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Abstract. The aim of this work is to clarify a new viewpoint of connection
between system of integral equations and matrix polynomials. A procedure is
described for transforming a linear system of integral equations to an indepen-
dent system. The latter is converted to equalities by considering its equivalent
matrix polynomial equation which employs the integral operator as its variable,
and admits a normal form for simplifying the system. We will show that under
certain suitable conditions, an independent reduced system is obtained, which
can be shown to have the same unknowns as the main system, and has only
one unknown in each equation. In fact, the basic idea enables us to develop a
methodology to solve general systems of linear integral equations.

1. Introduction

The development of mathematical treatment of systems of integral equations
is arguably one of the greatest achievements of the recent centuries. A few key
concepts have made this development possible, one of which is linear algebraic
methods. References that give rise to these methods include some quiet prominent
books and papers such as [3, 5, 22].

In this paper, we consider the linear system of Volterra integral equations of
the form

X(t) +

∫ t

a

K(t, s)X(s)ds = Φ(t), a ≤ t ≤ b, (1.1)
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for two particular, although fairly interesting, cases. In this system K(t, s) :=
[kij(t, s)]

n
i,j=1 : C2[a, b] → C is a continuous kernel, Φ(t) := [ϕi(t)]

n
i=1 : C → C is

a given continuous vector function, and X(t) is an unknown function should be
determined. The existence and uniqueness of solutions to the system is shown in
[5].

Although there exist various symbolic or numeric-analytic methods for solution
of (1.1), here we develop a method based on the properties of matrix polynomi-
als, which was first introduced for the solution of differential equations [13] and
proposed by the authors in [19] for systems of integral equations. An applica-
tion of this approach to the Hertz contact problem confirms the efficiency of the
proposed approach [20].

Matrix polynomials have been used extensively in recent years in the areas of
signal processing [7], analysis of linear feedback systems [6], nonlinear eigenvalues
problem [1], and rational approximation and system theory [9], etc.

Initially, we turn the given system of integral equations into a matrix polyno-
mial equation and a simple reduced system will be obtained based on the Smith
normal form of the matrix polynomial. In fact, a novel matrix polynomial equa-
tion is obtained if the integral operator is replaced by a variable of the matrix
polynomial. However, various kernels in the system of integral equations lead to
multivariate matrix polynomials. The definition and notion of multivariate ma-
trix polynomial as well as its properties have been studied by several authors e.g.
[2, 4, 8]. Such matrices arise in the mathematical treatment of multidimensional
systems which can be considered as extensions of the ordinary differential or dif-
ference systems [18]. Particulary, among all multivariate matrix polynomials, we
are interested in the case when the variables do commute.

The paper is organized as follows. Some well-known tools and results from
matrix polynomial theory, which will be needed in the following sections, are
reviewed in section 2. Section 3 contains the key to understanding the idea of
the method for general system of linear operator equations. When attention is
restricted to matrix polynomial equations, the Smith normal form of the matrix
polynomial completely characterizes the system, as is also discussed. Finally, the
main results of the theory for reducing systems of integral equations in particular
cases are included in section 4.

2. Comments on matrix polynomials

This section describes some basic mathematical concepts that will be used
throughout this paper. For simplicity, let us assume that all matrices are of
normal full-rank. For detailed proofs, the reader may see standard monographs
like [10, 11, 16].

Let the set of square matrix polynomials be denoted by Cn×n[K], (where C[K] is
the set of all polynomials in K) and consists of polynomials in K with coefficients
belonging to Cn×n, where Cn×n is the class of n × n matrices whose elements
belong to C. Precisely, the univariate matrix polynomial of degree l, is defined by
A(K) =

∑l
i=0AiKi, with Ai ∈ Cn×n, i = 0, · · · , l.
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Now, let C[K1,K2, · · · ,Kn] denotes the set of multivariate polynomials in n
variables K1,K2, · · · ,Kn with coefficients in C, and Cn×n[K1, · · · ,Kn] be the set
of multivariate polynomials with coefficients in Cn×n, called multivariate matrix
polynomials. An obvious approach which facilitates the extension of results for
univariate matrix polynomials to multivariate ones is to consider these latter
matrices as univariate matrices with one principal variable.

Definition 2.1. A unimodular matrix polynomial is a square one with nonzero
determinant in C.

One of the best known normal forms for matrix polynomials is a diagonal ma-
trix polynomial obtained by performing elementary operations, and called Smith
decomposition.

