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Abstract. We show that for a bounded 1-regular metric measure space (F, ) the finiteness
of the Menger curvature integral

///0(21,22,23)2d,uzldusz,u23
EJEJE

guarantees that F is a Lipschitz image of a subset of a bounded subinterval of R.

1. Introduction

Let 21, 25 and z3 be three points in a metric space (E, d). The Menger curvature
of the triple (21, 22, 23) is
( ) 2sin 212223
C\R1,%22,%3) = ————~
d(Zl, 25)

where
d(z1, 22)% + d(22, 23)* — d(21, 23)?

Qd(zl, ZQ)d(ZQ, 23)
Note that ¢(z1, 29, 23) is the reciprocal of the radius of the circle passing through z,
x5 and x3 whenever {z, s, 73} C R? is an isometric triple for {zy, 20, 23}. We set

02(E):///c(zl,ZQ,z3)2duzlduZQduzg.
BJEJE

Through the paper p is the 1-dimensional Hausdorff measure on E.
We say that a metric space (E,d) is 1-regular if there exists My < oo such that

(1) My'r < p(B(x,r)) < Myr

whenever z € E and r €]0,d(E)]. Here d(F) is the diameter of E and B(z,r) will
denote the closed ball in E with center z € E and radius » > 0. The smallest
constant My such that (1) holds is called the regularity constant of E. We denote
(2) ((E) =inf{Lip(f) : f: A— FE is a surjection and A C [0,1] },

where Lip(f) € [0, 00] is the Lipschitz constant of f. Note that if E is a subset of a
Hilbert space H, then by the classical Kirszbraun—Valentine extension theorem we

<{Z1%Z9%23 = arccos
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can take in (2) the infimum over all functions f: [0,1] — H for which £ C f([0, 1])
without that ¢(E) changes. Further, if FE is a connected metric space, {(F) is at
most a constant multiple of p(FE) (see [11] and [3]). In this paper we shall prove the
following theorem:

Theorem 1.1. Let (E,d) be a I-regular metric space. Then ((E) < C(c*(E)+
d(E)), where C' < oo depends only on the regularity constant of E.

In [4] P. W. Jones gave a sufficient and necessary condition for £ C C to be
contained in a rectifiable curve by showing that

(i) UE) < i (d(E) + Yoes Br(QPd(Q) ).
(i) > ges Be(Q)%d(Q) < CyUl(E),
where C and Cy are some absolute constants, 2 = {3Q : @ is a dyadic cube} and

Be(Q) =infd(Q) "sup{d(y, L) : y € ENQ}

for Q) € ¥, where the infimum is taken over all lines. Here 3(Q) is the cube with the
same center as () and sides parallel to the sides of @), but whose diameter is 3d(Q).
Jones’s proof for (i) works also if £ C R". The latter part has been extended to
sets in R"™ by Okikiolu in [8]. Then, of course, the constant Cy must depend on n.
In [11] Schul extended this theorem to sets in a Hilbert space H using the family

{{yeH :dlyz)<A27*} : 2 e\, keZ}

in the place of 2. Here A is some fixed constant and (Ay)g is a net for E, that
is, Ay, is a maximal subset of F such that d(z;,7,) > 2% for any distinct points
x1, 29 € A and Ay C Agyq for all k € Z. The easier part of Jones’s theorem has an
extension also for general metric spaces. In [3] we showed that there is an absolute
constant C' such that ((F) < C(d(F) + f(E)) for any metric space E, where

B(E) = inf{ Z Z Blx,27%)2(277)3 1 (Ap)s is a net for E}

keZ Z‘EAk\Ak_l

and f(x,t) = sup{ c(z1, 20, 23) © 21,22, 23 € B(x, At), d(z;,2;) >t Vi#j} for z €
E and t > 0, where A is some sufficiently large constant. An example given by Schul
shows that there is not any absolute constant C' such that 3(E) < CY(FE) for any
metric space E. In fact, there exists a plane set E equipped with the ¢! metric such
that ¢(E) < oo and B(F) = co. The part (i) has extended also to the Heisenberg
group in [2].

