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Abstract. There has been considerable work on matrix approximation prob-
lems in the space of matrices with Euclidean and unitarily invariant norms. We
initiate the study of approximation problems in the space P of all n×n positive
definite matrices with the Riemannian metric δ2. Our main theorem reduces
the approximation problem in P to an approximation problem in the space of
Hermitian matrices and then to that in Rn. We find best approximants to pos-
itive definite matrices from special subsets of P. The corresponding question
in Finsler spaces is also addressed.

1. Introduction

Let M be the space of all n × n complex matrices. A matrix approximation
problem consists of finding the best approximant to an element A of M from a
special subset S. For example, S could consist of all Hermitian, unitary, positive
definite, normal, Toeplitz, or circulant matrices, all matrices of rank k, all matri-
ces with a fixed spectrum, etc. The approximation could be sought with respect
to the Euclidean norm ‖ · ‖2, or with respect to some other norm. There is a con-
siderable body of work on such approximation problems with unitarily invariant
norms. See, e.g., [1], [2]. Some of these problems turn out to be easy, and have
elegant solutions. Some others are both hard and intricate. The nature of the set
and the norm both play a role in the tractability of the problem. Section IX.7 of
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[3] provides an introduction to such problems. Several applications are given in
[6].

In recent years there has been considerable interest in the metric space (P, δ2)
consisting of the space P of n × n positive definite matrices with a natural Rie-
mannian metric δ2. This is a classical object of differential geometry and has
become a major topic in matrix analysis with several applications in diverse ar-
eas, such as image processing, radar detection, brain-computer interfacing and
machine learning. See [7].

The principal aim of this article is to initiate the study of approximation prob-
lems in the space (P, δ2). Just as in the theory of approximation in the space M,
we consider special subsets K in P and find the best approximant to any element
A of P from the set K. We show that under some mild restrictions on K (con-
vexity and unitary invariance), the problem can be reduced to an approximation
problem in Rn. One of the interesting features of approximation theory in M has
been that very often the same element turns out to be the best approximant in
every unitarily invariant norm. Thus for example in every such norm, the best
Hermitian approximant to A is its real part Re A = 1

2
(A + A∗) and the best

unitary approximant is the one that occurs in the polar decomposition A = UP .
Every unitarily invariant norm |||·|||on M induces a Finsler metric δ|||·||| on P. The

Riemannian metric δ2 is special among these as it corresponds to the Euclidean
norm ‖ · ‖2. It is of some interest to see how the choice of norm affects the
approximation problem. We address this question too.

An introduction to the geometry of the space P can be found in Chapter 6 of
[4]. For basic facts of matrix analysis we refer to [3], [4].

2. Best Approximants in (P, δ2)

Let H be the set of all n × n complex Hermitian matrices. In this section we
consider H with the Euclidean norm ‖ · ‖2 defined as

‖A‖2 = (tr(A2))1/2 = (
n∑

i,j=1

|aij|2)1/2,

and the space P with the Riemannian metric δ2 defined as

δ2(A, B) = ‖ log(A−1/2BA−1/2)‖2

An important property of the metric δ2 that proves to be useful in the study of
approximation problems in P is the exponential metric increasing (EMI) property.
See [4], [5].

Theorem 2.1. (EMI) For any two Hermitian matrices H and K,

δ2(e
H , eK) ≥ ‖H −K‖2.

If H and K commute, then the two sides are equal.

Any two elements A and B in the space (P, δ2) can be joined by a unique
geodesic. This is the curve A]tB (0 ≤ t ≤ 1) given by

A]tB = A1/2(A−1/2BA−1/2)tA1/2.
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We write [A, B] for the set

{A]tB : 0 ≤ t ≤ 1}. (2.1)

A subset K of P is said to be convex (geodesically convex ) if for every pair of
elements A, B in P, the geodesic [A, B] lies entirely in P. This notion is different
from convexity in vector spaces. A subset S of the real vector space H is called
convex if for every pair of elements H, K in S, the line segment (1− t)H + tK,
0 ≤ t ≤ 1, lies entirely in S.

It is well-known that if K is a closed convex subset of the space (P, δ2), then
every A in P has a unique best approximant from K; i.e., there exists a unique
element A0 of K such that

δ2(A, A0) ≤ δ2(A, X)

for all X ∈ K. See [4]. Our aim is to find this best approximant for some special
sets K.

We say that a set K is unitarily invariant if for every unitary matrix U , UAU∗

is in K whenever A is. If H is a Hermitian matrix, we denote by Eig H an n-vector
whose components are the n eigenvalues of H. Given a vector x in Rn, we write
Dx for the diagonal matrix whose diagonal coincides with x.