Theorem 2.2. (From [11]) Let A(K) be a full-rank matrix polynomial. There
exist n× n unimodular matrix polynomials U(K) and V(K), such that

U(K)A(K)V(K) = D(K), (2.1)

where D(K) = diag[d1(K), · · · , dn(K)] is a diagonal matrix with monic polyno-
mials di(K) over C such that di(K) is divisible by di−1(K).

The diagonal matrix polynomial D(K) is called the Smith normal form of
the matrix polynomial A(K), and U(K) and V(K) are called pre- and post-
multipliers, respectively. This decomposition can be obtained by repeated ap-
plication of a finite number of elementary row and column operations to find
unimodular matrices U(K) and V(K), respectively, such that U(K)A(K)V(K)
is in the Smith normal form. (For more details see [10, 11])

The Smith form was first originated for integer matrices by Smith [21], and
it was then extended to matrix polynomials. Applications of this normal form
include, for example, solving systems of Diophantine equations [17], integer pro-
gramming [12], and computing additional normal forms such as Frobenius and
Jordan normal forms [10, 14]. This decomposition is well known theoretically,
but can be difficult to compute in practice. Methods of calculating decomposi-
tion forms of matrix polynomials have been studied by many authors [15, 23, 24].

In the extension of univariate matrix polynomials to multivariate ones, it seems
appropriate to consider the concept of the Smith normal form of a multivariate
matrix polynomial, which is computed with respect to the principal variable.
Dealing with Cn×n[K1,K2, · · · ,Kn], although we are mainly concerned with sit-
uations in which there are several choices for principal variable, from now on
we consider Cn×n(K1,K2, · · · ,Kn−1)[Kn] or Cn×n(K2,K3, · · · ,Kn−1,Kn)[K1]. For
example, take Cn×n(K1,K2, · · · ,Kn−1)[Kn]. In this case, the condition of Theo-
rem 2.2 holds where K := Kn is the principal variable, and the other variables
(K1,K2, · · · ,Kn−1) are considered as constants. A similar procedure happens
for Cn×n(K2,K3, · · · ,Kn−1,Kn)[K1]. This approach, of course, can lead to Smith
forms which contain rational elements.

Throughout this paper, we will assume that the command smith in Mapler

gives the Smith decomposition of a matrix polynomial with respect to a particular
variable. Since Mapler assumes K1K2 = K2K1, while considering Ki as operators
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in general, this may not be true, we should emphasize that in an attempt to obtain
the Smith decomposition of a multivariate matrix polynomial, the condition under
which a matrix polynomial could be equivalent to its Smith form shown to be the
commutativity of the variables of the matrix polynomial.

3. Basic idea of the method

The following Lemma is a straightforward consequence of the Smith decompo-
sition, and will be used to form the basis of our method:

Lemma 3.1. (From [11]) Let the matrix polynomial equation

A(K)X(t) = Φ(t), (3.1)

present a system of operator equations, where A(K) is a matrix polynomial, Φ(t)
is a given vector function, and X(t) is the unknown vector should be determined.

Consider the Smith decomposition (2.1), then the solution of the system is
defined explicitly by

X(t) = V(K)Y(t), (3.2)

where

D(K)Y(t) = U(K)Φ(t). (3.3)

The proof can be checked easily by substituting the Smith decomposition (2.1)
in (3.1).

We extend the above Lemma to include systems of integral equations, and
henceforth, the argument (t) is omitted whenever that does not cause confusion.

4. Main results

The system (1.1) can be written as a matrix polynomial equation (3.1). This
is accomplished by introducing an n dimensional column vector

X(t) = col(x1(t), · · · , xn(t)).

Similarly, let Φ be a vector valued function with components ϕi, and K(t, s)
be an n× n kernel matrix with entries ki,j(t, s), in two cases:

K =
n∑

i,j=1

ki(t, s)Ei,j, (4.1)

K′ =
n∑

i,j=1

kj(t, s)Ei,j, (4.2)

where Ei,j stands for a matrix with entry (i, j) equal to 1, and all other entries
equal to zero.

Moreover, assume that in each system, there exists at least one invertible in-
tegral operator Ki, with Ki

−1 denoted as its inverse. Despite the fact that these
assumptions may appear restricting, they still include a large class of important
applications.
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First, we establish an independent system, equivalent to the system of integral
equations (1.1) where the kernel is given by (4.1) for n = 2, and then we explain
the procedure for higher values of n.

