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Abstract. We say that a locally compact group G is C∗-unitarizable if its
full group C∗-algebra C∗(G) satisfies Kadison’s similarity problem (SP), i.e.
every bounded representation of C∗(G) on a Hilbert space is similar to a *-
representation. We prove that locally compact and unitarizable groups are
C∗-unitarizable. For discrete groups, we prove that C∗-unitarizable passes to
quotients. Moreover, a given discrete group is C∗-unitarizable whenever we
can find a normal and C∗-unitarizable subgroup with amenable quotient.

1. Introduction

This paper pursues one of John von Neumann’s motivations for initializing
the study of operator algebras, which was to provide an abstract framework for
unitary representations of locally compact groups. In particular, we would like
to reach a better understanding between unitary representations of groups (and
Dixmier problem [4]) and C*-representations (and Kadison similarity problem
[10]) inherited in the various operator algebras that are traditionally associated
to groups. Of interest in its own right, Pisier asks in [16, Remark 0.6] if the
following two stability problems hold for discrete groups:

H normal, H and G/H are unitarizable =⇒ G is unitarizable? (1.1)

G1 and G2 are unitarizable =⇒ G1 ×G2 also unitarizable? (1.2)

where a group G is said to be unitarizable if for any continuous and uniformly
bounded sup||πg|| <∞ representation π : G→ B(H) on a Hilbert spaceH we can
find an invertible operator S such that g → S−1π(g)S is a unitary representation
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of G. Of course all these can likewise be considered for locally compact groups.
Using Mackey’s classical induction machinery of representation theory, Pisier [16]
managed to prove that unitarizability passes to subgroups and quotients in the
discrete case, and problems (1.1) and (1.2) are thus natural from the amenable
group viewpoint. Their solution will shed light on the famous Dixmier problem
[4] formulated in 1950 as follows:

G unitarizable =⇒ G amenable? (1.3)

The converse of Dixmier problem (1.3) was proved in [4]. Note that SL(2,R) was
the first non-unitarizable group discovered in 1955 by Ehrenpreis and Mautner
[7]. Although (1.3) holds for connected locally compact groups see [16, Remark
0.9] and references therein, the discrete group case remains widely open.

The full group C∗-algebra C∗(G), the reduced group C∗-algebra C∗red(G), the
von Neumann group algebra vN(G) and the big group algebra A(G) (bidual of
C∗(G) as Banach spaces) are some operator algebras, naturally associated to
the underlying group G, and are the C∗-algebras we deal with in this paper.
In general, locally compact groups cannot be embedded in C∗(G), unless G is
discrete. This obstacle disappears if we consider the big algebra A(G), i.e. we
can embed G in A(G), see [5].

It is reasonable to formulate Dixmier problem using an operator algebraic
framework. Indeed, this was done in 1955 by Kadison [10] (also known as Kadi-
son’s similarity problem, in short, (SP)) formulated as follows: for any (unital)
C∗-algebra A and π : A→ B(H) a homomorphism

π bounded =⇒ π similar to a C∗-representation? (1.4)

i.e. there is an invertible operator S such that the map a → S−1π(a)S is a ∗-
homomorphism ofA. C∗-algebras without tracial states [8] (for exampleB(l2(N)))
and nuclear C∗-algebras (e.g. commutative and finite dimensional ones) do satisfy
the Kadison (SP).

The Thompson group F , see (3.2) below, is an exotic example of a group
whose group von Neumann algebra vN(F ) satisfies the (SP) because F is an
ICC group (= every non-trivial conjugacy class is an infinite set) and vN(F )
has property Γ, see [2, 13]. Besides F does not contain free groups [1]. It is
thus a natural candidate to become the first non-amenable discrete group and
unitarizable. Golod-Shafarevich groups are proved in [6] to be non-amenable and
may also be interesting examples for Dixmier problem.

We propose the notion of C∗-unitarizable group whenever its full group algebra
C∗(G) satisfies the Kadison (SP). Since there is no counterexample to Kadison’s
similarity problem there is also no known example of a non-C∗-unitarizable group.
However there are certainly non-unitarizable groups, e.g. the free group F2, see
e.g. [15]. Besides the (SP), we also consider the weak similarity problem (WSP),
see Definition 3.10 below, in the case of a von Neumann algebra when we not only
consider bounded homomorphisms but also their weak* continuity. This is useful
to relate the unitarizibility of the group and the (WSP) for the big algebra, for
locally compact groups. When we consider the group of unitaries of a C∗-algebra,
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we conclude that Kadison’s (SP) holds for any C∗-algebra if any discrete group
is C∗-unitarizable.

