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Abstract. We show that for a bounded 1-regular metric measure space (E, µ) the finiteness
of the Menger curvature integral∫

E

∫

E

∫

E

c(z1, z2, z3)2 dµz1 dµz2 dµz3

guarantees that E is a Lipschitz image of a subset of a bounded subinterval of R.

1. Introduction

Let z1, z2 and z3 be three points in a metric space (E, d). The Menger curvature
of the triple (z1, z2, z3) is

c(z1, z2, z3) =
2 sin ^z1z2z3

d(z1, z3)
,

where

^z1z2z3 = arccos
d(z1, z2)

2 + d(z2, z3)
2 − d(z1, z3)

2

2d(z1, z2)d(z2, z3)
.

Note that c(z1, z2, z3) is the reciprocal of the radius of the circle passing through x1,
x2 and x3 whenever {x1, x2, x3} ⊂ R2 is an isometric triple for {z1, z2, z3}. We set

c2(E) =

∫

E

∫

E

∫

E

c(z1, z2, z3)
2 dµz1 dµz2 dµz3.

Through the paper µ is the 1-dimensional Hausdorff measure on E.
We say that a metric space (E, d) is 1-regular if there exists M0 < ∞ such that

(1) M−1
0 r ≤ µ(B(x, r)) ≤ M0r

whenever x ∈ E and r ∈]0, d(E)]. Here d(E) is the diameter of E and B(x, r) will
denote the closed ball in E with center x ∈ E and radius r > 0. The smallest
constant M0 such that (1) holds is called the regularity constant of E. We denote

(2) `(E) = inf{Lip(f) : f : A → E is a surjection and A ⊂ [0, 1] },
where Lip(f) ∈ [0,∞] is the Lipschitz constant of f . Note that if E is a subset of a
Hilbert space H, then by the classical Kirszbraun–Valentine extension theorem we
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can take in (2) the infimum over all functions f : [0, 1] → H for which E ⊂ f([0, 1])
without that `(E) changes. Further, if E is a connected metric space, `(E) is at
most a constant multiple of µ(E) (see [11] and [3]). In this paper we shall prove the
following theorem:

Theorem 1.1. Let (E, d) be a 1-regular metric space. Then `(E) ≤ C(c2(E)+
d(E)), where C < ∞ depends only on the regularity constant of E.

In [4] P. W. Jones gave a sufficient and necessary condition for E ⊂ C to be
contained in a rectifiable curve by showing that

(i) `(E) ≤ C1

(
d(E) +

∑
Q∈D βE(Q)2d(Q)

)
,

(ii)
∑

Q∈D βE(Q)2d(Q) ≤ C2`(E),

where C1 and C2 are some absolute constants, D = {3Q : Q is a dyadic cube} and

βE(Q) = inf
L

d(Q)−1 sup { d(y, L) : y ∈ E ∩Q }

for Q ∈ D , where the infimum is taken over all lines. Here 3Q is the cube with the
same center as Q and sides parallel to the sides of Q, but whose diameter is 3d(Q).
Jones’s proof for (i) works also if E ⊂ Rn. The latter part has been extended to
sets in Rn by Okikiolu in [8]. Then, of course, the constant C2 must depend on n.
In [11] Schul extended this theorem to sets in a Hilbert space H using the family

{ {y ∈ H : d(y, x) ≤ A2−k} : x ∈ ∆k, k ∈ Z
}

in the place of D . Here A is some fixed constant and (∆k)k is a net for E, that
is, ∆k is a maximal subset of E such that d(x1, x2) > 2−k for any distinct points
x1, x2 ∈ ∆k and ∆k ⊂ ∆k+1 for all k ∈ Z. The easier part of Jones’s theorem has an
extension also for general metric spaces. In [3] we showed that there is an absolute
constant C such that `(E) ≤ C(d(E) + β(E)) for any metric space E, where

β(E) = inf

{ ∑

k∈Z

∑

x∈∆k\∆k−1

β(x, 2−k)2(2−k)3 : (∆k)k is a net for E

}

and β(x, t) = sup { c(z1, z2, z3) : z1, z2, z3 ∈ B(x,At), d(zi, zj) ≥ t ∀i 6= j } for x ∈
E and t > 0, where A is some sufficiently large constant. An example given by Schul
shows that there is not any absolute constant C such that β(E) ≤ C`(E) for any
metric space E. In fact, there exists a plane set E equipped with the `1 metric such
that `(E) < ∞ and β(E) = ∞. The part (i) has extended also to the Heisenberg
group in [2].

David and Semmes proved in [1] that a closed 1-regular set E ⊂ Rn is contained
in a 1-regular curve if and only if there is C < ∞ such that

(3)
∫ R

0

∫

E∩B(z,R)

βq(x, t, E)2 dµx
dt

t
≤ CR
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for all z ∈ E and R > 0. Here q ∈ [1,∞] is arbitrary,

βq(x, t, E) = inf
L

(
t−1−q

∫

E∩B(x,t)

d(y, L)q dµy

)1/q

for q ∈ [1,∞[ and

β∞(x, t, E) = inf
L

t−1 sup { d(y, L) : y ∈ E ∩B(x, t) } ,

where the infima are taken over all lines in Rn. For q = ∞ this was already proved
by Jones. In fact, David and Semmes gave in [1] a version of this theorem for m-
dimensional sets in Rn, where m is any integer. In [9] Pajot gave a more direct proof
for that a closed 1-regular set E ⊂ Rn lies in a 1-regular curve if (3) is satisfied.
His construction also yields

(4) `(E) ≤ C

(
d(E) +

∫ d(E)

0

∫

E

βq(x, t, E)2 dµx
dt

t

)
,

where C < ∞ depends only on the regularity constant of E. The basic idea of
our proof for Theorem 1.1 is inspired by Pajot’s algorithm, which is itself a kind of
variant of Jones’s one in [4].

Mattila, Melnikov and Verdera used Menger curvature in [7] for proving that
the L2 boundedness of the Cauchy integral operator associated to a closed 1-regular
set E ⊂ C implies that E is contained in a 1-regular curve. The starting point of
their work was the relation that for any three points z1, z2, z3 ∈ C

c(z1, z2, z3)
2 =

∑
σ

1

(zσ(1) − zσ(3))(zσ(2) − zσ(3))
,

where σ runs through all six permutations of {1, 2, 3}. This implies that the Cauchy
operator is bounded in L2(E) if and only if there is C < ∞ such that c2(E ∩
B(z, R)) ≤ CR for all z ∈ E and R > 0. They showed that for some constant λ
depending only on the regularity constant of E

(5)
∫ R

0

∫

E∩B(z,R)

β2(x, t, E)2 dµx
dt

t
≤ λc2(E ∩B(z, λR))

for all z ∈ E and 0 < R < d(E)/λ. The claim now follows from the result of
David and Semmes. Note that we get from (5) and (4) that a bounded 1-regular
set E ⊂ Rn lies in a rectifiable curve if c2(E) < ∞.

Jones has later proved that for a 1-regular set E ⊂ C
∫ R

0

∫

E∩B(z,R)

β∞(x, t, E)2 dµx
dt

t
≤ Cc2(E ∩B(z, CR))

for all z ∈ E and R > 0, where C < ∞ depends only on the regularity constant of
E. For the proof see [10]. Using this we get also β(E) ≤ Cc2(E) for some C < ∞
depending only on the regularity constant of E whenever E is a 1-regular set in C.
We can easily construct an example which shows that this is not true for general
1-regular metric spaces. For example, let δ > 0 and consider the plane set Eδ =
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([0, 1]× {0})∪({0, 1} × [0, δ]) equipped with the `1 metric. Then c2(Eδ)/β(Eδ) → 0
as δ → 0.

Any Borel set E ⊂ Rn with µ(E) < ∞ and c2(E) < ∞ is rectifiable in sense
that there are rectifiable curves Γ1, Γ2, . . . such that

µ

(
E\

∞⋃
i=1

Γi

)
= 0.

This was first proved by David. Léger gave in [5] a different proof which also gives
a version for higher dimensional sets in Rn.

For related results see also [6].

2. Preliminaries of the proof of Theorem 1.1

We assume that E is a bounded 1-regular metric space with regularity constant
M0 such that c2(E) < ∞. Let C1, C2 and δ < 1 be positive constants such that
C1(1 − δ) > 4(2 − δ) and C2(1 − δ) > 8(1 + 2C1)(2 − δ), and let r2, r4 and R2

be small positive constants depending on C2 and δ. Then, let r5 > 0 be a small
constant depending on C2, δ, r2, r4 and R2. We also let r3 and R3 be large positive
constants depending on C2, δ and M0, and then we let ε0 < 1 be a sufficiently large
positive constant depending on C1, C2, δ, M0 and r5. Finally, let r0 > 0 be a small
constant depending on R2 and ε0, and let r1 > 0 be a small number depending on
most of the above constants. See more details later. For any x ∈ E and n ∈ Z we
choose a point qn(x) ∈ B(x, r1δ

n) such that

µ(B(x, r1δ
n))

∫

Sn(x)

c(z1, z2, qn(x))2 dµ2(z1, z2)

≤
∫

B(x,r1δn)

∫

Sn(x)

c(z1, z2, z3)
2 dµ2(z1, z2) dµz3,

where Sn(z) = {(ζ, η) ∈ (B(z, r3δ
n)\B(z, r2δ

n))2 : d(ζ, η) > r4δ
n} for z ∈ E. We

also set

ϑ(x, n) = sup { ε ∈ [0, 1] : {z1, z2, z3} ∈ O(ε) ∀(z1, z2, z3) ∈ W (x, n) } ,

where

W (x, n) =
{

(z1, z2, z3) ∈ B(x,R3δ
n)3 : d(zi, zj) > R2δ

n ∀i 6= j
}

and O(ε) is the set of the metric spaces E such that d(x, z) ≥ d(x, y) + εd(y, z)
whenever x, y, z ∈ E such that d(x, z) = d({x, y, z}). We say that E ′ ⊂ E has an
order, if there is an injection o : E ′ → R such that for all x, y, z ∈ E ′ the condition
o(x) < o(y) < o(z) implies d(x, z) > max{d(x, y), d(y, z)}. In that case the function
o is called an order. If there is an order o on {x1, . . . , xn} ⊂ E, n ∈ N, such that
o(xi) < o(xi+1) for i = 1, . . . , n − 1, we write shortly x1x2 . . . xn. The notation
x1x2x3|ε means that x1x2x3 and {x1, x2, x3} ∈ O(ε).