Defining the integral operator

(Kjf)(t) :=

∫ t

a

kj(t, s)f(s)ds, j = 1, 2, (4.3)

we can assign the following matrix polynomial equation:(
ϕ1(t)

ϕ2(t)

)
=

(
1 +K1 K1

K2 1 +K2

)(
x1(t)

x2(t)

)
,

to the system. For obtaining the decomposition (2.1), consider C2×2(K2)[K1],
therefore

D =

(
1 0

0 1 +K1 +K2

)
, U =

(
0 K2

−1

−K2 1 +K1

)
, V =

(
1 −(1 +K2)K2

−1

0 1

)
.

Taking (3.3) for Y, leads to{
y1 = K2

−1ϕ2,

(1 +K1 +K2)y2 = −K2ϕ1 + (1 +K1)ϕ2,
(4.4)

and equation (3.2) yields{
x1 = y1 − (1 +K2)K2

−1y2,

x2 = y2.
(4.5)

Replacing second equation of (4.5) in the second equation of (4.4) shows the
operator equation

(1 +K1 +K2)x2 = −K2ϕ1 + (1 +K1)ϕ2.

Then, multiplying both sides of the first equation of (4.5) by (1+K1 +K2) and
considering (4.4), gives the following operator equation

(1 +K1 +K2)x1 = −K1ϕ2 + (1 +K2)ϕ1.

Now, expanding the operators gives two independent equations for obtaining
x1 and x2.

It is important to mention that from now on, the invertibility of the operator
K2 is needed in this argument. Generally, we should suppose that there exists
at least one invertible integral operator, namely K2, in this proof. If K2 is not
invertible, we can reorder the equations such that the second equation of the
system contains the invertible integral operator K2.

For the general case, the system of integral equations (1.1) with (4.1) requires
introducing the integral operator Kj in (4.3) for j = 1, · · · , n, as the variable of
the matrix polynomial. Thus the equation (3.1) represents the system, with the
multivariate matrix polynomial

Aij = δij +Ki. (4.6)
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In the decomposition of this matrix polynomial, we consider Cn×n(K2, · · · ,Kn)[K1],
i.e. we choose K1 as the principal variable. The Smith decomposition (2.1) is
obtained as follows.

D =
n−1∑
j=1

Ej,j + (1 +
n∑

j=1

Kj)En,n.

The pre-multiplier is U =
∑n

i=1 Ui, where:

U1 =K2
−1E1,2,

Ui =−Ki+1K2
−1Ei,2 + Ei,i+1, i = 2, · · · , n− 1,

Un =−
n∑

j=1

K2En,j + (1 +
n∑

j=1

Kj)En,2,

and the post-multiplier matrix is V =
∑n

i=1 Vi, where:

V1 =E1,1 −
n−1∑
j=2

E1,j −K2
−1(1 +

n∑
j=2

Kj)E1,n,

V2 =E2,n,
Vi =Ei,i−1 +KiK2

−1Ei,n, i = 3, · · · , n.

Our task is now to make the system (3.3), as:

y1 =K2
−1ϕ2,

yi =−Ki+1K2
−1ϕ2 + ϕi+1, i = 2, · · · , n− 1,

(1 +
n∑

j=1

Kj)yn =(1 +
n∑

j=1

Kj)ϕ2 −K2

n∑
j=1

ϕj.

Note that, the structures of U and Y support the claim for n > 2, while the
procedure has been discussed for n = 2, before. Finally, (3.2) implies:

x1 =y1 −
n−1∑
j=2

yj −K2
−1(1 +

n∑
j=2

Kj)yn,

x2 =yn,

xi =yi−1 +KiK2
−1yn, i = 3, · · · , n.
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Initially, for i = 3, · · · , n, we have

(1 +
n∑

j=1

Kj)xi =(1 +
n∑

j=1

Kj)yi−1 +KiK2
−1(1 +

n∑
j=1

Kj)yn

=(1 +
n∑

j=1

Kj)(−KiK2
−1ϕ2 + ϕi)

+KiK2
−1
(

(1 +
n∑

j=1

Kj)ϕ2 −K2

n∑
j=1

ϕj

)
=(1 +

n∑
j=1

Kj)ϕi −Ki

n∑
j=1

ϕj.

Furthermore, for i = 2, replacing x2 in yn, we get

(1 +
n∑

j=1

Kj)x2 = (1 +
n∑

j=1

Kj)ϕ2 −K2

n∑
j=1

ϕj,

and for i = 1, refraining from going into the details, we can get

(1 +
n∑

j=1

Kj)x1 = (1 +
n∑

j=1

Kj)ϕ1 −K1

n∑
j=1

ϕj.