David and Semmes proved in [1] that a closed 1-regular set E C R™ is contained
in a 1-regular curve if and only if there is C' < oo such that

R dt
3) [ [ swnmrae<cr
0 JENB(z,R) 13
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for all z € E and R > 0. Here ¢q € [1, 0] is arbitrary,

1/q
ot ) =gt (70 [ a1y
L ENB(x,t)

for g € [1, 00[ and
Beo(z,t, E) = i%ft_l sup{d(y,L) : ye€ ENB(x,t) },

where the infima are taken over all lines in R". For ¢ = oo this was already proved
by Jones. In fact, David and Semmes gave in [1] a version of this theorem for m-
dimensional sets in R", where m is any integer. In [9] Pajot gave a more direct proof
for that a closed 1-regular set £ C R” lies in a 1-regular curve if (3) is satisfied.
His construction also yields

@ wpy<c(apy+ [ [ awerraed),
0 E

where C' < oo depends only on the regularity constant of E. The basic idea of

our proof for Theorem 1.1 is inspired by Pajot’s algorithm, which is itself a kind of

variant of Jones’s one in [4].

Mattila, Melnikov and Verdera used Menger curvature in |7| for proving that
the L? boundedness of the Cauchy integral operator associated to a closed 1-regular
set 2 C C implies that E is contained in a 1-regular curve. The starting point of
their work was the relation that for any three points 21, 29, 23 € C

1

C(Zl, Z92, Z3)2 =

> (200) = 20(3) (%0(2) — Z0(3))
where ¢ runs through all six permutations of {1,2,3}. This implies that the Cauchy
operator is bounded in L?(FE) if and only if there is C' < oo such that *(E N

B(z,R)) < CR for all z € E and R > 0. They showed that for some constant A
depending only on the regularity constant of F

R
(5) / / Bo(z,t, E)? dpx dt < A (ENB(z,AR))
0o JENB(zR) t

for all z € F and 0 < R < d(E)/A. The claim now follows from the result of
David and Semmes. Note that we get from (5) and (4) that a bounded 1-regular
set £ C R" lies in a rectifiable curve if ¢*(F) < oo.

Jones has later proved that for a 1-regular set £ C C

R dt
/ / Bt B2 duz & < C(E N B(2, CR))
0 JENB(zR) t

for all z € F and R > 0, where C' < oo depends only on the regularity constant of
E. For the proof see [10]. Using this we get also S(E) < Cc*(E) for some C' < oo
depending only on the regularity constant of £ whenever E is a 1-regular set in C.
We can easily construct an example which shows that this is not true for general
1-regular metric spaces. For example, let § > 0 and consider the plane set Fy =
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([0,1] x {0})U({0,1} x [0,4]) equipped with the ¢* metric. Then ¢*(Es)/3(Es) — 0
as 0 — 0.

Any Borel set £ C R" with u(F) < oo and ¢?(E) < oo is rectifiable in sense
that there are rectifiable curves I'y, 'y, ... such that

u( 2 ['jr) 0.

This was first proved by David. Léger gave in [5] a different proof which also gives
a version for higher dimensional sets in R™.
For related results see also [6].

2. Preliminaries of the proof of Theorem 1.1

We assume that E is a bounded 1-regular metric space with regularity constant
My such that ¢?(E) < oo. Let C}, Cy and § < 1 be positive constants such that
Ci(1 —9) > 4(2—6) and Cy(1 —0) > 8(1 + 2C1)(2 — §), and let 7o, 74 and Ry
be small positive constants depending on C5 and 0. Then, let r5 > 0 be a small
constant depending on Cy, §, ry, r4 and Ry. We also let r3 and R3 be large positive
constants depending on C5, § and My, and then we let ¢y < 1 be a sufficiently large
positive constant depending on C7, Cs, 6, My and r5. Finally, let ro > 0 be a small
constant depending on Ry and £y, and let r; > 0 be a small number depending on
most of the above constants. See more details later. For any x € F and n € Z we
choose a point g,(x) € B(x,r16") such that

w(B(z,n6") / IRCENAEIER

< / / (21, 22, 23)% dp? (21, 22) dpzs,
B(z,r16™) n ()

where S,(2) = {(¢,n) € (B(z,736")\B(z,720™)* : d((,n) > r40"} for z € E. We
also set