It will be convenient to fix some notations. Given a convex, unitarily invariant
set K in P, we associate with it a subset S of H defined as

S = {log A : A ∈ K}
= {H ∈ H : eH ∈ K}.

The subset S of Rn is defined as

S = {x ∈ Rn : x = Eig H for some H ∈ S}.
This is the set of all x such that UDxU

∗ is in S for some unitary U .
Our main theorem reduces the problem of finding the best approximant to an

element A of P from the set K to the problem of approximating log A from S and
then to approximating Eig log A from the set S. As corollaries we consider three
special examples where the theorem is applied.

Theorem 2.2. Let K be a closed convex unitarily invariant subset of P. Suppose
S is also convex. Let A be any element of P and let log A = UDyU

∗ be the spectral
decomposition of log A. Let Φ(y) be the best approximant to y from the set S,
and Φ̃(log A) the best approximant to log A from the set S. Then

(i) the best approximant to A from K is exp(Φ̃(log A)),
(ii) Φ̃(log A) = UDΦ(y)U

∗.

Remark 2.3. If K is unitarily invariant, then so is S. However, if K is convex,
then S need not be convex. This is shown in the example given below. It is easy
to see that if S is a convex unitarily invariant set, then S is convex.

Example 2.4. Let K be the geodesic from A to B in P, i.e.,

K = {A]tB : 0 ≤ t ≤ 1}.
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We show that S is not always convex.
Suppose S is convex. Then the line segment γ(t) = (1− t) log A + t log B lies

in S. Thus there exists an injective function θ from [0, 1] into itself such that

eγ(t) = A]θ(t)B.

Then
det(eγ(t)) = det(A]θ(t)B) = det(A)1−θ(t)det(B)θ(t).

We also have
det(eγ(t)) = det(A)1−tdet(B)t.

This implies that
det(A)θ(t)−t = det(B)θ(t)−t.

So, if det(A) 6= det(B), then θ(t) = t. In particular, this means that

A]1/2B = exp
( log A + log B

2

)
.

However, it is well-known that this is not always true.

Proof of Theorem 2.2. Since K is unitarily invariant, and both δ2 and ‖ · ‖2 are
unitarily invariant, we can assume that A is diagonal. For any matrix B, let us
denote by D(B) the diagonal part of B. The diagonal matrix D(B) is a convex
combination of unitary conjugates of B and S is a convex unitarily invariant set.
Thus if B is an element of S, then so is D(B).

Since log A is diagonal, we have

‖ log A−D(Φ̃(log A))‖2
2 ≤ ‖ log A− Φ̃(log A)‖2

2.

But Φ̃(log A) is the best approximant to log A from S. Hence Φ̃(log A) =
D(Φ̃(log A)). In other words Φ̃(log A) is diagonal.

Now let X be any element of K. Then by Theorem 2.1

δ2(A, X) ≥ ‖ log A− log X‖2.

Since log X ∈ S, this gives

δ2(A, X) ≥ ‖ log A− Φ̃(log A)‖2.

As seen above Φ̃(log A) commutes with log A. So, again by Theorem 2.1, we get

δ2(A, X) ≥ δ2(A, exp(Φ̃(log A))).

This proves (i).
To prove (ii), we can again assume that log A = Dy. Since Φ(y) is the best

approximant to y from S, for all diagonal matrices D ∈ S
‖ log A−DΦ(y)‖2 ≤ ‖ log A−D‖2,

and since Φ̃(log A) must be a diagonal matrix, Φ̃(log A) = DΦ(y). �

Corollary 2.5. Let
K = {X ∈ P : det(X) = 1}.

and let A be any element of P. Then the best approximant to A from the set K
is A0 = A/(det(A))1/n.
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Proof. The set K is clearly closed and unitarily invariant. Using the relation

det(X]tY ) = (det X)1−t(det Y )t, 0 ≤ t ≤ 1,

we see that K is convex. In this case

S = {H ∈ H : tr(H) = 0}.
The best approximant to any element K of H from the set S is

Φ̃(K) = K − tr K

n
I.

So, by Theorem 2.2, the best approximant to A from K is

exp(Φ̃(log A)) = exp(log A− tr(log A)

n
I)

= A/(det A)1/n.

�

The form of A0 in Corollary 2.5 is one that could be guessed from the descrip-
tion of K. This is less so in the next case we consider.