This can be generally stated as

(1 +
n∑

j=1

Kj)xi = (1 +
n∑

j=1

Kj)ϕi −Ki

n∑
j=1

ϕj, i = 1, · · · , n,

and applying the integral operator Ki, presents an independent reduced system
of integral equations.

What we have done in this case, leads to the following theorem:

Theorem 4.1. Consider the following system of integral equations:

xi(t) +
n∑

j=1

∫ t

a

ki(t, s)xj(s)ds = ϕi(t), i = 1, · · · , n, (4.7)

with at least one invertible integral operator defined as (4.3), for j = 1, · · · , n.
The reduced equivalent system can be shown to be the independent system

xi(t) +

∫ t

a

k(t, s)xi(s)ds = ψi(t), i = 1, . . . , n, (4.8)

where

ψi(t) = ϕi(t) +

∫ t

a

[
k(t, s)ϕi(s)− ki(t, s)ϕ(s)

]
ds, i = 1, · · · , n, (4.9)

and

k(t, s) =
n∑

j=1

kj(t, s), ϕ(s) =
n∑

j=1

ϕj(s).
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In what follows, we shall encounter an analogous result for the system of integral
equations for the second case (4.2).

Theorem 4.2. Given the system (1.1) with the kernel (4.2), suppose the assump-
tions of Theorem 4.1 hold. Then there exist

k(t, s) =
n∑

j=1

kj(t, s),

and

ψi(t) = ϕi(t)+

∫ t

a

k(t, s)ϕi(s)ds−
n∑

j=1

∫ t

a

kj(t, s)ϕj(s)ds, i = 1, . . . , n, (4.10)

such that the independent reduced system (4.8) obtains the solution of the main
system.

Proof. An argument similar to the one used in the previous theorem, is needed
for this proof. The system (1.1) with the condition (4.2) can be written explicitly
as

xi(t) +
n∑

j=1

∫ t

a

kj(t, s)xj(s)ds = ϕi(t), i = 1, . . . , n. (4.11)

Our first goal is to study the system (4.11) for n = 2. According to the definition
of the integral operator (4.3), the system can be expressed in a compact form (3.1),
with multivariate A′ in C2×2[K1,K2] as:

A′ =

(
1 +K1 K2

K1 1 +K2

)
,

and its Smith decomposition obtained in C2×2(K1)[K2]:

D′ =

(
1 0

0 1 +K1 +K2

)
,U′ =

(
0 K1

−1

−K1 1 +K1

)
,V′ =

(
1 −(1 +K2)K1

−1

0 1

)
.

Taking into account our previous assumption of existing at least one invertible
integral operator, we suppose that K1 is invertible. Now, the system (3.3) has
the form {

y1 = K1
−1ϕ2,

(1 +K1 +K2)y2 = −K1ϕ1 + (1 +K1)ϕ2.
(4.12)

Then we return to (3.2) as:{
x1 = y1 − (1 +K2)K1

−1y2,

x2 = y2 .
(4.13)

Through substituting the equations of (4.12) in the equations of (4.13), some
direct calculation yields{

(1 +K1 +K2)x1 = −K2ϕ2 + (1 +K2)ϕ1,

(1 +K1 +K2)x2 = −K1ϕ1 + (1 +K1)ϕ2,
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for obtaining x1 and x2, which is the system (4.8) with (4.10) for n = 2.
For higher values of n, with Kj for j = 1, . . . , n, denoting the variable of the ma-

trix polynomial corresponding to the given integral operator, the representation
(3.1) of the system (4.11) is hold, where A is:

A′ij = δij +Kj. (4.14)

Alternatively, consider Cn×n(K1,K2, · · · ,Kn−1)[Kn] for obtaining the Smith
normal form of the multivariate matrix polynomial in Cn×n[K1,K2, · · · ,Kn−1,Kn].
The Smith matrix polynomial is:

D′ =
n−1∑
j=1

Ej,j + γnEn,n, γn = 1 +
n∑

j=1

Kj.

Additionally, the pre-multiplier matrix polynomial is U′ =
∑n

i=1 U′i :

U′1 =K1
−1E1,2,

U′i =Ei,i − Ei,i+1, i = 2, · · · , n− 1,

U′n =−
n∑

j=1

KjEn,j + γnEn,n.