,19(‘%‘7 n) = sup { €€ [07 1] : {Zla 22, 23} € ﬁ(g) v<21, 22, 23) € W(QZ, n) } )
where
W (x,n) = { (21,22, 23) € B(x, Rsd") : d(z;,2;) > Ry0" Vi # j }

and O(e) is the set of the metric spaces E such that d(x,z) > d(z,y) + ed(y, 2)
whenever z,y,z € F such that d(x,z) = d({z,y, 2z}). We say that E' C E has an
order, if there is an injection o: £ — R such that for all z,y, z € E’ the condition
o(z) < o(y) < o(z) implies d(x, z) > max{d(x,y),d(y, z)}. In that case the function
o is called an order. If there is an order o on {x1,...,2,} C E, n € N, such that
o(z;) < o(xiyq) for i = 1,...,n — 1, we write shortly xyz5...x,. The notation
T1Z2x3|e means that z1xew3 and {x1, 9,23} € O(e).

Let g € E and let ny be the biggest integer such that £ C B(xg, ™). Set
D{° = {¢n,(x0)}. Let now n > ny and assume by induction that we have constructed
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Dy~' C E such that for any x,y € Dyt » # v, d(z,y) > 0". Let A/, C E such
that
- for any z,y € A, x #y, d(z,y) > ",
-forany x € A, y € Dy, d(z,y) > 0",
- for any o € E there exists y € A’ U Dj~! such that d(z,y) < ™.
Now #A! < 2Myd "u(E) < 2MZ6"d(E). We set A, = g,(A]) and Dy = A, U
an(Dg ™). Let A, = {7,... 2%, } such that
d (2}, D}—}) =max{d(z,D}7}) : € A, }
for k =1,...,4A,. Here and in the sequel we denote D} ' = Dy~ U {a?,... 27}
for k =1,...,#A,. By choosing 6 < 1 — 2r; we have for all n > ny
(i) for any =,y € Df, v # vy, d(x,y) > (1 — 2r)d",
(ii) for any x € F there exists y € D{ such that d(z,y) < (1 +r)d".
For m >n > ny and = € Dy~ U D¥ we denote

{Qmoqm—lo"'oqn-{-l('r) lf.CEGDg,

mn\T) = . _
q:() QmOQTn—lo"'OQn(x) 1f$€D6L 1‘

Here we interpret g, (z) = z if € D%. Note that x = ¢, () for € Dy~' N D.
We also use the convention ¢, ,(x) = x for any x.

We are going to construct a sequence (GZ)mno,ogkg# prtt of connected weighted
graphs with no cycles. We will denote by V" and E}' the sets of the vertices and
the edges of G}. For each (n, k) we will have D} C V. For all z,y € D} such that
{z,y} € E} we will have wi({z,y}) > d(z,y), where w}: E} —]0,00[ is the weight
function on the graph G}. We denote I(G}) = ) . By wy(e) and for y € D} we will
use the notations

Vitlly) ={zeWV :{y. 2} € B},

Di(y) = Vi'(y) N Dy
Each vertex in V;"\ D} will have only one neighbour. Thus the subgraph of G}
induced by D} will also be connected. We will denote this graph and the set of
its edges by 17 and F}'. For each (n,k) we will define a 1-Lipschitz surjection
i I} — Dy, where I} C [0,20(T})]. Here [(T}}) = ZeeF’? wi(e). It e € F', we
denote

Jr(e) ={(s1,89) € I} X I}' = 51 < 89, f{({51,82}) = e and I[N ]s1,s:[=0}.

Further we will define a function P*: D} — {V : V C {{z,y} : x,y e V", x £y} }
such that the following properties will be satisfied:
- Let y € D}'. If e; # ey and ey,e9 € P'(y), then e; Ney = 0. If v € V' (y),
then v € e for some e € Pl'(y). If {v1,ve} € Pl(y), then {vy,v2} C V*(y)
and vy # vs.
-#{ee PMy) : eC Di(y)} <1 forall y € D}.
- Lete € FJ'. Then1 < #J]'(e) < 2 and sy—s1 = wi(e) for all (s, s9) € J(e).
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For n > ng and k € {0,...,#A,4+1} also the following condition, called the (n, k) -
property, will be satisfied:

If y € DY, {z1, 22} € PP(y), {z1,22} C D}(y) and max{d(y, z1),d(y,z)} <

02(1 + 7“1)5”, then Qm1,n(zl)Qm,n(y)sz,n(ZQ)|50 for any m,miy, M >n—1

In Section 3 we define the graph G}~' by deforming the graph GZ:%. The main

point of the proof is to control {(G} ') —I(G}~1) by some integral estimate. For this
we need that the vertices are well chosen. Thus we at every stage n “update” the
vertices by applying ¢, to them. We do this in Section 4. In Section 5 we show that
(T3 is uniformly bounded by a constant multiple of ¢?(E) + d(E), from which we
get the final conclusion.