Let x0 ∈ E and let n0 be the biggest integer such that E ⊂ B(x0, δ
n0). Set

Dn0
0 = {qn0(x0)}. Let now n > n0 and assume by induction that we have constructed
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Dn−1
0 ⊂ E such that for any x, y ∈ Dn−1

0 , x 6= y, d(x, y) > δn. Let A′
n ⊂ E such

that
- for any x, y ∈ A′

n, x 6= y, d(x, y) > δn,
- for any x ∈ A′

n, y ∈ Dn−1
0 , d(x, y) > δn,

- for any x ∈ E there exists y ∈ A′
n ∪Dn−1

0 such that d(x, y) ≤ δn.
Now #A′

n ≤ 2M0δ
−nµ(E) ≤ 2M2

0 δ−nd(E). We set An = qn(A′
n) and Dn

0 = An ∪
qn(Dn−1

0 ). Let An =
{
xn

1 , . . . , x
n
#An

}
such that

d
(
xn

k , Dn−1
k−1

)
= max

{
d

(
x,Dn−1

k−1

)
: x ∈ An

}

for k = 1, . . . , #An. Here and in the sequel we denote Dn−1
k = Dn−1

0 ∪ {xn
1 , . . . , x

n
k}

for k = 1, . . . , #An. By choosing δ ≤ 1− 2r1 we have for all n ≥ n0

(i) for any x, y ∈ Dn
0 , x 6= y, d(x, y) > (1− 2r1)δ

n,
(ii) for any x ∈ E there exists y ∈ Dn

0 such that d(x, y) ≤ (1 + r1)δ
n.

For m ≥ n > n0 and x ∈ Dn−1
0 ∪Dn

0 we denote

qm,n(x) =

{
qm ◦ qm−1 ◦ · · · ◦ qn+1(x) if x ∈ Dn

0 ,
qm ◦ qm−1 ◦ · · · ◦ qn(x) if x ∈ Dn−1

0 .

Here we interpret qn,n(x) = x if x ∈ Dn
0 . Note that x = qn(x) for x ∈ Dn−1

0 ∩Dn
0 .

We also use the convention qn−1,n(x) = x for any x.
We are going to construct a sequence (Gn

k)n>n0,0≤k≤#Dn+1
0

of connected weighted
graphs with no cycles. We will denote by V n

k and En
k the sets of the vertices and

the edges of Gn
k . For each (n, k) we will have Dn

k ⊂ V n
k . For all x, y ∈ Dn

k such that
{x, y} ∈ En

k we will have wn
k ({x, y}) ≥ d(x, y), where wn

k : En
k →]0,∞[ is the weight

function on the graph Gn
k . We denote l(Gn

k) =
∑

e∈En
k

wn
k (e) and for y ∈ Dn

k we will
use the notations

V n
k (y) = { z ∈ V n

k : {y, z} ∈ En
k } ,

Dn
k (y) = V n

k (y) ∩Dn
k .

Each vertex in V n
k \Dn

k will have only one neighbour. Thus the subgraph of Gn
k

induced by Dn
k will also be connected. We will denote this graph and the set of

its edges by T n
k and F n

k . For each (n, k) we will define a 1-Lipschitz surjection
fn

k : In
k → Dn

k , where In
k ⊂ [0, 2l(T n

k )]. Here l(T n
k ) =

∑
e∈F n

k
wn

k (e). If e ∈ F n
k , we

denote

Jn
k (e) = { (s1, s2) ∈ In

k × In
k : s1 < s2, fn

k ({s1, s2}) = e and In
k∩ ]s1, s2[ = ∅ }.

Further we will define a function P n
k : Dn

k → {V : V ⊂ {{x, y} : x, y ∈ V n
k , x 6= y} }

such that the following properties will be satisfied:
- Let y ∈ Dn

k . If e1 6= e2 and e1, e2 ∈ P n
k (y), then e1 ∩ e2 = ∅. If v ∈ V n

k (y),
then v ∈ e for some e ∈ P n

k (y). If {v1, v2} ∈ P n
k (y), then {v1, v2} ⊂ V n

k (y)
and v1 6= v2.

- #{e ∈ P n
k (y) : e ⊂ Dn

k (y)} ≤ 1 for all y ∈ Dn
k .

- Let e ∈ F n
k . Then 1 ≤ #Jn

k (e) ≤ 2 and s2−s1 = wn
k (e) for all (s1, s2) ∈ Jn

k (e).
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For n > n0 and k ∈ {0, . . . , #An+1} also the following condition, called the (n, k) -
property, will be satisfied:

If y ∈ Dn
k , {z1, z2} ∈ P n

k (y), {z1, z2} ⊂ Dn
k (y) and max{d(y, z1), d(y, z2)} <

C2(1 + r1)δ
n, then qm1,n(z1)qm,n(y)qm2,n(z2)|ε0 for any m,m1,m2 ≥ n− 1.

In Section 3 we define the graph Gn−1
k by deforming the graph Gn−1

k−1 . The main
point of the proof is to control l(Gn−1

k )− l(Gn−1
k−1) by some integral estimate. For this

we need that the vertices are well chosen. Thus we at every stage n “update” the
vertices by applying qn to them. We do this in Section 4. In Section 5 we show that
l(Tm

0 ) is uniformly bounded by a constant multiple of c2(E) + d(E), from which we
get the final conclusion.

We define a graph Gn0
1 with 4 vertices and 3 edges as follows. Put V n0

1 =
Dn0

1 ∪ {b1, b2}, where {b1, b2} ∩ E = ∅, and set

En0
1 =

{{qn0(x0), x
n0+1
1 }, {qn0(x0), b1}, {xn0+1

1 , b2}
}

,

Further we define wn0
1 and P n0

1 by setting

wn0
1 ({qn0(x0), x

n0+1
1 }) = d(qn0(x0), x

n0+1
1 ),

wn0
1 ({qn0(x0), b1}) = wn0

1 ({xn0+1
1 , b2}) = C1d(qn0(x0), x

n0+1
1 ),

P n0
1 (qn0(x0)) = {{xn0+1

1 , b1}},
P n0

1 (xn0+1
1 ) = {{qn0(x0), b2}}.

Now

(6) l(Gn0
1 ) ≤ (1 + 2C1)d(E).

We set In0
1 = {0, d(qn0(x0), x

n0+1
1 )} and define fn0

1 : In0
1 → Dn0

1 by setting fn0
1 (0) =

qn0(x0) and fn0
1 (d(qn0(x0), x

n0+1
1 )) = xn0+1

1 . In the following two sections we assume
that n > n0.

3. Construction of Gn−1
#An

Let now k ∈ {1, . . . , #An} and assume by induction that we have constructed
a graph Gn−1

k−1 = (V n−1
k−1 , En−1

k−1 ) with a weight function wn−1
k−1 : En−1

k−1 → ]0,∞[ and a
1-Lipschitz surjection fn−1

k−1 : In−1
k−1 → Dn−1

k−1 , where In−1
k−1 ⊂ [0, 2l(T n−1

k−1 )]. We also as-
sume that we have defined P n−1

k−1 : Dn−1
k−1 →

{
V : V ⊂ {{x, y} : x, y ∈ V n−1

k−1 , x 6= y}}
such that the (n − 1, k − 1) -property and the other conditions mentioned in the
previous section are satisfied. We denote x = xn

k . Let y ∈ Dn−1
k−1 such that

d(x, y) = d(x,Dn−1
k−1).

Case 1. ϑ(x, n) < ε0.
We set V n−1

k = V n−1
k−1 ∪ {x, b1, b2}, where b1 6= b2, {b1, b2} ∩ (V n−1

k−1 ∪E) = ∅, and
define

En−1
k = En−1

k−1 ∪ {{x, y}, {x, b1}, {y, b2}} .
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Further we define wn−1
k and P n−1

k by setting

wn−1
k (e) =





d(x, y) for e = {x, y},
C1d(x, y) for e ∈ {{x, b1}, {y, b2}},
wn−1

k−1(e) for e ∈ En−1
k−1

and

P n−1
k (v) =





{{y, b1}} for v = x,
P n−1

k−1 (v) ∪ {{x, b2}} for v = y,
P n−1

k−1 (v) for v ∈ Dn−1
k−1\{y}.