Providing that, up to a replacement of the equations, at least one invertible
integral operator exists, without loss of generality, we can suppose that K1 is the
integral operator with the inverse K1

−1.
The system (3.3) can be obtained as:

y1 =K1
−1ϕ2,

yi =ϕi − ϕi+1, i = 2, . . . , n− 1,

γnyn =γnϕn −
n∑

j=1

Kjϕj.

(4.15)

Moreover, the post multiplier V′ =
∑n

i=1 V′i :

V′1 =E1,1 −
n∑

j=2

K1
−1(1 +

j∑
k=2

Kk)E1,j,

V′i =
n∑

j=i

Ei,j, i = 2, · · · , n.

It remains to obtain xi from (3.2) as:

x1 =y1 −
n∑

j=2

K1
−1(1 +

j∑
k=2

Kk)yj,

xi =
n∑

j=i

yj, i = 2, · · · , n.
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Actually, for i = 2, · · · , n, we have

γnxi = γn

n−1∑
j=i

(ϕj − ϕj+1) + (γnϕn −
n∑

j=1

Kjϕj) = γnϕi −
n∑

j=1

Kjϕj,

and to get a similar relation for i = 1, by replacing yi’s from (4.15) in x1, some
tedious manipulation implies:

γnx1 = γnϕ1 −
n∑

j=1

Kjϕj.

We are now in a position to state the general form

γnxi = γnϕi −
n∑

j=1

Kjϕj, i = 1, · · · , n,

an defining (4.10), we can directly obtain xi from the independent system of
integral equations (4.8), and the theorem is proved. �

Finally, the essential observation is a system of integral equations as an example
of the systems investigated in Theorem 4.1 as well as Theorem 4.2.

Proposition 4.3. Let us consider the system of integral equations:

xi(t) +
n∑

j=1

∫ t

a

xj(s)ds = ϕi(t), i = 1, · · · , n. (4.16)

It can be written as an equivalent independent system of integral equations:

xi(t) + n

∫ t

a

xi(s)ds = ψi(t), i = 1, · · · , n, (4.17)

where

ψi(t) = ϕi(t) +

∫ t

a

ϕ(s)ds, ϕ(s) = nϕi(s)−
n∑

j=1

ϕj(s). (4.18)

Proof. From the definition of the operator K as

(Kf)(t) :=

∫ t

a

f(s)ds, (4.19)

the system (4.16) has the presentation (3.1) with the univariate matrix polyno-
mial:

Aij = δij +K. (4.20)

We can now apply the method of reducing (3.1). First, the vector Y can be
obtained through (3.3), with the Smith decomposition obtained with respect to
the only variable, as

D =
n−1∑
j=1

Ej,j + (K +
1

n
)En,n,
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and

U =
n−1∑
j=1

Ej,j −
n−1∑
j=1

Ej,j+1 −
K
n

n−1∑
j=1

En,j +
((n− 1)K + 1

n

)
En,n,

in the form
yi =ϕi − ϕi+1, i = 1, · · · , n− 1,

(K +
1

n
)yn =− K

n

n∑
i=1

ϕi + (K +
1

n
)ϕn.

Making (3.2) needs V as V =
∑n

i=1

∑n
j=i Ei,j, which gives xi =

∑n
j=i yj, and

(K +
1

n
)xi =(K +

1

n
)
n−1∑
j=i

(ϕj − ϕj+1) +
(
− K
n

n∑
i=1

ϕi + (K +
1

n
)ϕn

)
=(K +

1

n
)ϕi −

K
n

n∑
i=1

ϕi.

Multiplying both sides by constant n, we get

(nK + 1)xi = (nK + 1)ϕi −K
n∑

i=1

ϕi,

applying the operator (4.19), and defining (4.18) lead to (4.17), as claimed. �

In view of the mentioned approach, it is worthy to mention that, the system
(4.16) is a special case of both systems (4.7) and (4.11). However it can be
presented by a univariate matrix polynomial (4.20) while the the other systems
are corresponding to the multivariate ones (4.6) and (4.14), respectively. On the
other hand, the obtained independent system (4.17) with (4.18), is a special case
of the reduced system (4.8) with (4.9), and also (4.10), obtained in Theorem 4.1
and Theorem 4.2, respectively. Clearly the results are in accordance with each
other, and this ensures the reliability of the method.