We define a graph G7° with 4 vertices and 3 edges as follows. Put V" =
D7 U {by, by}, where {b;,b,} N E =), and set

B = {{ano (w0), 27"}, {qng (w0), b}, {217 o} }

Further we define wy® and P by setting

Wi ({gng (0), #1°7}) = d(gng (w0), 27°7),

W ({gno (20), b1 }) = wi®({27°*", b2}) = Crd(gny (o), 27°™),
Pno(qno (20)) = {{z7°", b1 }},
Pro(a°™) = {{gno(20), b2} }.

Now

(6) I(GY°) < (14 2Cy)d(E).

We set I7° = {0, d(qn,(20), 27°"")} and define f: I — D} by setting fi"°(0) =
Gng (0) and 1 (d(qn, (o), 27°)) = 270" In the following two sections we assume

that n > ny.

3. Construction of G’Lﬁn

Let now k € {1,...,#A,} and assume by induction that we have constructed
a graph G} =} = (V" 11, E}~}) with a weight function w}~]: E}~} — ]0,00[ and a
1-Lipschitz surjection f{'—}': I~} — D}~{, where I;'"} C [O, 21(Ty—1)]. We also as-
sume that we have defined P,?ff. Diol =V :Vc{{zy}l:z,ye Vi x#y}}
such that the (n — 1,k — 1)-property and the other conditions mentioned in the
previous section are satisfied. We denote z = 27. Let y € D] such that

d(z,y) = d(z, Dy7}).
Case 1. ¥(x,n) < &.
We set Vi* ™1 = ViP5 U{a, by, by}, where by # by, {b1,b2} N (V"5 U E) = 0, and
define
Er-t =B U{{x, g}, {z, b1}, {y, b2} }
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Further we define w} ' and P! by setting

d(z,y)  fore={z,y},
U’Z—l(e) = Cld(‘ra y) for e S {{137 bl}7 {y7 b2}}7
wyl(e) foree€ BT}

and
Hy, b1}} for v = x,
PrYw) = PPt w) U{{a, by}} forv =y,
Py (v) for v € Dy \{y}.

Let t € I,?:ll such that f,?:ll (t) =y. We set
[]?71 = Jl U {t + d(w,y)} U JQ,

where J; = I;}7/ N[0,¢] and J, = (I}~ N[t,00[) + 2d(z,y), and define f7~" by
setting

() for s € Jy,

sy =<z for s =t +d(z,y),

(s —2d(x,y)) fors € Jy.
Now the (n — 1, k) -property is satisfied, I} "' C [0,2{(T}""")] and f;~! is surjective
and 1-Lipschitz.

Let (wq,wq, w3) € W(x,n) such that {wy,ws, w3} & O(gp) and let z; € B(wy,
rod") for i = 1,2,3. Denote di; = d(w;, w;) and dj; = d(z;,2;) for i = 1,2,3.
Suppose that d(z1,z3) = d({z1, 22, 23}) and di2 > do3. Then, by choosing 7y small
enough,

d/13 — d/12 < (dlg + 27‘05”) — (dlg — 27’05”) < d13 — d12 + 47"05"

d,23 - d23 — 27”0(5” - (1 — 27“0R2_1)d23
R 4 Ry + 4
< 2 é?o—i-ﬂ _ Eola + "o
R2 — 27“() R2 RQ — 2’/’0
Letting o« = <(z12923 we have
2sin ar)? 4(1 — cos® a 1 — max{e2,1/4
d(z1, 23) (2(R3 + ro)o™) ((R3 + ro)o™)
where
- €0R2 + 47”0
b R2 - 27”0 .
Using this and the regularity we get
0353"7“8’61

UG = UG = (L4 200 d(z,y) < (1+20)(1+ )" = =5
(7) 0

< (s / / / c(z1, 22, 23)° dpzy dpzy dpzs,
B(z,(Rg+r0)o™) JTi(23) J Tk (23)NT}1 (22)
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where
1 — max{e?, 1/4}
Cl =
! (Rg + 7’0)2
(5 = 3
c107p

and T}(2) = B(z,2(R3 + 10)0")\B(z, (Ry — 21()d") for z € E.
For the rest of the cases we assume that J(z,n) > &.