Kadison’s similarity problem (1.4) is equivalent to another crucial problem (the
derivation problem) in the cohomology theory of operator algebras, as follows. A
linear map D : A → B(H) is called a derivation with respect to a bounded
homomorphism π : A→ B(H) if D obeys the Leibniz rule:

D(ab) = D(a)π(b) + π(a)D(b), for all a, b ∈ A. (1.5)

We say that a C∗-algebra A satisfies the derivation problem (abbreviated as
(DP)) if any derivation D : A → B(H) is inner, i.e. D = δT where δT (a) =
Tπ(a)− π(a)T . A celebrated theorem of Kirchberg [11] states that

A satisfies the (SP) ⇐⇒ A satisfies the (DP).

This equivalent formulation of the (SP) enables us to give a partial (positive)
answer to Pisier problem (1.1). We naturally also have a notion of derivation
for a group representation and we say that a group G satisfies the (DP) if any
derivation on G is inner, see [12].

The rest of the paper is organized as follows. In Sect. 2 we fix some notation and
background material necessary in the sequel. In Sect. 3 we prove our main results.
In Definition 3.1 we propose the notion of C∗-unitarizable for locally compact
groups. Using the derivation problem, in Theorem 3.7 we show that a discrete
group inherits the C∗-unitarizability from a C∗-unitarizable subgroup and its
quotient, provided the latter is also amenable (see Pisier problem (1.1)). After the
notion of a weak version of (SP) for von Neumann algebras as in Definition 3.10, we
establish in Theorem 3.11 some new consequences for Kadison similarity problem
(1.4) for the various operator algebras associated to a given locally compact group
(assumed to be unitarizable). In particular we conclude that a locally compact
group is C∗-unitarizable if the group is unitarizable. With all these at hand, we
draw some conclusions at the end of the paper towards Dixmier problem (1.3),
using Thompson group F and F ×G with G amenable as possible candidates of
non-amenable but unitarizable groups.

2. Background material

Let G be a locally compact group and µ the (left) Haar measure of G. Recall
that the notion of amenable group was introduced by von Neumann in 1929, and
says thatG is amenable if there exists a left invariant mean onG, i.e. if there exists
positive linear functional m : L∞(G) → C such that m(1) = 1 and m(f) = m(gf)
for any g ∈ G, where gf(t) = f(g−1t) and L∞(G) is the Banach space of all
essentially bounded functions G→ C with respect to the Haar measure.

Next, we let Cc(G) be the space of complex valued continuous functions on
G with compact support. Consider L2(G) the Hilbert space of square integrable
functions with respect to µ. We also recall the convolution product as follows:

(f ∗ g)(t) =

∫
G

f(s)g(s−1t) dµ(s).



4 R. EL HARTI, P.R. PINTO

Let ∆ be the modular function on G (∆ ≡ 1 for discrete groups). Then f ∗(t) =

∆(t−1)f(t−1) equips Cc(G) with an involution ∗. For an integrable function f ∈
Cc(G), ||f ||1 :=

∫
G
|f(t)| dµ(t) equips Cc(G) with a structure of a normed algebra.

The convolution algebra L1(G) is the ∗-Banach algebra obtained by completion
of Cc(G) for that norm. Any unitary representation π of G can be lifted to a *-
representation π of L1(G) on the same Hilbert space. The (full) group C∗-algebra
C∗(G) of G is the C∗-enveloping algebra of L1(G), i.e. the completion of L1(G)
with respect to the largest C*-norm:

||f ||C∗(G) := sup
π
‖π(f)‖,

where π ranges over all unitary representations of G on Hilbert spaces. The
reduced C∗-algebra C∗red(G) is the C∗-algebra generated by the left regular rep-
resentation λ(G) in B(L2(G)) and defined as follows:

λg(f)(t) = f(g−1t) g, t ∈ G, f ∈ L2(G).

The left regular representation gives rise to a natural C∗-morphism C∗(G) →
C∗red(G) which is an isomorphism if and only if G is amenable. Also let vN(G)
be the von Neumann algebra generated by λ(G) in B(L2(G)). In general, for
f ∈ L1(G), we have:

||f ||C∗
red(G) ≤ ||f ||C∗(G) ≤ ||f ||L1(G).

Any group morphism between two discrete groups G1 → G2 can be lifted to a
C∗-algebra ∗-homomorphism C∗(G1) → C∗(G2) (see Rieffel’s [17, Proposition
4.1]). In general this functoriality does not extent to locally compact groups.