5. Conclusion

Given the wide variety of problems in modeling physical phenomena that can
be posed as systems of integral equations, being able to efficiently solve them
is important. The proposed procedure for the solution of the system of integral
equations consists of three main steps. The requisite steps include transforming
the original system into a matrix polynomial equation, by choosing an appropri-
ate integral operator. Then, using the Smith canonical form as well as inverting
the solution of the transformed equation lead to a reduced system. The present
study confirms that exploiting the Smith decomposition, split the system of inte-
gral equations to an independent one. Finally, under certain suitable conditions,
the desired solution of the altered system can be found by any classical method.
In addition, the reformulation proposed here might be used to develop a method-
ology to solve the other systems of integral equations, however it contains some
complications and restrictions for selecting the variables of the matrix polynomial
which will be the subject of our future work.
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Biorthogonal systems for solving Volterra integral equation systems of the second kind, J.
Comput. Appl. Math. 235 (2011), no. 7, 1875–1883.

4. M.S. Boudellioua, Equivalence to Smith form of a class of multivariate polynomial matrices,
The fourth international workshop on multidimensional systems - NDS (2005) 259–262.

5. H. Brunner, Collocation Method for Volterra Integral and Related Functional Equations,
Cambridge University Press, Cambridge, 2004.

6. M.K. Fan and A.L. Tits, M-form numerical range and the computation of the structured
singular value, IEEE Trans. Automat. Control 33 (1988), no. 3, 284–289.

7. J.A. Foster, Algorithms and Techniques for Polynomial Matrix Decompositions, Ph. D.
Thesis, Cardiff University, 2008.

8. M.G. Frost and M.S. Boudellioua, Some further results concerning matrices with elements
in a polynomial ring, Internat. J. Control 43 (1986), no. 5, 1543–1555.

9. P.A. Fuhrmann, Orthogonal matrix polynomials and system theory, Conference on linear
and nonlinear mathematical control theory (1987) 68–124.

10. F.R. Gantmacher, The Theory of Matrices, Chelsea Publishing Company, New York, 1960.
11. I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Academic press, New York,

1982.
12. T.C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading, Mass., 1969.
13. T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, 1980.
14. E. Kaltonfen, M.S. Krishnamoorthy and B.D. Saunders, Parallel algorithms for matrix

normal forms, Linear Algebra Appl. 136 (1990) 189–208.
15. E. Kaltonfen, M.S. Krishnamoorthy and B.D. Saunders, Fast parallel computation of Her-

mite and Smith forms of polynomial matrices, SIAM J. Discrete Math. 8 (1987), no. 4,
683–690.

16. P. Lancaster and M. Tismenetsky, The Theory of Matrices, Academic Press, Orlando, 2nd
edition, 1985.

17. F. Lazebnik, On systems of linear Diophantine equations, Math. Mag. 69 (1996), no. 4,
261–266.

18. H.H. Rosenbrock, State Space and Multivariable Theory, Nelson-Wiley, London, New York,
1970.

19. N. Shayanfar and M. Hadizadeh, Computer algebraic efficiency of matrix polynomials for a
system of integral equations, ACM Commun. Comput. Algebra 43 (2010), no. 3-4, 101–102.

20. N. Shayanfar and M. Hadizadeh, λ-matrix formulation applied to the Hertz contact problem
with finite friction, Comput. Math. Appl. (to appear).

21. H.J.S. Smith, On systems of linear indeterminate equations and congruences, Philos. Trans.
Roy. Soc. London 151 (1861), 293–326.

22. H.H. Sorkun and S. Yalcinbas, Approximate solutions of linear Volterra integral equation
systems with variable coefficients, Appl. Math. Model. 34 (2010), no. 11, 3451–3464.

23. G. Villard, Computation of the Smith normal form of polynomial matrices, ISSAC1993,
Kiev, Ukraine, ACM Press, (1993), 209–217.



182 N. SHAYANFAR, M. HADIZADEH, A. AMIRASLANI

24. J. Wilkening and J. Yu, A local construction of the Smith normal form of a matrix poly-
nomial, J. Symbolic Comput. 46 (2011), no. 1, 1–22.

1 Department of Mathematics, K. N. Toosi University of Technology, P.O.
Box 16315-1618, Tehran, Iran.

E-mail address: shayanfar@dena.kntu.ac.ir; hadizadeh@kntu.ac.ir

2 STEM Department, University of Hawaii-Maui College, Kahului, HI 96732,
USA.

E-mail address: aamirasl@hawaii.edu


	1. Introduction
	2. Comments on matrix polynomials
	3. Basic idea of the method
	4. Main results
	5. Conclusion
	References