Case 2. There exists z € DP~{(y), n’ <n, K € {1,...,#A,,} such that ¥’ < k
iftn' =n, {y,7} € F,f,l__ll, Y= Gn-12 ), 2 = ¢u_1,n (%) and Cad (:EZ,/,{y',z’}) <
d(y',2').

We define G7~ ', P! and f' as in Case 1. Now
(8) (G = UG = (1 +2C1)d(, y).

The construction will show that {gmn(y), ¢mn(2)} € F* for all m > n.
For the rest of the cases we assume that the condition of Case 2 does not hold.

Case 3. There exists z € D}~ (y) such that d(z,z) < d(y, 2).
We set V;*! = V,*' U {x} and define
Byt = (Ep5\{y 23 U {{y o} {2} 1

Further we define w} ' by setting

Ay, 7) for ¢ = {y, 2},
wi N e) = { max {d(z, 2), wp"| ({y, 2}) —d(y,x)} for e = {z,z},
wiy (e) for e € B3 \{{y, 2}}.
Let 2,y € V;"! such that {/,2} € P~ ['(y) and {y,y'} € P (z). We set
Hy, 2}} for v =z,

(P o\ {2 21 U {7, 2}} forv=y,

(P O\{y: ') U {z,y}) forv =2

i) for v € Dy \{y. 2}.
Let (t1,t2) € J 7 ({y, 2}). We set

Iigh = AUt +wi ({05 (), 2 )} U,

where J; = I7] N [0,4] and Jo = (17 N[ta,00[) + U(GF) — I(G}Z}), and define
fﬁalz [,?761 — Dz_l by setting

() =

(s) for s € Jp,
ko (s)=4= for s =t +wi  ({fi5 (ta). 2}),

s = UGEH + UGETY)  for s € o
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If #J ' ({y,2}) =1, we put ;' = ]1?,61 and f; 7! = ,?761. Else let uq,us € ],261
such that uy — u; = wi=; ({y, 2}), ﬁal({ul,ug}) = {y,z} and I,’;glﬂ]ul,w[: 0.
We set

B = 1 o+ g ) 2} U

where J; = [,?’al N[0, u] and Jo = (" N [ug, 0of) + U(GE) — [(G}~}), and define
fi7! by setting

75(s) for s € Jp,
gy = g for s = u; + w;“l({fﬁal(ul)w})a
o (s = UG +UGTY)) for s € Ja.

Now 11 C [0,20(T{1)] and f;~! is surjective and 1-Lipschitz.

We next show that the (n — 1,k)-property is satisfied at z. Suppose that
{21,220} € P}'(2) such that {z1,25} C Dy '(2) and max{d(z,2),d(z,22)} <
Co(1+41)6" L If o & {21, 22}, then {21, 29} € P/7/'(2) and the (n — 1, k) -property
is satisfied at z by the (n — 1,k — 1) -property. Thus we may assume that z; = z,
which implies {y, 20} € P{"](2). Since d(y, z) < Ca(1 +r1)d" !, we have yzz, by
the (n — 1,k — 1) -property. By choosing

27"1
<1-—
fosl=175
(202—80)<1+T1) ™
>
fs 2 5 TS

we have {yaQm1,n('r)7Qm,n(z)7Qm2,n<Z2)} € 6(50) for any T, my, Mmsa >n— 1 Now
d(vi,v9) < Kd(vs,vy) for all vy, ve,v3,v4 € {y, 2,2, 22}, v3 # v4, where

. 1+T1
ke (it

We choose €9 > K /(K +1). Therefore, since yxz and yzz, {y, z, z, 25} has an order
by Lemma 2.2 of [3]. So we must have zzz,. Choosing m < go(1 — 0 — 2ry) the
following lemma gives that the (n — 1, k) -property is satisfied at z. Similarly we see
that (n — 1, k) is satisfied at y and z.