The big group C∗-algebra A(G) associated to a locally compact group G is
defined as follows. Let H be a infinite dimensional separable Hilbert space and
let GH be the set of all unitary representations π : G → B(H) on that fixed
Hilbert space H and A(G) = {J : GH → B(H)} the set of maps from GH to
B(H) satisfying some natural conditions as in [5, Page 469], where we can define
an involutive algebra structure. The weak topology on A(G) is defined to be the
smallest topology such that the functions J → 〈J(L)ξ, ψ〉 are continuous, for all
J ∈ GH and ξ, ψ ∈ H. As Banach algebras, A(G) maybe identified with C∗(G)∗∗

the bidual of the full C∗-algebra C∗(G). For every g ∈ G, let ĝ : GH → B(H) be
the map defined by ĝ(π) = π(g). Then g → ĝ gives an imbedding of G into A(G),

with image Ĝ constituted by unitary operators, see [5, Theorem 2.3]. Moreover
the algebras L1(G) and C∗(G) are weak-* dense in A(G), see [5, Corollary 3.2].

The *-subalgebra Alg(Ĝ) of all finite linear combinations of elements in Ĝ is dense
in A(G) relative to any of the topologies: weak and σ-weak, see [5, Theorem 7.2].

3. Main Results

Let π : A → B(H) be a homomorphism of a C∗-algebra A and Ud(A) its
group of unitary elements equipped with the discrete topology, then the restric-
tion π|Ud(A) : Ud(A) → B(H) is a representation of Ud(A). Furthermore, π is
a bounded homomorphism (*-homomorphism, similar to a *-homomorphism, re-
spectively) if and only if the group representation π|Ud(A) is uniformly bounded
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(unitary, unitarizable, respectively). Needless to say, here we use the elementary
fact that any a ∈ A is a finite linear combination of unitary operators in A. The
role of the discrete topology in Ud(A) is just to have a locally compact group.

We clearly have any discrete group G as a subgroup of Ud(A) with A being the
full group C∗-algebra C∗(G), reduced group C∗-algebra C∗red(G) or the big group
algebra A(G).

Next we remark that by definition we easily see that if we have a surjective
homomorphism ϕ : A→ B between C∗-algebras, then if A satisfies Kadison (SP),
so does B. In particular we apply this for the natural surjective homomorphism
λ : C∗(G) → C∗red(G) whenever C∗(G) has the (SP). We now propose the following
definition.

Definition 3.1. A (locally compact) group G is C∗-unitarizable if the C∗-algebra
C∗(G) satisfies the (SP).

IfG is amenable, then C∗(G) is a nuclear C∗-algebra [9] and thus C∗(G) satisfies
the (SP), and therefore G is a C∗-unitarizable group.

Proposition 3.2. Let G be a discrete group. A bounded representation π :
C∗(G) −→ B(H) of C∗(G) on a Hilbert space H is similar to a ∗-homomorphism
if and only if the restriction π|G is unitarizable.

Proof. Using Theorem 0.9 of Pisier’s paper [16] to show this result. �

As an immediate consequence we obtain the following.

Corollary 3.3. Every unitarizable discrete group G is C∗-unitarizable.

Proposition 3.4. Let G be a discrete group and π : C∗(G) → B(H) a bounded
homomorphism. Then π is completely bounded if and only if its restriction π|C∗(Γ)

on C∗(Γ) is completely bounded, for any countable subgroup Γ of G.

Proof. The ’only if’ part is obvious. Let us prove the ’if’ part. Let π : C∗(G) →
B(H) be a bounded homomorphism and let Γ be an arbitrary countable subgroup
of G. Then the restriction π|C∗(Γ) is completely bounded, by hypothesis. This
implies that the restriction π|Γ is unitarizable [16, Theorem 0.9]. Since Γ is arbi-
trary, by [16, Corollary 1] we conclude that π|G is an unitarizable representation
of G. Then using again [16, Theorem 0.9] we conclude that the extension of π|G
to C∗(G) is completely bounded. Therefore π is completely bounded because the
extension of π|G to C∗(G) is unique. �

As an immediate consequence of Proposition 3.4 we have the following

Corollary 3.5. A discrete group G is C∗-unitarizable if and only if any countable
subgroup of G is C∗-unitarizable.

Next we present further stability result.