Let t ∈ In−1
k−1 such that fn−1

k−1 (t) = y. We set

In−1
k = J1 ∪ {t + d(x, y)} ∪ J2,

where J1 = In−1
k−1 ∩ [0, t] and J2 =

(
In−1
k−1 ∩ [t,∞[

)
+ 2d(x, y), and define fn−1

k by
setting

fn−1
k (s) =





fn−1
k−1 (s) for s ∈ J1,

x for s = t + d(x, y),
fn−1

k−1 (s− 2d(x, y)) for s ∈ J2.

Now the (n− 1, k) -property is satisfied, In−1
k ⊂ [0, 2l(T n−1

k )] and fn−1
k is surjective

and 1-Lipschitz.
Let (w1, w2, w3) ∈ W (x, n) such that {w1, w2, w3} 6∈ O(ε0) and let zi ∈ B(wi,

r0δ
n) for i = 1, 2, 3. Denote dij = d(wi, wj) and d′ij = d(zi, zj) for i = 1, 2, 3.

Suppose that d(z1, z3) = d({z1, z2, z3}) and d12 ≥ d23. Then, by choosing r0 small
enough,

d′13 − d′12

d′23

≤ (d13 + 2r0δ
n)− (d12 − 2r0δ

n)

d23 − 2r0δn
≤ d13 − d12 + 4r0δ

n

(1− 2r0R
−1
2 )d23

≤ R2

R2 − 2r0

(
ε0 +

4r0

R2

)
=

ε0R2 + 4r0

R2 − 2r0

< 1.

Letting α = ^z1z2z3 we have

c(z1, z2, z3)
2 =

(2 sin α)2

d(z1, z3)2
≥ 4(1− cos2 α)

(2(R3 + r0)δn)2
≥ 1−max{ε2

5, 1/4}
((R3 + r0)δn)2

,

where

ε5 =
ε0R2 + 4r0

R2 − 2r0

.

Using this and the regularity we get

l(Gn−1
k )− l(Gn−1

k−1) = (1 + 2C1)d(x, y) ≤ (1 + 2C1)(1 + r1)δ
n−1 =

C3δ
3nr3

0c1

M3
0 δ2n

≤ C3

∫

B(x,(R3+r0)δn)

∫

T 1
n(z3)

∫

T 1
n(z3)∩T 1

n(z2)

c(z1, z2, z3)
2 dµz1 dµz2 dµz3,

(7)
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where

c1 =
1−max{ε2

5, 1/4}
(R3 + r0)2

,

C3 =
M3

0 (1 + 2C1)(1 + r1)

c1δr3
0

and T 1
n(z) = B(z, 2(R3 + r0)δ

n)\B(z, (R2 − 2r0)δ
n) for z ∈ E.

For the rest of the cases we assume that ϑ(x, n) ≥ ε0.

Case 2. There exists z ∈ Dn−1
k−1(y), n′ ≤ n, k′ ∈ {1, . . . , #An′} such that k′ ≤ k

if n′ = n, {y′, z′} ∈ F n′−1
k′−1 , y = qn−1,n′(y

′), z = qn−1,n′(z
′) and C2d

(
xn′

k′ , {y′, z′}
) ≤

d(y′, z′).
We define Gn−1

k , P n−1
k and fn−1

k as in Case 1. Now

(8) l(Gn−1
k )− l(Gn−1

k−1) = (1 + 2C1)d(x, y).

The construction will show that {qm,n(y), qm,n(z)} ∈ Fm
0 for all m ≥ n.

For the rest of the cases we assume that the condition of Case 2 does not hold.

Case 3. There exists z ∈ Dn−1
k−1(y) such that d(x, z) ≤ d(y, z).

We set V n−1
k = V n−1

k−1 ∪ {x} and define

En−1
k =

(
En−1

k−1\{{y, z}}) ∪ {{y, x}, {x, z}}.
Further we define wn−1

k by setting

wn−1
k (e) =





d(y, x) for e = {y, x},
max

{
d(x, z), wn−1

k−1({y, z})− d(y, x)
}

for e = {x, z},
wn−1

k−1(e) for e ∈ En−1
k−1\{{y, z}}.

Let z′, y′ ∈ V n−1
k−1 such that {z′, z} ∈ P n−1

k−1 (y) and {y, y′} ∈ P n−1
k−1 (z). We set

P n−1
k (v) =





{{y, z}} for v = x,(
P n−1

k−1 (v)\{{z′, z}}) ∪ {{z′, x}} for v = y,(
P n−1

k−1 (v)\{{y, y′}}) ∪ {{x, y′}} for v = z,
P n−1

k−1 (v) for v ∈ Dn−1
k−1\{y, z}.

Let (t1, t2) ∈ Jn−1
k−1 ({y, z}). We set

In−1
k,0 = J1 ∪ {t1 + wn−1

k ({fn−1
k−1 (t1), x})} ∪ J2,

where J1 = In−1
k−1 ∩ [0, t1] and J2 =

(
In−1
k−1 ∩ [t2,∞[

)
+ l(Gn−1

k )− l(Gn−1
k−1), and define

fn−1
k,0 : In−1

k,0 → Dn−1
k by setting

fn−1
k,0 (s) =





fn−1
k−1 (s) for s ∈ J1,

x for s = t1 + wn−1
k ({fn−1

k−1 (t1), x}),
fn−1

k−1 (s− l(Gn−1
k ) + l(Gn−1

k−1)) for s ∈ J2.
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If #Jn−1
k−1 ({y, z}) = 1, we put In−1

k = In−1
k,0 and fn−1

k = fn−1
k,0 . Else let u1, u2 ∈ In−1

k,0

such that u2 − u1 = wn−1
k−1({y, z}), fn−1

k,0 ({u1, u2}) = {y, z} and In−1
k,0 ∩ ]u1, u2[ = ∅.

We set
In−1
k = J1 ∪ {u1 + wn−1

k (fn−1
k,0 (u1), x)} ∪ J2,

where J1 = In−1
k,0 ∩ [0, u1] and J2 =

(
In−1
k,0 ∩ [u2,∞[

)
+ l(Gn−1

k )− l(Gn−1
k−1), and define

fn−1
k by setting

fn−1
k (s) =





fn−1
k,0 (s) for s ∈ J1,

x for s = u1 + wn−1
k ({fn−1

k,0 (u1), x}),
fn−1

k,0 (s− l(Gn−1
k ) + l(Gn−1

k−1)) for s ∈ J2.

Now In−1
k ⊂ [0, 2l(T n−1

k )] and fn−1
k is surjective and 1-Lipschitz.

We next show that the (n − 1, k) -property is satisfied at z. Suppose that
{z1, z2} ∈ P n−1

k (z) such that {z1, z2} ⊂ Dn−1
k (z) and max{d(z, z1), d(z, z2)} <

C2(1 + r1)δ
n−1. If x 6∈ {z1, z2}, then {z1, z2} ∈ P n−1

k−1 (z) and the (n− 1, k) -property
is satisfied at z by the (n − 1, k − 1) -property. Thus we may assume that z1 = x,
which implies {y, z2} ∈ P n−1

k−1 (z). Since d(y, z) < C2(1 + r1)δ
n−1, we have yzz2 by

the (n− 1, k − 1) -property. By choosing

R2 ≤ 1− 2r1

1− δ
,

R3 ≥ (2C2 − ε0)(1 + r1)

δ
+

r1

1− δ

we have {y, qm1,n(x), qm,n(z), qm2,n(z2)} ∈ O(ε0) for any m,m1,m2 ≥ n − 1. Now
d(v1, v2) < Kd(v3, v4) for all v1, v2, v3, v4 ∈ {y, x, z, z2}, v3 6= v4, where

K = C2

(
1 +

1 + r1

(1− 2r1)δ

)
.

We choose ε0 ≥ K/(K +1). Therefore, since yxz and yzz2, {y, x, z, z2} has an order
by Lemma 2.2 of [3]. So we must have xzz2. Choosing r1 < ε0(1 − δ − 2r1) the
following lemma gives that the (n−1, k) -property is satisfied at z. Similarly we see
that (n− 1, k) is satisfied at y and x.

Lemma 3.1. Let {ζ, η, ξ, ξ1} ⊂ E such that {ζ, η, ξ}, {ζ, η, ξ1} ∈ O(ε0).
(i) If ζηξ and d(ξ, ξ1) < ε0 min{d(ζ, η), d(η, ξ) + d(η, ξ1)}, then ζηξ1.
(ii) If ζξη and d(ξ, ξ1) < ε0 min{d(ξ, ζ) + d(ξ1, ζ), d(ξ, η) + d(ξ1, η))}, then ζξ1η.

Proof. (i) By the assumptions we have

d(ζ, ξ1) + ε0d(η, ξ1)− d(ζ, η) ≥ d(ζ, ξ)− d(ξ, ξ1) + ε0d(η, ξ1)− d(ζ, η)

≥ d(ζ, η) + ε0d(η, ξ)− d(ξ, ξ1) + ε0d(η, ξ1)− d(ζ, η)

= ε0(d(η, ξ) + d(η, ξ1))− d(ξ, ξ1) > 0
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and

d(ζ, ξ1) + ε0d(ζ, η)− d(η, ξ1) ≥ d(ζ, ξ) + ε0d(ζ, η)− d(η, ξ)− 2d(ξ, ξ1)

≥ ε0d(ζ, η) + d(η, ξ) + ε0d(ζ, η)− d(η, ξ)− 2d(ξ, ξ1)

= 2ε0d(ζ, η)− 2d(ξ, ξ1) > 0.

