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ON COMPACTNESS IN COMPLEX INTERPOLATION
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Abstract. We show that, in complex interpolation, an operator function that
is compact on one side of the interpolation scale will be compact for all proper
interpolating spaces if the right hand side (Y 0, Y 1) is reduced to a single space.
A corresponding result, in restricted generality, is shown if the left hand side
(X0, X1) is reduced to a single space. These results are derived from the fact
that a holomorphic operator valued function on an open subset of C which takes
values in the compact operators on part of the boundary is in fact compact
operator valued.

Introduction

Let (X0, X1) and (Y 0, Y 1) be interpolation pairs of Banach spaces, and let
A : XΣ → YΣ be a linear operator such that A Xj ∈ L(Xj, Y j) (j = 0, 1) and
such that A X0 : X0 → Y 0 is compact. (For notation concerning interpolation we
refer to Section 2.) For many important cases it is known that then the interpo-
lating operator A Xt

: Xt → Yt resulting from complex interpolation is compact
for all t ∈ (0, 1). In particular, for the case that the pair (Y 0, Y 1) obeys a certain
approximation hypothesis, this property was shown by Persson [12]. However,
whether this is true in general is an open problem since the fundamental paper of
Calderón [2]. For a survey on developments and the state of the art concerning
this problem we refer to [3, 5, 6, 14] and the references therein.

In the particular cases where X0 = X1 or Y 0 = Y 1, it was shown already in
[10] that the answer is positive, without further requirements on the spaces. It is
the purpose of the present paper to present an analogous result for the case that
the operator A is replaced by a suitable operator function A : S → L(X∆, YΣ),
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where S is the strip

S := {z ∈ C; 0 6 Re z 6 1}.
Assume that A(z) : X0 → Y 0 is compact for all z in some subset of the imaginary
axis, having positive measure. If Y 0 = Y 1 =: Y , then we show that A(z) is

compact as an operator in L(XRe z, Y ), for all z ∈ S̊ (Theorem 2.1). Similarly,
if X0 = X1 := X, the dual of X is separable, and one of the spaces Y 0, Y 1 is
reflexive, then we show that A(z) is compact as an operator in L(X, YRe z), for

all z ∈ S̊ (Theorem 2.3).
As a preliminary result we show that holomorphic operator valued functions

on open subsets of C which take values in the compact operators on part of the
boundary are compact operator valued (Theorem 1.1).

1. On compactness for holomorphic operator functions

Theorem 1.1. Let X, Y be Banach spaces, and let Z ⊆ Y ′ be a separating set
for Y . Let Ω :=

{
z ∈ C; |z| < 1, Im z > 0

}
,

T : Ω ∪ (−1, 1)→ L(X, Y )

bounded, z 7→ y′(T (z)x) continuous for all y′ ∈ Z, x ∈ X, and T Ω holomorphic.
Assume that T (z) is a compact operator for all z ∈ E, where E ⊆ (−1, 1) is a
set of positive measure, and that T (−1,1) is strongly measurable.

Then T (z) is compact for all z ∈ Ω.

Proof. Without restriction we may assume that X is separable.
Also, we may assume that T has an extension to Ω such that z 7→ y′(T (z)x)

is continuous on Ω for all y′ ∈ Z, x ∈ X. (Replace T by z 7→ T (αz), for suitable
α ∈ (0, 1).)

Let D := BC(0, 1) be the open unit disc in C, let C := ∂D be the unit circle,
and let µ be the normalised line measure on C. There exists a homeomorphism
κ : Ω → D, such that κ : Ω → D is biholomorphic and such that the setup is
transformed into the situation that

T : D → L(X, Y )

is bounded, z 7→ y′(T (z)x) is continuous on D, for all y′ ∈ Z and x ∈ X, that
T D is holomorphic, that T (ξ) is a compact operator for all ξ ∈ E, where E ⊆ C
is a set of positive measure, and that T C is strongly measurable.

Let p : D × C → (0,∞) be the 2-dimensional Poisson kernel,

p(z, ξ) =
1− |z|2

|z − ξ|2
.

For z ∈ D, Poisson’s formula implies that

T (z) =

∫
C

T (ξ)p(z, ξ) dµ(ξ).

Here, the integral is a strong integral, and the equality is obtained by inserting x ∈
X and applying functionals y′ ∈ Z. We split the integral as T (z) = T1(z)+T2(z),
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with

T1(z) :=

∫
E

T (ξ)p(z, ξ) dµ(ξ),

T2(z) :=

∫
C\E

T (ξ)p(z, ξ) dµ(ξ) (z ∈ D).

Then T1(z) is a compact operator, by the strong convex compactness property of
the compact operators; cf. [16; Theorem 1.3]. We estimate T2(z) by

‖T2(z)‖ 6
∫
C\E
‖T (ξ)‖p(z, ξ) dµ(ξ)

(noting that ξ 7→ ‖T (ξ)‖ is measurable, by the separability of X). Now it follows
that ‖T2(rξ)‖ → 0 as r → 1−, for ξ ∈ E a.e.; see, e.g., [8; Corollary 2 of Theorem
1.2].