Proposition 3.6. Let G be a C∗-unitarizable discrete group. Then for every
normal subgroup Γ, we have G/Γ is C∗-unitarizable.
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Proof. There is a canonical homomorphism ρΓ : l1(G) → l1(G/Γ) defined by
ρΓ(δg) = δgΓ. The ρΓ extends to a ∗-homomorphism (still denoted by ρΓ) from
C∗(G) onto C∗(G/Γ). Let now π : C∗(G/Γ) −→ B(H) be a bounded repre-
sentation. Since G is C∗-unitarizable, there is an invertible operator S ∈ B(H)
such that in S−1π ◦ ρΓS is ∗-homomorphism. As ρΓ is surjective, S−1πS is also a
∗-homomorphism on C∗(G/Γ). �

If H is a Hilbert space and tr denotes the trace on B(H), we let C(H) be
finite trace class operators of B(H). Note that C(H)∗ = K(H) (where K(H)
denotes the compact operators). Note that a derivation on a group G w.r.t. a
representation π : G → B(H) is a map D : G → B(H) satisfying Leibnitz rule,
cf. (1.5) above.

Theorem 3.7. Let G be a discrete group and Γ a normal subgroup of G. Assume
that Γ is C∗-unitarizable and G/Γ is amenable. Then G is C∗-unitarizable.

Proof. Let (d, π) be derivation of C∗(G) into B(H), (d ◦ j, π ◦ j) is a derivation of
C∗(Γ) where j the injective canonical ∗-homomorphism from C∗(Γ) into C∗(G),
see [17]. Since Γ is C∗-unitarizable, d ◦ j is inner. Let T ∈ B(H) such that
d ◦ j = δT . Put D = d− δT . Of course D is vanishes on Γ and therefore gives rise
to a (well defined) derivation D̃ of G/Γ by D̃(gΓ) = d(g)− δT (g). Let now

B = {T ∈ B(H) : π(g)T = Tπ(g) = T for all g ∈ Γ}
and

C0 = span{π(g)S + Tπ(g), g ∈ Γ, S, T ∈ C(H)}.
It is easy to check that D̃(G/Γ) ⊆ B and moreover B is w∗-closed (because it is
weakly-closed) and so it is a dual space of C(H)/C0 where C0 is the orthogonal
space of B, i.e. C0 = {T ∈ B(H) : tr(TB) = 0, for all B ∈ B}.

Since G/Γ is amenable then D̃ = δR for some operator R. It follows that
d = δT+R. �

We now investigate the relation we have found between the (DP) and the C∗-
unitarizability for discrete groups.

Corollary 3.8. Let G1 be an amenable group and G2 be a C∗-unitarizable group.
Then G1×G2 is C∗-unitarizable. In particular, C∗red(G1×G2) satisfies the (SP).

Proposition 3.9. If G is a discrete group satisfying (DP) then G is C∗-unitarizable.

Proof. Let D : C∗(G) → B(H) be a derivation with respect to some (continuous)
representation π : C∗(G) → B(H) of the group algebra. Then let d : G→ B(H)
be defined by d(g) = D(δg) and ρ : G → B(H) defined by ρ(g) = π(δg). Note
that δg is the characteristic function in C[G]. Then we can easily see that d is a
derivation of G with respect to the representation ρ. Since G has the (DP), we
conclude that d(·) = δT (·) = [·, T ] for some T ∈ B(H).

Hence D = δT on C[G] by the definitions. As D is continuous on C[G] equipped
with the C∗-norm of C∗(G), we conclude that D = δT on C∗(G). Thus C∗(G)
satisfies the (DP) and therefore C∗(G) satisfies the (SP). �

Let N ⊆ B(K) be a von Neumann algebra.
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Definition 3.10. We say that a von Neumann algebra N satisfies the weak
similarity problem, in short (WSP), if for any bounded and weak∗-continuous
representation π : N → B(H), S−1π(·)S is a *-homomorphism for some invertible
operator S.

It is clear by definition that N satisfies the (WSP) if N satisfies the (SP).

Theorem 3.11. Let G be a locally compact group. Consider the following asser-
tions:

(1) G is unitarizable.
(2) A(G) has the (WSP).
(3) G is C∗-unitarizable.
(4) C∗red(G) satisfies the (SP).
(5) vN(G) satisfies the (WSP)

Then we have (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5).

Proof. (1) ⇒ (2): Let π : A(G) → B(H) be a w∗-continuous bounded represen-
tation of A(G). Then it restriction π|G is unitarizable, thus there is an invertible
operator S ∈ B(H) such that S−1π(·)S is a *-homomorphism on Alg(G) (the

algebra generated by Ĝ = {δg} which is a free set [5]). Since S−1π(·)S is w∗-
continuous, the (unique) extension S−1π(·)S on A(G) is a *-homomorphism.