Therefore, since {ζ, η, ξ1} ∈ O(ε0), we must have ζηξ1.
(ii) Now the assumption gives

d(ζ, η) + ε0d(ξ1, η)− d(ζ, ξ1)

≥ d(ζ, ξ) + ε0d(ξ, η) + ε0d(ξ1, η)− d(ζ, ξ)− d(ξ, ξ1)

= ε0(d(ξ, η) + d(ξ1, η))− d(ξ, ξ1) > 0

and similarly d(ζ, η) + ε0d(ζ, ξ1) > d(ξ1, η). ¤
Since R2 ≤ 1− 2r1 and δR3 ≥ C2(1 + r1), we have

(9) l(Gn−1
k )− l(Gn−1

k−1) ≤ d(y, x) + d(x, z)− d(y, z) ≤ (1− ε0)d(y, x).

Let us now assume that there is m ≥ n such that {{qm,n(y), qm,n(x)}, {qm,n(x),
qm,n(z)}} ∩ Fm

0 = ∅. By the construction (see also Case 4 and Section 4) this
implies that there exist y1, w1, x1, x2, w2, z2 ∈ E such that y1w1x1, x2w2z2,

max{d(y, y1), d(z, z2)} ≤ r1δ
n

1− δ
,

max{d(x, x1), d(x, x2)} ≤ r1δ
n+1

1− δ
,

d(y1, x1) < C2 min {d(y1, w1), d(w1, x1)} ,

d(x2, z2) < C2 min {d(x2, w2), d(w2, z2)}
and

min {d(y1, w1), d(w1, x1), d(x2, w2), d(w2, z2)}

≤ min

{
d(w1, w2) +

r1δ
n+1

1− δ
, d(w1, z) +

r1δ
n

1− δ
, d(y, w2) +

r1δ
n

1− δ

}
.

Denote

r′ =
1

C2

d(y, x)− d0δ
n,

C ′
1 = M2

0

(
1 + r1

δ

(
C2 − ε0 +

1

C2

)
− d0

)
,

where

d0 =

(
1 +

1 + δ

C2

)
r1

1− δ
.
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Below we will use

max

{
r1

1− δ
, r5(1− 2r1)

}
≤ ε0

(
1

C2

(1− 2r1)− d0

)
,

max
{r4

δ
, R2

}
≤

(
1

C2

− 2r5

)
(1− 2r1)− d0,

r2 ≤ δ

((
1

C2

− r5

)
(1− 2r1)− d0

)
− r1

and

r3 ≥ C ′
1 +

(C2 − ε0 + 2r5)(1 + r1)

δ
+ r1,

R3 ≥ C ′
1 +

2r5(1 + r1)

δ
+ r1.

By the first part of Lemma 3.1 we have yw1x and xw2z. Let N1 be the smallest
integer such that C ′

1δ
N1 < d(E) and assume that n ≥ N1. Denote R′ = M2

0 ((C2 −
ε0)d(y, x) + r′). By the regularity

µ (B(x,R′)\B(x, d(x, z) + r′)) ≥ µ(B(x,R′))− µ(B(x, d(x, z) + r′))

≥ M−1
0 R′ −M0(d(x, z) + r′) > 0

and so we find w3 ∈ B(x, R′)\B(x, d(x, z) + r′). Now d(z1, z2) > r′ for any z1, z2 ∈
{y, w1, x, w2, z, w3}, z1 6= z2. We may assume that d(w3, x) ≤ d(w3, z). The other
case can be treated similarly.

Now x = qn(x′) for some x′ ∈ A′
n. Further by the construction there are

n2, n3 ∈ {n−1, n} such that y = qn2(y
′) and z = qn3(z

′) for some y′, z′ ∈ E. Denote
Bi = B(wi, r5d(y, x)) for i = 1, 2, 3. Now

Bi ×Bj ⊂ Sn(x′) ∩ Sn2(y
′) ∩ Sn3(z

′)

for i, j ∈ {1, 2, 3}, i 6= j. We also have

(By ×Bz) ∪ ((By ∪Bz)× (B1 ∪B2 ∪B3)) ⊂ Sn(x′),

(Bx ×Bz) ∪ ((Bx ∪Bz)× (B1 ∪B2 ∪B3)) ⊂ Sn2(y
′),

(Bx ×By) ∪ ((Bx ∪By)× (B1 ∪B2 ∪B3)) ⊂ Sn3(z
′),

where Bx = B(x, r5d(y, x)), By = B(y, r5d(y, x)) and Bz = B(z, r5d(y, x)). Thus

min
{

µ2(Sn(x′)), µ2(Sn2(y
′)), µ2(Sn3(z

′))
} ≥ 20r2

5d(y, x)2

M2
0

.

Denote

G =
M4

0 r2
3(2 + δ2)δ2n−2

r2
5d(y, x)2
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and let Γ = Γ1 ∪ Γ2 ∪ Γ3, where

Γ1 =

{
(ζ, η) ∈ Sn(x′) : µ2(Sn(x′))c(ζ, η, x)2 ≥ G

∫

Sn(x′)
c(z1, z2, x)2 dµ2(z1, z2)

}
,

Γ2 =

{
(ζ, η) ∈ Sn2(y

′) : µ2(Sn2(y
′))c(ζ, η, y)2 ≥ G

∫

Sn2 (y′)
c(z1, z2, y)2 dµ2(z1, z2)

}
,

Γ3 =

{
(ζ, η) ∈ Sn3(z

′) : µ2(Sn3(z
′))c(ζ, η, z)2 ≥ G

∫

Sn3 (z′)
c(z1, z2, z)2 dµ2(z1, z2)

}
.

If c(x, y, z) = 0, we have l(Gn−1
k )− l(Gn−1

k−1) = 0. Thus we may assume c(x, y, z) > 0.
Then, since (z1, z2) 7→ c(z1, z2, z3) is continuous on {(z1, z2) ∈ E2 : z1 6= z2 6= z3 6=
z1} in the product topology, we have by the regularity

∫

Sn(x′)
c(z1, z2, x)2 dµ2(z1, z2) > 0,

∫

Sn2 (y′)
c(z1, z2, y)2 dµ2(z1, z2) > 0,

∫

Sn3 (z′)
c(z1, z2, z)2 dµ2(z1, z2) > 0.

Thus by the Tchebychev inequality

µ2(Γ) ≤ µ2(Γ1) + µ2(Γ2) + µ2(Γ3)

≤ 1

G

(
µ2(Sn(x′)) + µ2(Sn2(y

′)) + µ2(Sn3(z
′))

)

≤ 1

G

(
M0r3 − 1

M0

r2

)2 (
δ2n + δ2n2 + δ2n3

)

≤ 1

G

(
M0r3 − 1

M0

r2

)2 (
1 +

2

δ2

)
δ2n <

r2
5d(y, x)2

M2
0

.

(10)

Denote Ui = {w ∈ B1 : {w}×Bi ⊂ Γ} for i = 2, 3. We next show that there exists
(u1, u2, u3) ∈ B1 ×B2 ×B3 such that (u1, u2) 6∈ Γ and (u1, u3) 6∈ Γ. Suppose this is
false. Then B1 = U2 ∪ U3. Letting

p = µ2(Sn(x′))−1G

∫

Sn(x′)
c(z1, z2, x)2 dµ2(z1, z2)

we have

{w ∈ B1 : {w} × B2 ⊂ Γ1 } =
{

w ∈ B1 : c(w, z2, x)2 ≥ p for all z2 ∈ B2

}

=
⋂

z2∈B2

{
w ∈ B1 : c(w, z2, x)2 ≥ p

}
,
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which is a closed set. Similarly {w ∈ B1 : {w} × Bi ⊂ Γj} is closed for each
i ∈ {2, 3} and j ∈ {1, 2, 3}. Thus U1 and U2 are closed and we get

µ2(Γ) ≥ µ2(U2 ×B2) + µ2(U3 ×B3)

= µ(U2)µ(B2) + µ(U3)µ(B3)

≥ (µ(U2) + µ(U3)) min {µ(B2), µ(B3)}

≥ µ(B1) min {µ(B2), µ(B3)} ≥ r2
5d(y, x)2

M2
0

,

which contradicts (10).
For any z1, z2 ∈ {y, u1, x, u2, z, u3}, z1 6= z2, we have d(z1, z2) ∈]r, R], where

r = r′ − 2r5d(y, x) and R = R′ + d(x, z) + 2r5d(y, x). Now R ≤ Kr for

K =
((M2

0 + 1)(C2 − ε0) + M2
0 C−1

2 + 2r5)(1− 2r1)−M2
0 d0

(C−1
2 − 2r5)(1− 2r1)− d0

.