We denote by ‖A‖, the operator norm of A, i.e.,

‖A‖ = sup{‖Ax‖ : ‖x‖ = 1} = s1(A),

the maximum singular value of A. Recall that every Hermitian matrix H has
a Jordan decomposition H = H+ − H− in which H± are positive semidefinite.
These are called the positive and negative parts of H, respectively.

Corollary 2.6. Let
K = {X ∈ P : ‖X‖ ≤ 1},

and let A be any element of P. Then the best approximant to A from K is

A0 = exp(−(log A)−).

Proof. The set K is clearly closed and unitarily invariant. Its convexity follows
from the relation

‖X]tY ‖ ≤ ‖X‖1−t‖Y ‖t, 0 ≤ t ≤ 1.

See [4]. This set consists of all positive definite matrices X with their maximum

eigenvalue λ↓
1(X) ≤ 1. Hence S consists of all Hermitian matrices whose maximum

eigenvalue is nonpositive. In other words S is the set of all negative semidefinite
matrices. By Theorem IX.7.3 in [3] the best approximant to any element K of H
from the set S is −K−. Hence by Theorem 2.2 the best approximant to A from
K is exp(−(log A)−). �

We next consider the set

K = {X ∈ P : ‖ ∧k X‖ ≤ 1}, (2.2)

1 ≤ k ≤ n. The special cases k = 1 and n are the ones considered in Corollary
2.6 and 2.5, respectively. The general case turns out to be more intricate. For
handling this we reduce the problem to an ordinary convex program in Rn and
then use the Karush-Kuhn-Tucker (KKT) optimization theorem. See [8].
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By an ordinary convex program (P ) we mean a problem of the following form.

Minimize f0(x) over Rn subject to the constraints
fi(x) ≤ 0, 1 ≤ i ≤ m.

where each fj(x) is a real-valued convex function.
The sets S and S associated with K are given by

S = {H ∈ H :
k∑

i=1

λ↓
i (H) ≤ 0}

and

S = {x ∈ Rn :
k∑

i=1

x↓i ≤ 0}.

It can be verified that K and S are closed, convex and unitarily invariant. Hence
we need to find the best approximant to a given vector y in Rn from S. Since S
is unitarily invariant and

x↓ − y↓ ≺ x− y

for all x, y in Rn, we can assume that y ∈ Rn↓, i.e., y1 ≥ · · · ≥ yn, and S ⊆
Rn↓. Thus we can interpret this approximation problem as the following ordinary
convex program.

(P0) min
n∑

i=1

(xi − yi)
2 subject to

fj(x) ≤ 0, 1 ≤ j ≤ n,

where

f1(x) =
k∑

j=1

xi

and
fj+1(x) = xj+1 − xj, 1 ≤ j ≤ n− 1.

We solve this ordinary convex program by using a special case of KKT opti-
mization theorem. For the convenience of the reader we state the theorem.

Theorem 2.7. Let (P ) be an ordinary convex program. Suppose (λ1, . . . , λm) is
a nonnegative vector in Rm such that the infimum of the function

h = f0 + λ1f1 + · · ·+ λmfm

is finite and equals min f0. Let D be the set of points where h attains its infimum
over Rn. Then a vector x in D is an optimal vector for (P ) if for all 1 ≤ i ≤ m,
fi(x) = 0 whenever λi > 0, and fi(x) ≤ 0 otherwise.

Since the Euclidean norm is strictly convex, we obtain a unique optimal vector
for (P0).

The best approximant to any element in S is obviously itself, so we assume
that y /∈ S,i.e., y1 ≥ y2 ≥ · · · ≥ yn and y1 + · · ·+ yk > 0. Let yk = y1+···+yk

k
. The

following two cases arise while solving the problem (P0).

Case 1. yk − yk+1 ≥ yk.
Case 2. yk − yk+1 < yk.
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In Case 1, the vector ỹ = (ỹ1, . . . , ỹn) given by

ỹi = yi − yk 1 ≤ i ≤ k
ỹj = yj k + 1 ≤ j ≤ n.

satisfies the conditions of the KKT optimization theorem and hence is the unique
optimal solution for (P0).

We next consider Case 2. For 1 ≤ m ≤ n− k, let

µm =
(m + 1)(y1 + · · ·+ yk−1) + yk + · · ·+ yk+m

(m + 1)k −m
,

νm =
m(y1 + · · ·+ yk−1 −m(k − 1)yk) + k(yk+1 + · · ·+ yk+m)

(m + 1)k −m
zm = yk − µm + νm .