Lemma 3.1. Let {(,n,§,&} C E such that {¢,n,&},{C,n,&1} € O(ep).

(i) If ¢ng and d(&, &1) < eomin{d(C,n), d(n, &) + d(n,&)}, then (ns,.
(i) If ¢&n and d(&, &1) < eomin{d(&, ) + d(&1, ), d(&,n) + d(&1,m))}, then (&1,

Proof. (i) By the assumptions we have

d((? 51) + 50d(777 fl) - d(<7 77) Z d(Ca 5) - d(/f, fl) + €0d<777 51) - d(Cv 77)
> d(¢,m) +eod(n,§) — d(§,&1) + eod(n, §1) — d(¢,n)
= ¢eo(d(n,§) +d(n, &) —d(§,&) >0
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and

d(C? 51) + €0d<<7 77) o d(777 51) Z d(Ca f) + 50d(€7 77) - d(na f) - 2d(£7 51)

> eod(C,m) +d(n,§) + eod(C, ) — d(n, §) — 2d(&, &1)

= 280(1((7 77) - 2d(£7 51) > 0.

Therefore, since {(,n,&1} € O(eg), we must have (né;.
(ii)) Now the assumption gives

d(Cu 77) + 50d<§17 77) - d(<7 51)
> d(C: ’5) + EOd(€> 77) + 80d(£17 77) - d(C? 6) - d(£> 51)
= €O(d(§7 77) + d(fb 77)) - d(f,&) >0

and similarly d(¢,n) + eod((,&1) > d(&1,7). O
Since Ry <1 —2ry and dR3 > C3(1 + 1), we have
(9) G = UG <d(y, x) +d(x,2) — d(y, 2) < (1 —eo)d(y, z).

Let us now assume that there is m > n such that {{gmn(y), @mn(®)}, {@mn(z),
Gmn(2)}} N E = 0. By the construction (see also Case 4 and Section 4) this
implies that there exist y;, wy, x1, T2, W, 20 € E such that yjw iz, xows2s,

7“15”
1-9¢

n+1
max{d(z,z1),d(z,z2)} < 7“115_ 5

d(ybxl) < CQ min {d(ybwl)v d(w17$1>} )
d(xg, z9) < Coymin {d(za, w2), d(wa, 22)}

max{d(y, 1), d(z, z)} <

and
min {d(yla wl)) d<w1; l‘l), d($2, w2)7 d('l,UQ, 22)}
_ ryontt 710" r10"
S min {d(wl,wg) + ﬁ, d(wl, Z) + 1%5, d(y,wg) + 1 1_ (5} .
Denote
1
7"/ - Ed(ya ZL‘) - d05n7
1+7r 1
C{:Mg( (51<C2_80+52)_d0>’
where
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Below we will use

max %4, RQ} < (Ciz - 2r5) (1 —2ry) — dp,
re <6 ((Ciz —r5) (1 —2r) —d()) -1
and
vy > 4 (Cy — &g +§r5)(1 +71) .
R; 20{—#@%—7&

By the first part of Lemma 3.1 we have yw,;z and zwsz. Let N; be the smallest
integer such that C76™ < d(F) and assume that n > N;. Denote R’ = MZ((Cy —
€0)d(y,x) +1'). By the regularity

H (B(ZL‘, Rl)\B<x’ d(l’, Z) + T/)) 2 /,L(B(ZE, R,)) - M(B(x’ d(ZL’, Z) + T,))

> My 'R — My(d(z,2) +1") >0
and so we find wy € B(z, R)\B(z,d(z,z) +1"). Now d(21,22) > 1’ for any 21, 25 €
{y, w1, T, wq, z, w3}, 21 # zo. We may assume that d(ws,z) < d(ws, z). The other
case can be treated similarly.