Therefore, choosing ε3
0 ≥ (4K − 1)/(4K + 1), {y, u1, x, u2, z, u3} has an order by

Lemma 2.3 of [3]. The latter part of Lemma 3.1 gives yu1x and xu2z. So we have
yu1xu2z. Since

d(u3, x) ≥ d(w3, x)− r5d(y, x) > d(x, z) + r′ − r5d(y, x) > d(x, z) ≥ d(y, x),

we must have u3yu1xu2z or yu1xu2zu3. Using the assumption d(w3, x) ≤ d(w3, z)
and Lemma 3.1 we get u3xz. Thus we have u3yu1xu2z.

Let ε = min{ε1, ε2, ε3, ε4}, where ε1 = − cos ^u1xu2, ε2 = − cos ^u3yu1, ε3 =
− cos ^u1u2z and ε4 = − cos ^u3u1z. Then

d(y, z) ≥ d(u3, z)− d(u3, y)

≥ ε4d(u3, u1) + d(u1, z)− d(u3, y)

≥ ε4(ε2d(u3, y) + d(y, u1)) + d(u1, u2) + ε3d(u2, z)− d(u3, y)

≥ ε4(ε2d(u3, y) + d(y, u1)) + d(u1, x) + ε1d(x, u2) + ε3d(u2, z)− d(u3, y)

≥ ε(d(y, u1) + d(u1, x) + d(x, u2) + d(u2, z)) + (ε2 − 1)d(u3, y)

≥ ε(d(y, x) + d(x, z)) + (ε2 − 1)d(u3, y).

Denote

λ1 = c(x, u1, u2)
2d(u1, u2)

2,

λ2 = c(y, u1, u3)
2d(u1, u3)

2,

λ3 = c(z, u1, u2)
2d(u1, z)2,

λ4 = c(z, u1, u3)
2d(u3, z)2.
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Now

λ1 <
Gd(u1, u2)

2

µ(B(x′, r1δn))µ2(Sn(x′))

∫

B(x′,r1δn)

∫

Sn(x′)
c(z1, z2, z3)

2 dµ2(z1, z2) dµz3,

λ2 <
Gd(u1, u3)

2

µ(B(y′, r1δn2))µ2(Sn2(y
′))

∫

B(y′,r1δn2)

∫

Sn2(y′)
c(z1, z2, z3)

2 dµ2(z1, z2) dµz3,

λ3 <
Gd(u1, z)2

µ(B(z′, r1δn3))µ2(Sn3(z
′))

∫

B(z′,r1δn3 )

∫

Sn3 (z′)
c(z1, z2, z3)

2 dµ2(z1, z2) dµz3,

λ4 <
Gd(u3, z)2

µ(B(z′, r1δn3))µ2(Sn3(z
′))

∫

B(z′,r1δn3 )

∫

Sn3 (z′)
c(z1, z2, z3)

2 dµ2(z1, z2) dµz3.

Using this we get

l(Gn−1
k )− l(Gn−1

k−1)

≤ d(y, x) + d(x, z)− d(y, z)

≤ (1− ε)(d(y, x) + d(x, z)) + (1− ε2)d(u3, y)

≤ (1− ε2)(d(y, x) + d(x, z) + d(u3, y))

≤ 1

4
max{λ1, λ2, λ3, λ4}(d(y, x) + d(x, z) + d(u3, y))

≤ C4

∫

B(x,R4δn)

∫

T 2
n(z3)

∫

T 2
n(z3)\B(z2,r4δn)

c(z1, z2, z3)
2 dµz1 dµz2 dµz3,

(11)

where

R4 =
(C2 − ε0)(1 + r1) + 2r1

δ
,

T 2
n(z3) = B(z3, (r3 + r1)δ

n−1)\B(z3, (r2 − r1)δ
n)

and
M3

0 Gd(u3, z)2(d(y, x) + d(x, z) + d(u3, y))

4 · 20r2
5d(y, x)2r1δn

≤ 3M7
0 r2

3(2 + δ2)

80(1− 2r1)r4
5r1δ2

(
M2

0

(
C2 − ε0 +

1

C2

− d0

1− 2r1

)
+ C2 − ε0 + 2r5

)3

= C4.

Case 4. d(y, z) < d(x, z) for all z ∈ Dn−1
k−1(y).

Assume that {z1, z2} ∈ P n−1
k−1 (y) such that {z1, z2} ⊂ Dn−1

k−1(y). Now d(y, v) <

C2(1+r1)δ
n−1 for all v ∈ Dn−1

k−1(y). Thus by the (n−1, k−1) -property we have z1yz2.
Since δR3 ≥ (1 + C2)(1 + r1) and R2 ≤ 1− 2r1, we have {y, x, z1, z2} ∈ O(ε0). Now
d(v1, v2) < Kd(v3, v4) for all v1, v2, v3, v4 ∈ {z1, x, y, z2}, v3 6= v4, and ε0 ≥ K/(K+1)
for K = max{2C2, (1 + C2)(1 + r1)(1− 2r1)

−1}. Since now xyz1 and xyz2, it follows
from Lemma 2.2 of [3] that yz1z2 or yz2z1, which is a contradiction. Thus the
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assumption above is false and for fixed z ∈ Dn−1
k−1(y) there exists b ∈ V n−1

k−1 \Dn−1
k−1

such that {z, b} ∈ P n−1
k−1 (y).

We set V n−1
k = V n−1

k−1 ∪ {x} and define

En−1
k =

(
En−1

k−1\{{y, b}}) ∪ {{x, y}, {x, b}} .

Further we define wn−1
k and P n−1

k by setting

wn−1
k (e) =





d(x, y) for e = {x, y},
wn−1

k−1({y, b}) for e = {x, b},
wn−1

k−1(e) for e ∈ En−1
k−1\{{y, b}}

and

P n−1
k (v) =





{{y, b}} for v = x,(
P n−1

k−1 (v)\{{z, b}}) ∪ {{x, z}} for v = y,
P n−1

k−1 (v) for v ∈ Dn−1
k−1\{y}.

Now

(12) l(Gn−1
k )− l(Gn−1

k−1) = d(x, y).

Since xyz, δR3 ≥ (1 + C2)(1 + r1)δ
−1 + r1(1 − δ)−1, R2 ≤ 1 − 2r1(1 − δ)−1 and

r1 < ε0(1 − δ − 2r1), we have the (n − 1, k) -property at y by Lemma 3.1. The
construction will show that for each m ≥ n there is v ∈ Dm

0 such that {v, b} ∈ Em
0

and wm
0 ({v, b}) = wn−1

k−1({y, b}). We define In−1
k and fn−1

k as in Case 1.

4. Construction of Gn
0

Denote Dn−1
0 = {xn

#An+1, . . . , x
n
#Dn

0
}. We define inductively Dn−1

k =
(
Dn−1

k−1\
{xn

k}
) ∪ {qn(xn

k)} for k = #An + 1, . . . , #Dn
0 . Let k ∈ {#An + 1, . . . , #Dn

0} and
assume by induction that we have constructed a graph Gn−1

k−1 = (V n−1
k−1 , En−1

k−1 ) with
a weight function wn−1

k−1 : En−1
k−1 →]0,∞[ and a 1-Lipschitz surjection fn−1

k−1 : In−1
k−1 →

Dn−1
k−1 , where In−1

k−1 ⊂ [0, 2l(T n−1
k−1 )]. We also assume that we have defined a function

P n−1
k−1 .

We denote x = xn
k . We set V n−1

k =
(
V n−1

k−1 \{x}
) ∪ {qn(x)} and define

En−1
k =

(
En−1

k−1\{{x, v} : v ∈ V n−1
k−1 (x)}) ∪ {{qn(x), v} : v ∈ V n−1

k−1 (x)}.
Further we define wn−1

k,0 : En−1
k →]0,∞[ by setting

wn−1
k,0 (e) =





wn−1
k−1({x, v}) + r1δ

n for e = {qn(x), v}, where v ∈ Dn−1
k−1(x),

wn−1
k−1({x, v}) for e = {qn(x), v}, where v ∈ V n−1

k−1 (x)\E,
wn−1

k−1(e) for e ∈ En−1
k−1\{{x, v} : v ∈ V n−1

k−1 (x)}.
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For any v ∈ Dn−1
k−1(x) let z(v) ∈ V n−1

k−1 (v) for which {x, z(v)} ∈ P n−1
k−1 (v). We define

P n−1
k by setting

P n−1
k (v) =





P n−1
k−1 (x) for v = qn(x),(
P n−1

k−1 (v)\{{x, z(v)}}) ∪ {{qn(x), z(v)}} for v ∈ Dk−1
n−1(x),

P n−1
k−1 (v) for v ∈ Dn−1

k−1\
(
Dk−1

n−1(x)

∪{x}).
Further we set In−1

k,0 = In−1
k−1 and define fn−1

k,0 : In−1
k,0 → Dn−1

k by setting

fn−1
k,0 (s) =

{
qn(x) if fn−1

k−1 (s) = x,
fn−1

k−1 (s) if fn−1
k−1 (s) 6= x.

Let {y1, . . . , ym} = Dn−1
k−1(x) and i ∈ {1, . . . , m}, where m = #Dn−1

k−1(x). Assume
by induction that we have defined a function fn−1

k,i−1 : In−1
k,i−1 → Dn−1

k . Let (t1, t2) ∈
Jn−1

k−1 ({x, yi}). We set

In−1
k,i,0 =

(
In−1
k,i−1 ∩ [0, t1]

) ∪ ((
In−1
k,i−1 ∩ [t2,∞[

)
+ r1δ

n
)

and define fn−1
k,i,0 : In−1

k,i,0 → Dn−1
k by setting

fn−1
k,i,0(s) =

{
fn−1

k,i−1(s) for s ∈ In−1
k,i−1 ∩ [0, t1],

fn−1
k,i−1(s− r1δ

n) for s ∈ (
In−1
k,i−1 ∩ [t2,∞[

)
+ r1δ

n.