It can be verified that µ1 > 0, ν1 > 0, µ1 > ν1 and yk+1 > z1. Let

p = max{m : 1 ≤ m ≤ n− k, µm > 0, νm > 0, µm > νm and yk+m > zm}.

Let ŷ = (ŷ1, . . . , ŷn) be the vector given by

ŷi = yi − µp 1 ≤ i ≤ k − 1
ŷk = zp

ŷi = ŷk k + 1 ≤ i ≤ k + p
ŷi = yi i > k + p.

In this case ŷ turns out to be the unique optimal solution of (P0).
Thus the best approximant Φ(y) to y from S is given by

Φ(y) =


y if y ∈ S

ỹ if yk − yk+1 ≥ yk

ŷ if yk − yk+1 < yk.

(2.3)

Corollary 2.8. Let

K = {X ∈ P : ‖ ∧k X‖ ≤ 1}.
Let A be any element of P and let log A = UDyU

∗ be the spectral decomposition
of log A. Then the best approximant to A from K is

A0 = U exp(DΦ(y))U
∗,

where Φ(y) is given by (2.3).

3. Best Approximants in (P, δ|||·|||)

In this section we indicate how results of Section 2 may be extended to Finsler
metrics on P arising from unitarily invariant norms on M.

Recall that a norm |||·||| on M is said to be unitarily invariant if |||UAV ||| = |||A|||
for all A and unitary U, V . Such a norm arises from a symmetric gauge function
|||·||| on Rn. It gives rise to a Finsler metric δ|||·||| on P defined as

δ|||·|||(A, B) =
∣∣∣∣∣∣log(A−1/2BA−1/2)

∣∣∣∣∣∣.
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It has been shown in [5] that in the metric space (P, δ|||·|||) the curve [A, B] defined
in (2.1) is a geodesic joining A and B. (This geodesic is unique if geodesics in |||·|||
are unique.) We say that a set K in (P, δ|||·|||) is convex if it is convex in (P, δ2).

Remark 3.1. The crucial EMI property is also valid in (P, δ|||·|||); we have

δ|||·|||(e
H , eK) ≥ |||H −K|||,

for all Hermitian matrices H, K and the two sides are equal if H and K commute.
See [5].

Theorem 2.2 remains true: the approximation problem in (P, δ|||·|||) reduces to
the approximation problem in (H, |||·|||) and then to that in (Rn, |||·|||). The best
approximant is unique whenever the norm is strictly convex.

The best approximants obtained for the examples in Corollaries 2.5 and 2.6 for
the Euclidean norm work for all unitarily invariant norms. The reason being that
in both cases, Φ̃(log A) is the best approximant to log A from S independent of
the norm.

For Corollary 2.6, this follows from Theorem IX.7.3 of [3]. For the convenience
of the reader we briefly sketch the proof for Corollary 2.5.

Let K be the set given in Corollary 2.6. Then the set S associated to it is

S = {x ∈ Rn :
n∑

i=1

xi = 0}.

Let y be the n-vector with all its components equal to

nP

i=1
yi

n
, and let J be the

n×n matrix with all its entries 1/n. The matrix J is doubly stochastic. By using
the relation

y = J(y − z),

and Theorem II.1.9 of [3], it can be verified that Φ(y) = y− y is the best approx-
imant to y from S. This proves that the best approximant to any element from
the set K of Corollary 2.6 is the same for every unitarily invariant norm.

However this does not happen in case of Corollary 2.8, i.e., in this case the best
approximant to A from K is dependent on the choice of the norm.

Let ‖ · ‖ denote the symmetric gauge function on Rn defined by

‖(x1, . . . , xn)‖ = max
1≤i≤n

|xi|.

This induces the operator norm on M and the metric δ‖·‖ on P. In the following
example we show that the best approximants from the set K described in (2.2)
in the two spaces (P, δ2) and (P, δ‖·‖) are not always the same.

Example 3.2. Let K be the subset of 4× 4 positive definite matrices defined as

K = {X ∈ P : ‖ ∧2 X‖ ≤ 1}.
The set S associated with K is

S = {x ∈ R4 : x↓1 + x↓2 ≤ 0}.
Consider the vector y = (5, 1, 1,−1). Let ỹ = (2,−2,−2,−2) and ŷ = (1,−1,−1,−1).
Then ỹ is a best approximant to y from S in (Rn, ‖ · ‖). By (2.3), ŷ is the unique
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best approximant to y from S in the Euclidean norm; but it is not a best approx-
imant in ‖ · ‖ since ‖y − ŷ‖ > ‖y − ỹ‖.
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