first for convenience.

Theorem (Vidav–Palmer). Let \mathcal{A} be a unital Banach algebra with identity of norm one. Let \mathcal{A}_S be the real linear subspace of all $a \in A$ such that $\omega(a)$ is real, for every continuous linear functional ω on \mathcal{A} such that $||\omega|| = \omega(1)$. If $\mathcal{A} = \mathcal{A}_S + i \mathcal{A}_S$, then this is automatically a direct sum of real linear subspaces, and the well defined map $(a_1 + ia_2) \mapsto (a_1 - ia_2) (a_1, a_2 \in \mathcal{A}_S)$ is an involution on \mathcal{A} which, together with the given norm, makes \mathcal{A} into a C^{*}-algebra.

As further preparation let us note that, if \mathcal{A} is a unital involutive Banach algebra with identity of norm one and a continuous involution, and if $a \in \mathcal{A}$ is self-adjoint with spectral radius less than 1, then there exists a self-adjoint element $b \in \mathcal{A}$ such that $1 - a = b^2$. Indeed, using the continuity of the involution, the proof as usually given for a unital Banach algebra with isometric involution, cf. [4, Lemma I.9.8], which is based on the fact that the coefficients of the power series around 0 of the principal branch of $\sqrt{1-z}$ on \mathbb{D} are all real, goes through unchanged.

Theorem. Let \mathcal{A} be a unital involutive Banach algebra with identity 1 of norm one. Then the following are equivalent:

- (1) The involution is continuous, and, if ω is a continuous linear functional on \mathcal{A} such that $\|\omega\| = \omega(1)$, then ω is positive;
- (2) The involution is continuous, and, if ω is a continuous linear functional on A such that ||ω|| = ω(1), and a ∈ A is self-adjoint, then ω(a²) is real;
 (2) A is a C* algebra with the given norm and involution

(3) \mathcal{A} is a C^{*}-algebra with the given norm and involution.

Proof. We need only prove that (2) implies (3). Suppose that $a \in \mathcal{A}$ is selfadjoint and that ||a|| < 1. Then, as remarked preceding the theorem, there exists a self-adjoint $b \in \mathcal{A}$ such that $1 - a = b^2$. If ω is a continuous linear functional on \mathcal{A} such that $||\omega|| = \omega(1)$, then the assumption in (2) implies that $||\omega|| - \omega(a) = \omega(1 - a) = \omega(b^2)$ is real. Hence $\omega(a)$ is real. This implies that $\omega(a)$ is real, for all self-adjoint $a \in \mathcal{A}$, and for all continuous linear functionals ω on \mathcal{A} such that $\|\omega\| = \omega(1)$. Since certainly every element of \mathcal{A} can be written as $a_1 + ia_2$, for self-adjoint $a_1, a_2 \in \mathcal{A}$, this shows that $\mathcal{A} = \mathcal{A}_S + i\mathcal{A}_S$. Then the Vidav–Palmer theorem yields that the involution in that theorem, which agrees with the given one, together with the given norm, makes \mathcal{A} into a C^* -algebra. \Box

In [2, Theorem 11.2.5], a number of equivalent criteria are given for a unital involutive Banach algebra—with a possibly discontinuous involution—to be a C^* -algebra, but positivity of certain continuous linear functionals is not among them. The proof above of such a criterion is made possible by the extra condition of the continuity of the involution. Although, given the Vidav–Palmer theorem, the proof is quite straightforward, we are not aware of a reference for this characterisation of C^* -algebras through positivity of linear functionals. Since the result seems to have a certain appeal, we thought it worthwhile to make it explicit.

References

- F.F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York-Heidelberg-Berlin, 1973.
- 2. T.W. Palmer, Banach Algebras and the General Theory of *-Algebras. Vol. II. *-algebras, Cambridge University Press, Cambridge, 2001.
- 3. W.R. Rudin, Functional Analysis, Second Edition, McGraw-Hill, New York, 1991.
- 4. M. Takesaki, Theory of Operator Algebras. I, Springer, New York-Heidelberg, 1979.

¹MATHEMATICAL INSTITUTE, LEIDEN UNIVERSITY, P.O. BOX 9512, 2300 RA LEIDEN, THE NETHERLANDS.

E-mail address: mdejeu@math.leidenuniv.nl

²Department of Mathematics, Tokyo Metropolitan University, Minami-Osawa, Hachioji City, Japan.

E-mail address: juntomi@med.email.ne.jp