If #Jn−1
k−1 ({x, yi}) = 1, we put In−1

k,i = In−1
k,i,0 and fn−1

k,i = fn−1
k,i,0 . Else let u1, u2 ∈ In−1

k,i,0

such that u2 − u1 = wn−1
k−1({x, yi}), fn−1

k,i,0({u1, u2}) = {x, yi} and In−1
k,i,0∩ ]u1, u2[ = ∅.

We set
In−1
k,i =

(
In−1
k,i,0 ∩ [0, u1]

) ∪ ((
In−1
k,i,0 ∩ [u2,∞[

)
+ r1δ

n
)

and define fn−1
k,i by setting

fn−1
k,i (s) =

{
fn−1

k,i,0(s) for s ∈ In−1
k,i,0 ∩ [0, u1],

fn−1
k,i,0(s− r1δ

n) for s ∈ (
In−1
k,i,0 ∩ [u2,∞[

)
+ r1δ

n.

Denote

P =
{ {v1, v2} ∈ P n−1

k−1 (x) : max{d(qn(x), qn,n(v1)), d(qn(x), qn,n(v2))} < C2(1 + r1)δ
n

and {v1, v2} ⊂ Dn−1
k−1(x)

}
.

If P = ∅, we set wn−1
k = wn−1

k,0 , In−1
k = In−1

k,m and fn−1
k = fn−1

k,m . From now on we
assume that {y, z} ∈ P . Let us define wn−1

k by setting

wn−1
k (e) =





ρ for e = {y, qn(x)},
τ for e = {qn(x), z},
wn−1

k,0 (e) for e ∈ En−1
k \{{y, qn(x)}, {qn(x), z}},
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where

ρ = max
{
wn−1

k−1({y, x})− r1δ
n, d(y, qn(x))

}
,

τ = max
{
wn−1

k−1({y, x}) + wn−1
k−1({x, z})− ρ, d(qn(x), z)

}
.

Let {e1, e2} = {{y, qn(x)}, {qn(x), z}} and i ∈ {1, 2} and assume by induction
that we have defined a function fn−1

k,m+i−1 : In−1
k,m+i−1 → Dn−1

k . Let t1, t2 ∈ In−1
k,m+i−1

such that t2− t1 = wn−1
k,0 (ei), fn−1

k,m+i−1({t1, t2}) = ei and In−1
k,m+i−1∩]t1, t2[= ∅. We set

In−1
k,m+i,0 = J1 ∪ J2,

where J1 = In−1
k,m+i−1 ∩ [0, t1] and J2 =

(
In−1
k,m+i−1 ∩ [t2,∞[

)
+ wn−1

k (ei) + t1 − t2, and
define fn−1

k,m+i,0 : In−1
k,m+i,0 → Dn−1

k by setting

fn−1
k,m+i,0(s) =

{
fn−1

k,m+i−1(s) for s ∈ J1,
fn−1

k,m+i−1(s− wn−1
k (ei)− t1 + t2) for s ∈ J2.

If there exist u1, u2 ∈ In−1
k,m+i,0 such that u1 6= t1, u2−u1 = wn−1

k,0 (ei), fn−1
k,m+i,0({u1, u2})

= ei and In−1
k,m+i,0∩ ]u1, u2[ = ∅, we set

In−1
k,m+i = J1 ∪ J2,

where J1 = In−1
k,m+i,0 ∩ [0, u1] and J2 =

(
In−1
k,m+i,0 ∩ [u2,∞[

)
+ wn−1

k (ei) + u1 − u2, and
define fn−1

k,m+i : In−1
k,m+i → Dn−1

k by setting

fn−1
k,m+i(s) =

{
fn−1

k,m+i,0(s) for s ∈ J1,
fn−1

k,m+i,0(s− wn−1
k (ei)− t1 + t2) for s ∈ J2.

Else we put In−1
k,m+i = In−1

k,m+i,0 and fn−1
k,m+i = fn−1

k,m+i,0.
We set In−1

k = In−1
k,m+2 and fn−1

k = fn−1
k,m+2. By the construction there exists

{y′, z′} ∈ P n−1
#An

(x) such that {y′, z′} ⊂ Dn−1
#An

, qn,n(y′) = qn,n(y) and qn,n(z′) =
qn,n(z). Since δ ≤ 1− 2r1, we have max{d(x, y′), d(x, z′)} < C2(1 + r1)δ

n + 2r1δ
n ≤

C2(1 + r1)δ
n−1. Thus yqn(x)z|ε0 by the (n− 1, #An) -property and we have

wn−1
k ({y, qn(x)}) + wn−1

k ({qn(x), z})− wn−1
k−1({y, x})− wn−1

k−1({x, z})
≤ max{d(y, qn(x)) + d(qn(x), z)− d(y, x)− d(x, z), 0}
≤ d(y, qn(x)) + d(qn(x), z)− d(y, z)

≤ (1− ε0) min{d(y, qn(x)), d(qn(x), z)}.

(13)

If ϑ(qn(x), n) < ε0 we get as in Case 1

wn−1
k ({y, qn(x)}) + wn−1

k ({qn(x), z})− wn−1
k−1({y, x})− wn−1

k−1({x, z}) ≤ hδn

≤ C5

∫

B(qn(x),(R3+r0)δn)

∫

T 1
n(z3)

∫

T 1
n(z3)∩T 1

n(z2)

c(z1, z2, z3)
2 dµz1 dµz2 dµz3,

(14)
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where h = min{2r1, (1−ε0)(C2(1+r1)+r1)} and C5 = M3
0 hc−1

1 r−3
0 . We now assume

that ϑ(qn(x), n) ≥ ε0 and there is m ≥ n such that {{qm,n(y), qm,n(x)}, {qm,n(x),
qm,n(z)}} ∩ Fm

0 = ∅. Denote

C ′
2 = M2

0 (C2(1 + r1) + r1 + d1) ,

where d1 = C−1
2 (1−r1)−d0. Let N2 be the smallest integer such that C ′

2δ
N2 < d(E).

By assuming n ≥ N2 and using max {r1(1− δ)−1, r5} ≤ ε0d1, max {r4δ
−1, R2} ≤

d1− 2r5, r2 ≤ δ (d1 − r5)− r1, r3 ≥ C ′
2 + C2(1 + r1) + 2(r1 + r5), R3 ≥ C ′

2 + r1 + 2r5

and ε3
0 ≥ (4K − 1)/(4K + 1), where

K =
C ′

2 + C2(1 + r1) + r1 + 2r5

d1 − 2r5

,

we get as in Case 3

wn−1
k ({y, qn(x)}) + wn−1

k ({qn(x), z})− wn−1
k−1({y, x})− wn−1

k−1({x, z})
≤ d(y, qn(x)) + d(qn(x), z)− d(y, z)

≤ C6

∫

B(qn(x),R5δn)

∫

T 2
n(z3)

∫

T 2
n(z3)\B(z2,r4δn)

c(z1, z2, z3)
2 dµz1 dµz2 dµz3,

(15)

where

R5 = C2(1 + r1) +

(
1 +

2

δ

)
r1,

C6 =
3M7

0 r2
3(2 + δ2) (C ′

2 + C2(1 + r1) + r1 + 2r5)
3

80r4
5r1δ2

.

If k = #Dn
0 , we now set V n

0 = V n−1
k , En

0 = En−1
k , wn

0 = wn−1
k , P n

0 = P n−1
k ,

In
0 = In−1

k and fn
0 = fn−1

k . Since (C2(1 + r1) + 2r1)δ ≤ C2(1 + r1), the (n, 0) -
property is satisfied. Note also that {qm,n(v1), qm,n(v2)} ∈ Fm

0 for all m ≥ n if
{v1, v2} ∈ F n

0 such that d(v1, v2) ≥ C2(1 + r1)δ
n.

5. End of the proof

By iterating the above algorithm, we construct a sequence (Gn
0 )n>n0 of graphs

and a sequence fn
0 : In

0 → Dn
0 of 1-Lipschitz surjections such that In

0 ⊂ [0, 2l(T n
0 )]

for all n > n0.
Let n > n0, k ∈ {1, . . . , #An} and y ∈ Dn−1

k−1 . Denote

I =
{

i ∈ {k, . . . , #An} : ϑ(xn
i , n) ≥ ε0 and d(xn

i , y) = d(xn
i , D

n−1
i−1 )

}

and further for j = 0, 1, 2, . . . set

Ij =
{

i ∈ I : (1 + ε0)
−j−1d < d(xn

i , y) ≤ (1 + ε0)
−jd

}
,

where d = max{d(xn
i , y) : i ∈ I } ≤ (1 + r1)δ

n−1. Let j ∈ {0, 1, 2, . . . }. We show
that #Ij ≤ 2. Suppose this fails and there exist i1, i2, i3 ∈ Ij with i1 < i2 < i3.
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Since R2 ≤ 1− 2r1 and δR3 ≥ 2(1 + r1), we have {y, xn
i1
, xn

i2
, xn

i3
} ∈ O(ε0). Denote

dl = d(xn
il
, y) for l = 1, 2, 3. Since ε0 ≥ 1/2,

d1 + ε0d3 + ε0(d2 + ε0d3)− (d1 + d2) > (2ε0 − 1)(1 + ε0)
−jd ≥ 0.