(2) ⇒ (3): Let π : C∗(G) → B(H) be a bounded homomorphism. Consider
π̃ : A(G) → B(H) the w∗-continuous and bounded extension of π to A(G). Since
A(G) has the (WSP), there is an invertible operator S such that S−1π̃(·)S is a
*-homomorphism. This completes the proof because S−1π(·)S = S−1π̃|C∗(G)(·)S.

(3) ⇒ (4): the left regular representation naturally gives rise to a surjective
*-homomorphism λ : C∗(G) → C∗red(G). The proof easily follows from this, using
the definition.

(4) ⇒ (5): We first note that vN(G) = C∗red(G)
w∗

. Let π : vN(G) → B(H)
be a bounded and w∗- continuous homomorphism. Then the restriction of π to
C∗red(G) is similar to a *-homomorphism, and because it is w∗-continuous, we
conclude that π is similar to a *-homomorphism on vN(G), as required. �

As an immediate consequence of this Theorem 3.11, we conclude that if a
locally compact group G is unitarizable then G is C∗-unitarizable. The converse
of this is not true because of the example G = SL(2,R). Indeed this group
is not unitarizable [7] but it is C∗-unitarizable because the group C∗-algebra
C∗(SL(2,R)) is nuclear [3].

For a discrete groupG we may say thatG is C∗-nuclear if C∗(G) is a nuclear C∗-
algebra (i.e. C∗(G)⊗max B = C∗(G)⊗min B for every C∗-algebra B where ’max’
denotes the maximal tensor product of C∗-algebras and ’min’ denotes the minimal
one, see e.g. [2]). From Theorem 3.11 and well known results, we naturally arrive
at the following diagram:

C∗-nuclear ⇒ C∗-unitarizable
m ⇑

amenable ⇒ unitarizable
(3.1)
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Let N be a type II1 factor with tr its unique normalized trace (so that N is
infinite-dimensional, tr(I) = 1 and for any given s ∈ [0, 1] there exists a projection
p ∈ N such that tr(p) = s). The von Neumann algebra N has property Γ if there
exists a sequence of unitaries (un) ⊆ N such that tr(un) = 0 for all n and
||una − aun||tr → 0 for all a ∈ N . Here || · ||tr denotes the L2 norm given by

||x||tr =
√
tr(xx∗). A deep theorem of Christensen [2] shows that a II1 factor

with property Γ satisfies Kadison (SP). In particular if for a group G, vN(G)
has property Γ so does vN(G× F2) where F2 is the 2-generator free group (note
that vN(G × F2) = vN(G) ⊗ vN(F2)). Therefore vN(G × F2) satisfies Kadison
(SP), nevertheless G×F2 is non-unitarizable because it contains {e}×F2 which is
non-unitarizable. So we can conclude that the assertion ”vN(G) has (SP) implies
G unitarizable” does not hold in general. Also the proof of non-unitarizability
of a group is traditional obtained by finding a copy of a free group in the given
group.

So for discrete groups G, we may raise the following problems:

Problem 3.12. (i) If G does not contain a copy of any free group and vN(G)
satisfies the (WSP), then does it follow that G is unitarizable?
(ii) Let G be a C∗-unitarizable group. Does it follow that G is C∗-nuclear?

If Problem 3.12 (i) holds then we may exhibit many counterexamples to Kadi-
son problem (1.4), for example, Burnside groups (see [14] for the non-unitarizability
of some of the Burnside groups).

The Thompson group F is the group with the following infinite presentation:

F = 〈x0, x1, · · · , xi, · · · | xjxi = xixj+1, i < j〉. (3.2)

Jolissaint [13] proved that the Thompson group F is an ICC group and also
vN(F ) has property Γ therefore vN(F ) satisfies the (SP) by Christensen [2] and
thus F is unitarizable if Problem 3.12 (i) holds. This would lead to the first
example of a non-amenable and unitarizable group (see Dixmier problem (1.3)).
We then can actually yield many more such examples: any group G := F × Γ
with Γ discrete and amenable will do the job. This is because F × Γ will be
non-amenable (notice that the quotient F ×G/G ' F will be non-amenable, and
F ×G will be unitarizable).

Theorem 3.11 and diagram (3.1) above we can conclude that if Problem 3.12
(ii) holds true then the Dixmier problem is true (for discrete groups).
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