Let η ∈ L(X, Y )′ be vanishing on the compact operators, and define

φ(z) := η(T (z)) (z ∈ D).

Then φ is bounded and holomorphic, and the previous considerations show that
φ(rξ) = η(T2(rξ)) → 0 (r → 1−) for ξ ∈ E a.e. This implies that η(T (z)) =
φ(z) = 0 (z ∈ D), by [13; Theorem 17.18]. Since this is true for any η as above,
the Hahn-Banach theorem implies that T (z) is compact for all z ∈ D. �

Remarks 1.2. (a) In the proofs of Theorems 2.1 and 2.3 we will apply Theorem 1.1
with the interior of the strip S instead of the set Ω. The transformation to this
situation is achieved by a suitable biholomorphic mapping.

(b) If, in the hypothesis of Theorem 1.1, one assumes more strongly that T is
operator norm continuous on Ω∪ (−1, 1), then the proof is easier, as one can use
the last step of the proof directly: Proceeding as above one obtains a function φ
which is continuous on D and vanishes on the set E ⊆ C of positive measure. This
implies that φ = 0, by [13; Theorem 17.18]. It is the main point of Theorem 1.1 to
deal with a less restrictive hypothesis for T concerning the behaviour on (−1, 1).

(c) The hypotheses of Theorem 1.1 are somewhat reminiscent of the setting
used in [2; 9.6].

(d) If Z ⊆ Y ′ is an almost norming subspace (i.e.,

‖y‖Z := sup
{
|y′(y)|; y′ ∈ Z, ‖y′‖ 6 1

}
(y ∈ Y ),

defines a norm ‖ · ‖Z which is equivalent to the norm on Y ), then the hypothesis
that T (−1,1) is strongly measurable can be replaced by the requirement that T (·)x
is essentially separably valued on (−1, 1), for all x ∈ X. This is a consequence
of a slight strengthening of Pettis’ theorem on measurability as described in [7;
Section II.1, Corollary 4].

2. Compact interpolation of operator functions

In this section we assume that (X0, X1) and (Y 0, Y 1) are interpolation pairs of
Banach spaces (cf. [1; Sect. 2.3], [11; Introduction]).
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We recall the notation X∆ := X0∩X1, XΣ := X0 +X1, and we assume that X̌
is a dense subspace of X∆. For the definition of the complex interpolation spaces
we recall the space

F0(X) :=
{
f ∈ C0(S;XΣ); f holomorphic on S̊,

(s 7→ f(j + is)) ∈ C0(R;Xj) (j = 0, 1)
}
,

with the norm given by

|||f ||| := sup
{
‖f(j + is)‖j; s ∈ R, j = 0, 1

}
.

For z ∈ S, the interpolation space Xz is defined by

Xz :=
{
f(z); f ∈ F0(X)

}
,

with norm
‖x‖z := inf

{
|||f |||; f ∈ F0(X), f(z) = x

}
.

(Usually, the spaces Xt are only considered for 0 6 t 6 1; note that evidently
Xz = XRe z for all z ∈ S.) Finally, we define

A0(S) :=
{
φ ∈ C0(S); φ S̊ holomorphic

}
,

and we recall that

F̌0(X, X̌) := lin
{
φx; φ ∈ A0(S), x ∈ X̌

}
is a dense subspace of F0(X); cf. [2] or [1; Lemma 4.2.3].

In addition to the previous assumptions we assume that we are given a family
(A(z))z∈S of linear mappings A(z) : X̌ → YΣ, with the following properties:

(i) For all x ∈ X̌ the function A(·)x : S → YΣ is continuous, bounded, and

holomorphic on S̊;
(ii) for x ∈ X̌, j = 0, 1, the function R 3 s 7→ A(j + is)x ∈ Y j is continuous,

and

Mj := sup
{
‖A(j + is)x‖Y j ; s ∈ R, x ∈ X̌, ‖x‖Xj 6 1

}
<∞.

If these conditions are satisfied, then, for all z ∈ S, the operator A(z) has a
unique extension to an operator A(z) ∈ L(Xz, Yz), and this operator satisfies
‖A(z)‖L(Xz ,Yz) 6 M1−Re z

0 MRe z
1 . We refer to [4] (or [15; Theorem 2.1], [11; Theo-

rem 2.7]) for the proof of this statement.

Theorem 2.1. In the previous setup, assume that Y 0 = Y 1 =: Y , and assume
additionally that there exists a subset E ⊆ R of positive measure such that A(is) ∈
L(X0, Y ) is a compact operator, for all s ∈ E.

Then the operator A(z) ∈ L(Xz, Y ) is compact for all z ∈ S̊.