Thus we have z1z2y for some z1, z2 ∈ {xn
i1
, xn

i2
, xn

i3
}. This implies d(z1, z2) ≤ d(z1, y)−

ε0d(z2, y) ≤ (1 + ε0)
−j−1d, which is a contradiction. So we have

∑

i∈I

d(xn
i , y) =

∞∑
j=0

∑

i∈Ij

d(xn
i , y) ≤

∞∑
j=0

2(1 + ε0)
−jd =

2(1 + ε0)d

ε0

.

Let n0 < n′ ≤ m, k′ ∈ {1, . . . , #An′}, and assume that {y′, z′} ∈ F n′−1
k′−1 . Then, since

δ ≤ 1− 2r1,

(16)
d(y′, z′)

d(qm,n′(y′), qm,n′(z′))
<

(1− δ)(1− r1)

1− δ − 2r1

.

Suppose that C2d(xn′
k′ , y

′) ≤ d(y′, z′). If now n′ < n ≤ m and x ∈ An, we have

d(x,Dn−1
0 ) ≤ (1 + r1)δ

n−1 <
(1 + r1)δ

n−n′−1d(xn′
k′ , y

′)
1− 2r1

≤ (1 + r1)δ
n−n′−1d(y′, z′)

(1− 2r1)C2

.

Using these estimates and (8) we get
∑

k∈Λn′ (y′)∪Λn′ (z′), k≥k′

(
l(Gn′−1

k )− l(Gn′−1
k−1 )

)
+

m∑

n=n′+1

∑

k∈Λn(y′)∪Λn(z′)

(
l(Gn−1

k )− l(Gn−1
k−1)

)

≤ M1d(qm,n′(y
′), qm,n′(z

′)) ≤ M1w
m
0 ({qm,n′(y

′), qm,n′(z
′)})

for all m ≥ n′, where

Λn(v) =
{

k ∈ {1, . . . , #An} : ϑ(xn
k , n) ≥ ε0 and d(xn

k , qn−1,n′(v)) = d(xn
k , Dn−1

k−1)
}

for v ∈ Dn′−1
#An′

and

M1 =
4(1 + ε0)(1 + 2C1)(1− δ)(1− r1)

C2ε0(1− δ − 2r1)

(
1 +

1 + r1

(1− 2r1)(1− δ)

)
.

From this we get

(17)
m∑

n=n0+1

∑

k∈Λ1
n

(
l(Gn−1

k )− l(Gn−1
k−1)

) ≤ M1l(T
m
0 )

for all m > n0, where

Λ1
n = { k ∈ {1, . . . , #An} : Case 2 applies to xn

k at stage n } .

Let n > n0, k ∈ {1, . . . , #An} and {y, b} ∈ En−1
k−1 , where b ∈ V n−1

k−1 \Dn−1
k−1 .

Denote
I =

{
i ∈ {k, . . . , #An} : {xn

i , b} ∈ En−1
i

}

and further for j = 0, 1, 2, . . . let

Ij =
{

i ∈ I : (1 + ε0)
−j−1d < d(xn

i , Dn−1
i−1 ) ≤ (1 + ε0)

−jd
}

,
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where d = max{d(xn
i , D

n−1
i−1 ) : i ∈ I } ≤ (1 + r1)δ

n−1. We show that #Ij ≤ 2 for
all j. Suppose that this fails and for some j there exist i1, i2, i3 ∈ Ij, i1 < i2 < i3,
such that d(xn

il
, xn

il−1
) = d(xn

il
, Dn−1

il−1) for l = 2, 3. Denote xl = xn
il
for l = 1, 2, 3 and

let x0 ∈ E such that d(x1, x0) = d(x1, D
n−1
i1−1). Now xlxl+1xl+2 for l = 0, 1. Namely,

if this is not true for fixed l, there exists a nonempty set {y1, . . . , yp} ⊂ Dn−1
il+2−1 such

that ypxl+1xl+2, xly1xl+1 and yqyq+1xl+1 for q = 1, . . . , p− 1. Since (1 + ε0)
−j−1d <

d(z1, z2) ≤ 3(1 + ε0)
−jd for each distinct points z1, z2 ∈ {x0, x1, x2, x3, y1, . . . , yp} ⊂

B(x1, 2(1+ ε0)
−jd), ϑ(x1, n) ≥ ε0 and we have chosen δR3 ≥ 2(1+ r1), R2 ≤ 1−2r1

and

ε3
0 ≥

12(1 + ε0)− 1

12(1 + ε0) + 1
,

{x0, x1, x2, x3, y1, . . . , yp} has an order by Lemma 2.3 of [3], from which we conclude
xlxl+1xl+2. Since max{d(x,Dn−1

i1−1) : x ∈ Ak} = d(x1, x0) < d(x2, x0), there exists
z ∈ Dn−1

i1−1\{x0} such that d(x2, z) ≤ d(x1, x0). As above, {x0, x1, x2, x3, z} has an
order. Since d(xl, xl−1) = d(xn

il
, Dn−1

il−1) for l = 1, 2, 3, we must have x0x1x2x3z. From
this we get d(x2, z) ≥ d(x2, x3) + ε0d(x3, z) > (1 + ε0)

−jd ≥ d(x1, x0), which is a
contradiction. Thus we have

∑

i∈I

d(xn
i , Dn−1

i−1 ) =
∞∑

j=0

∑

i∈Ij

d(xn
i , Dn−1

i−1 ) ≤
∞∑

j=0

2(1 + ε0)
−jd =

2(1 + ε0)d

ε0

.

Using this and (12) we get

(18)
m∑

n=n0+1

∑

k∈Λ2
n

(
l(Gn−1

k )− l(Gn−1
k−1)

) ≤ M ′
1

(
l(Gm

0 )− l(Tm
0 )

)

for all m > n0, where

Λ2
n = { k ∈ {1, . . . , #An} : Case 4 applies to xn

k at stage n } ,

M ′
1 =

2(1 + ε0)

C1ε0

(
1 +

1 + r1

(1− 2r1)(1− δ)

)
.

Since δn0+1 < d(E) ≤ C ′
1δ

N1−1 (see pages 102 and 109), we have N1 − n0 <
2− log C ′

1/ log δ. Using this and #An ≤ 2M2
0 δ−nd(E) we get

N1−1∑
n=n0+1

#An · (1− ε0)(1 + r1)δ
n−1 < C ′′

1 d(E),

where

C ′′
1 =

(
1− log C ′

1

log δ

)
2M2

0 (1− ε0)(1 + r1)

δ
.
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Thus by using (9), (16) and (11) we get

m∑
n=n0+1

∑

k∈Λ3
n

(
l(Gn−1

k )− l(Gn−1
k−1)

) ≤ C ′′
1 d(E) + M2l(T

m
0 )

+ C4

m∑
n=N1

∑

k∈Λ3
n

∫

B(xn
k ,R4δn)

∫

T 2
n(z3)

∫

T 2
n(z3)\B(z2,r4δn)

c(z1, z2, z3)
2 dµz1 dµz2 dµz3,

(19)

for all m > n0, where

Λ3
n = { k ∈ {1, . . . , #An} : Case 3 applies to xn

k at stage n } ,

M2 =
(1− ε0)(1− δ)(1− r1)

1− δ − 2r1

.

Since N2 − n0 < 2 − log C ′
2/ log δ (see page 116) and #Dn

0 ≤ 2M2
0 δ−nd(E) for

n > n0, we have

min{2r1, 1− ε0}d(E) +

N2−1∑
n=n0+2

#Dn−1
0 · hδn < C ′′

2 d(E),

where

C ′′
2 = min{2r1, 1− ε0} − 2M2

0 hδ log C ′
2

log δ
.

Let n0 < n′ ≤ m and assume that b ∈ V n′
0 \Dn′

0 . For any n ≥ n′ let k1
n(b) ∈

{1, . . . , #Dn
0} be the unique index such that b ∈ V n−1

#An
(xn

k1
n(b)). Denote also by yn(b)

the unique vertex in Dn−1
max{k1

n(b),#An} for which {qn,n(yn(b)), b} ∈ P n
0 (qn,n(xn

k1
n(b))). We

have
∑

n≥n′, k1
n(b)>#An

(
wn−1

k1
n(b)({qn(xn

k1
n(b)), yn(b)})− wn−1

k1
n(b)−1({xn

k1
n(b), yn(b)}))

≤
∞∑

n=n′
r1δ

n =
r1δ

n′

1− δ

and

wm
0 (qm,m(xm

k1
m(b)), b) = wn′

0 (qn′,n′(x
n′
k1

n′ (b)
), b) > C1(1− 2r1)δ

n′ .

Assume now that {y, z} ∈ F n′−1
#An′

such that {qn,n′(y), qn,n′(z)} ∈ F n
0 for all n ≥ n′.

For x ∈ Dn′−1
#An′

and n ≥ n′ let k2
n(x) ∈ {1, . . . , #Dn

0} such that qn−1,n′(x) = xn
k2

n(x).
Denote also

n(x1, x2) = inf {n ≥ n′ : vn(x1, x2) ∈ E and qn−1,n′(x1) 6∈ An }
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for {x1, x2} ∈ F n′−1
#An′

, where vn(x1, x2) is the unique vertex in V n−1
max{k2

n(x1),#An} such
that {qn,n′(x2), qn,n′(vn(x1, x2))} ∈ P n

0 (qn,n′(x1)). Now

m∑

n=n(y,z)

(
wn−1

k2
n(y)({qn,n′(y), vn(y, z)}) + wn−1

k2
n(y)({qn,n′(y), pn(z, y)})

− wn−1
k2

n(y)−1({qn−1,n′(y), vn(y, z)})− wn−1
k2

n(y)−1({qn−1,n′(y), pn(z, y)}))

+
m∑

n=n(z,y)

(
wn−1

k2
n(z)({qn,n′(z), vn(z, y)}) + wn−1

k2
n(z)({qn,n′(z), pn(y, z)})

− wn−1
k2

n(z)−1({qn−1,n′(z), vn(z, y)})− wn−1
k2

n(z)−1({qn−1,n′(z), pn(y, z)}))

≤ M3w
m
0 ({qm,n′(y), qm,n′(z)}),

where pn(x1, x2) ∈ Dn−1
k2

n(x2) such that qn,n(pn(x1, x2)) = qn,n′(x1) for {x1, x2} ∈ F n′−1
#An′

and

M3 =
4r1

1− δ + 2r1

.

Using these estimates, (13), (14) and (15) we get

m∑
n=n0+1

#Dn
0∑

k=#An+1

(
l(Gn−1

k )− l(Gn−1
k−1)

)

≤ C ′′
2 d(E) + M3l(T

m
0 ) + M ′

2

(
l(Gm

0 )− l(Tm
0 )

)

+ C5

m∑
n=n0+1

∑

x∈H1
n

∫

B(x,(R3+r0)δn)

∫

T 1
n(z3)

∫

T 1
n(z3)∩T 1

n(z2)

c(z1, z2, z3)
2 dµz1 dµz2 dµz3

+ C6

m∑
n=N2

∑

x∈H2
n

∫

B(x,R5δn)

∫

T 3
n(z3)

∫

T 3
n(z3)\B(z2,r4δn)

c(z1, z2, z3)
2 dµz1 dµz2 dµz3

(20)

for all m > n0, where

M ′
2 =

r1

C1(1− 2r1)(1− δ)
,

H1
n = { x ∈ qn(Dn−1

0 ) : ϑ(x, n) < ε0 },
H2

n = { x ∈ qn(Dn−1
0 ) : ϑ(x, n) ≥ ε0 }.
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Combining the estimates (6), (7), (17), (18), (19), and (20) we get for all m > n0

l(Tm
0 ) ≤ (1 + 2C1 + C ′′

1 + C ′′
2 )d(E) + (M1 + M2 + M3)l(T

m
0 )

+ C0

m∑
n=n0+1

∑
x∈Dn

0

∫

B(x,R0δn)

∫

Tn(z3)

∫

Tn(z3)\B(z2,ρ0δn)

c(z1, z2, z3)
2 dµz1 dµz2 dµz3

+ (M ′
1 + M ′

2 − 1)
(
l(Gm

0 )− l(Tm
0 )

)
,

where

C0 = max {C3, C4, C5, C6} ,

R0 = max{R3 + r0, R4, R5},
ρ0 = min{R2 − 2r0, r4},

Tn(z) = B(z, R1δ
n)\B(z, ρ1δ

n)

for z ∈ E, where

R1 = max{2(R3 + r0), (r3 + r1)δ
−1},

ρ1 = min{R2 − 2r0, r2 − r1}.
Let n > n0, y ∈ E and D = B(y, (R0 + r1)δ

n) ∩ (
A′

n ∪Dn−1
0

)
. Then

M0 ((R0 + r1)δ
n + δn/2) ≥ µ (B(y, (R0 + r1)δ

n + δn/2))

≥
∑
x∈D

µ (B(x, δn/2)) ≥ #D · δn

2M0

,

from which we get

# (B(y, R0δ
n) ∩Dn

0 ) ≤ #D ≤ M2
0 (2(R0 + r1) + 1) .

Suppose now that k1 < k2 and Tk1(y)∩Tk2(y) 6= ∅. Then ρ1δ
k1 < R1δ

k2 , which gives

k2 − k1 <
log R1 − log ρ1

− log δ
.

Thus we have for all m > n0

m∑
n=n0+1

∑
x∈Dn

0

∫

B(x,R0δn)

∫

Tn(z3)

∫

Tn(z3)\B(z2,ρ0δn)

c(z1, z2, z3)
2 dµz1 dµz2 dµz3

≤ C ′
0

∫

E

m∑
n=n0+1

∫

Tn(z3)

∫

T (z2,z3)

c(z1, z2, z3)
2 dµz1 dµz2 dµz3

≤ C ′
0C

′′
0

∫

E

∫

E

∫

T (z2,z3)

c(z1, z2, z3)
2 dµz1 dµz2 dµz3

= C ′
0C

′′
0

∫

T

c(z1, z2, z3)
2 dµ3(z1, z2 z3),
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where C ′
0 = M2

0 (2(R0 + r1) + 1), C ′′
0 = (log ρ1 − log R1)/ log δ and

T =
{

(z1, z2, z3) ∈ E3 : d(zi, zj) < K0d(zk, zl) for all i, j, k, l ∈ {1, 2, 3}, k 6= l
}

,

T (z2, z3) = {z ∈ E : (z, z2, z3) ∈ T } ,

where
K0 =

R1 max{2ρ0, ρ1}
ρ0ρ1

.

By choosing the constants suitably we have M1+M2+M3 < 1 and M ′
1+M ′

2 ≤ 1.
Thus there exists a constant C (depending on M0) such that

2l(Tm
0 ) ≤ C(c2(E) + d(E))

for all m > n0. We denote In = In
0 and fn = fn

0 for n > n0. Since now In ⊂
[0, C(c2(E)+d(E))] for all n > n0, there exists a compact set I ⊂ [0, C(c2(E)+d(E))]
such that In → I in the Kuratowski sense:

(i) If a = limk→∞ ank
for some subsequence (ank

) of a sequence (an) such that
an ∈ In for any n, then a ∈ I.

(ii) If a ∈ I, then there exists a sequence (an) such that an ∈ In for any n and
a = limn→∞ an.

Let a ∈ I and let (an)n be a sequence such that an ∈ In for any n and an → a as
n →∞. Let m ≥ n > n0. By the construction there is b ∈ Im such that

−2r1δ
n+1

1− δ
< −

m∑

k=n+1

2r1δ
k ≤ b− an ≤ 2 (l(Tm

0 )− l(T n
0 )) +

2r1δ
n+1

1− δ

and d(fm(b), fn(an)) ≤ r1δ
n+1(1− δ)−1. Using this we get

d(fm(am), fn(an)) ≤ d(fm(am), fm(b)) + d(fm(b), fn(an))

≤ |am − b|+ d(fm(b), fn(an))

≤ |am − an|+ |an − b|+ r1δ
n+1(1− δ)−1

≤ |am − an|+ 2 (l(Tm
0 )− l(T n

0 )) + 3r1δ
n+1(1− δ)−1.

From this we see that (fn(an)) is a Cauchy sequence in E. Thus we can define
f : I → E, where E is the completion of E, by setting for a ∈ I

f(a) = lim
n→∞

fn(an),

where (an) is a sequence such that an ∈ In for any n and an → a as n →∞. Clearly
f(a) does not depend on the choice of the sequence (an). Let a, b ∈ I and let an → a
and bn → b such that an, bn ∈ In for any n. Now, since fn is 1-Lipschitz for each n,

d(f(a), f(b)) ≤ d(f(a), fn(an)) + d(fn(an), fn(bn)) + d(fn(bn), f(b))

≤ d(f(a), fn(an)) + |an − bn|+ d(fn(bn), f(b)) → |a− b|
as n → ∞. So f is 1-Lipschitz. It is also surjective. To check this let x ∈ E
and r > 0. Let k ≥ n0 such that (1 + r1)δ

k + r1δ
k+1(1 − δ)−1 < r. Now there is

ck ∈ Ik such that d(fk(ck), x) ≤ (1 + r1)δ
k. By the construction we have a sequence
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(cn)n≥k such that cn ∈ In, d(fn(cn), fk(ck)) ≤ r1δ
k+1(1 − δ)−1 and |cn+1 − cn| ≤

2(l(T n+1
0 )− l(T n

0 ) + r1δ
n+1) for any n ≥ k. From this we see that (cn) is a Cauchy

sequence and thus there is c ∈ [0, C(c2(E) + d(E))] such that cn → c. Now c ∈ I
by (i) and d(f(c), x) < r. Since f(I) is compact, we deduce E ⊂ f(I). Finally, we
restrict f to f−1(E). The proof of Theorem 1.1 is now complete.

We actually showed that

(21) `(E) ≤ C

(∫

T

c(z1, z2, z3)
2 dµ3(z1, z2 z3) + d(E)

)
.

A slight modification of the proof gives that we can take K0 in the definition of
T as a universal constant such that (21) holds for some C depending only on the
regularity constant of E.
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