Proof. The hypotheses imply that for f ∈ F̌(X, X̌), the function z 7→ A(z)f(z)
belongs to F0(Y ) := F0((Y, Y )). Moreover, the mapping

f 7→ A(·)f(·)
is continuous with respect to the norms on F0(X) and F0(Y ), which implies
that it has a unique extension to F0(X). As A(z) ∈ L(Xz, Y ) for all z ∈ S,
this extension is given pointwise by A(z)f(z) (f ∈ F0(X)). This shows that the
function z 7→ A(z)f(z) belongs to F0(Y ), for all f ∈ F0(X).
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Now we define the operator function T : S → L(F0(X), Y ) by

T (z)f := A(z)f(z) (f ∈ F0(X), z ∈ S).

Because F0(X) 3 f 7→ f(z) ∈ Xz is a continuous linear operator, the hypothesis
of the theorem implies that T (is) is compact for all s ∈ E. Further, the properties

mentioned above imply that T is holomorphic on S̊, strongly continuous on S,
and T (z) tends strongly to 0 as |z| → ∞.

Therefore the application of Theorem 1.1 yields that T (z) is compact for all

z ∈ S̊. For z ∈ S, the operator F0(X) 3 f 7→ f(z) ∈ Xz is a quotient map (in
particular, maps the unit ball of F0(X) onto the unit ball of Xz), and therefore

the definition of T (z) implies that A(z) ∈ L(Xz, Y ) is compact for all z ∈ S̊. �

Remarks 2.2. (a) For the case that the pair (Y 0, Y 1) obeys an approximation
hypothesis, Calderón [2; 10.4] presented a result corresponding to Theorem 2.1.
We just mention another noteworthy difference between the hypotheses in the
results: In [2] the function A is required to be operator norm continuous (in a
certain sense) on S.

(b) One might ask whether, analogously to the case of a single operator, one
could also treat the case that X0 = X1 whereas the interpolation pair (Y 0, Y 1)
is not reduced to a single space.

This would be highly desirable. Indeed, a glance at the proof of Theorem 2.1
shows that this would mean that one could also treat the general case where
both interpolation pairs are non-trivial. In particular, this would solve the long-
standing open problem mentioned above, concerning a single operator. We did
not see how to apply Theorem 1.1 to this case, in the general setup. In Theo-
rem 2.3 below we present a result of this kind, under more restrictive hypotheses.

Theorem 2.3. In the setup of the beginning of this section, assume that X0 =
X1 =: X. Further assume that one of the spaces Y 0, Y 1 is reflexive, that there
exists a subset E ⊆ R of positive measure such that A(is) ∈ L(X, Y 0) is a compact
operator for all s ∈ E, and that the function R 3 s 7→ A(is)′ ∈ L(Y 0′, X ′) is
strongly measurable.

Then the operator A(z) ∈ L(X, Yz) is compact for all z ∈ S̊.

Proof. It is easy to see that, without restriction, one may assume that Y∆ is dense
in Y 0 and Y 1, and thus Yj = Y j (j = 0, 1). ¿From [2; 9.5, 12.1 and 12.2] we
then know that the space Yz is reflexive and that (Y ′)z = (Yz)

′ (with the obvious

notation), for all z ∈ S̊.
For all x ∈ X, y′ ∈ Y ′0 ∩ Y ′1 = (Y ′)∆ = (YΣ)′, we obtain that the function

z 7→ 〈x,A(z)′y′〉 = 〈A(z)x, y′〉

is bounded and continuous on S and holomorphic on S̊. Therefore, for all f ∈
F̌0(Y ′, (Y ′)∆), the function

z 7→ 〈x,A(z)′f(z)〉

belongs C0(S), is holomorphic on S̊, and we have the estimate

|〈x,A(z)′f(z)〉| 6 max
{
M0,M1

}
‖x‖|||f |||.
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The denseness of F̌0(Y ′, (Y ′)∆) in F0(Y ′) implies that the last properties carry
over to all f ∈ F0(Y ′). As in the proof of Theorem 2.1 we now define T : S →
L(F0(Y ′), X ′) by

T (z)f := A(z)′f(z) (f ∈ F0(Y ′), z ∈ S).

Then we can apply Theorem 1.1 to the function T . Indeed, X ⊆ X ′′ is a norming
subspace for X ′, the continuity and holomorphy assumptions hold (for the holo-
morphy we refer to [9; Chapter III, Remark 1.38]), T (is) : f 7→ A(is)′f(is) is com-
pact because f 7→ f(is) is continuous and the dual operator A(is)′ ∈ L(Y ′0 , X

′)
of the compact operator A(is) ∈ L(X, Y0) is compact for all s ∈ E, and the
measurability of R 3 s 7→ A(is)′f(is), for f ∈ F0(Y ′), follows from the strong
measurability of R 3 s 7→ A(is)′ and the continuity of R 3 s 7→ f(is).

The application of Theorem 1.1 then yields that T (z) is compact for all z ∈ S̊,
and as in the proof of Theorem 2.1 we conclude that A(z)′ ∈ L((Y ′)z, X

′) =
L((Yz)

′, X ′) is compact. By Schauder’s theorem we obtain that A(z) ∈ L(X, Yz)
is a compact operator. �

Remark 2.4. In Theorem 2.3, the assumption of strong measurability follows from
the remaining hypotheses if the dual X ′ of X is separable. This is a consequence
of Remark 1.2(d).
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