Now z = ¢,(2’) for some 2’ € A!. Further by the construction there are

ng,ng € {n—1,n} such that y = ¢,,(¢/) and z = g,,(2’) for some y/, 2’ € E. Denote
B; = B(w;, r5d(y, x)) for i = 1,2,3. Now

Bi X Bj C Sn<$/) N Sn2 (y/> N Sn3 (Z/)
for 7,5 € {1,2,3}, i # j. We also have

(By x B,) U ((B,UB,) x (B;UByU Bs)) C S,(z),
(B, x B,) U((B,UB,) x (BiUByU B3)) C Sp,(y/),
(B, x By) U ((B,UB,) x (ByUByU Bs)) C Sy,,(2),
where B, = B(x,r5d(y,x)), B, = B(y,rsd(y,x)) and B, = B(z,75d(y,x)). Thus
min {2500 ) 2S00 ) 12 (5001} 2
Denote
Mgyr3(2 + 6%)6%" 2

G pr—
réd(y, x)?
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and let I' =T'y UT'y U T'3, where

r, = { (¢,n) € Su(z') + p*(Sp(2'))e(¢,n,2)* > G c(z1, 22, )% dp® (21, 20) },

Sn(z")

m:{@me&awzﬁwawxmmea/

0(2’1, z2, y)2 d/iz(zl, 22) }7
Sng W)

Hz{&mé&A@:ﬁ@AﬂMQmﬁzGé

ng (2)

c(z1, 29, 2)2 duz(zl, 29) }

If c(z,y, z) = 0, we have [(G}~ 1) —I(G}~}) = 0. Thus we may assume c(z,y, z) > 0.
Then, since (21, 22) + c(z1, 29, 23) is continuous on {(z1,22) € E? : 21 # 2 # 23 #
21} in the product topology, we have by the regularity

/ c(z1, 22, 1)* dp® (21, 22) > 0,

Sn(z’)

/ c(z1, 227y)2 dﬂ2(21722) > 0,
Sng(y,)

/ (21, 22, 2)? dp® (21, 22) > 0.
Sng(z)

Thus by the Tchebychev inequality

(1) < p(Ty) + p*(T2) + p*(Ts)

1
< 2 ((Sa(@) + 12(Sua @) + 17(S1y ()
10 1 1 \?
( ) S 5 <MOT3 _ MOTQ) (5271 + 62712 + 52713)
1 1\ 2 rad(y, x)?
_G< 0”3 Morz) ( "‘52)5 < Mg

Denote U; = {w € By : {w} x B; C I'} for i = 2,3. We next show that there exists
(u1,us,u3) € By X By X By such that (uj,us) € I' and (uq,us) € I'. Suppose this is
false. Then By = Uy U Us. Letting

p =1 (Su(a))"'G c(21, 22, 7)* dp* (21, 22)
Sn(x/)
we have
{we By : {w}xByCl'1} = {w631 : c(w, 22, 1)? proraHZQEBg}
= ﬂ {U) € By : C(UJ,ZQ,ZL’)Q Zp}a

22€B2
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which is a closed set. Similarly {w € By : {w} x B, C I';} is closed for each
i €{2,3} and j € {1,2,3}. Thus U; and U, are closed and we get

(1) 2 p*(Uz x Bs) + pi*(Us x By)
= pu(Uz)(B2) + 1(Us)(Bs)
> (u(U2) + p(Us)) min {u(Bs), M(B:s)}

. d(y, )
> p(By) min {u(By), p(By)} > 2210 T

which contradicts (10).
For any 21,20 € {y,u1,z,us, 2,us}, 21 # 29, we have d(z1,22) €]r, R], where
r=r"—2r;d(y,x) and R = R + d(z, 2) + 2r5d(y,x). Now R < Kr for

((M02 + 1)(02 — 80) + MgC'?_l + 27"5)(1 — 27"1) — Mgdo

K:
(02_1 — 27’5)(1 — 27’1) — do

Therefore, choosing €3 > (4K — 1)/(4K + 1), {y,u1,2,us, z,uz} has an order by
Lemma 2.3 of [3]. The latter part of Lemma 3.1 gives yu;z and zusz. So we have
YyuiTusz. Since

d(U3,$) Z d(wi’n .23) - TSd(ya .23) > d(ﬂ?, Z) + 7’/ - TSd(waE) > d(xa Z) 2 d(y,x),

we must have usyuizrusz or yuyrugzus. Using the assumption d(ws, ) < d(ws, 2)
and Lemma 3.1 we get uszrz. Thus we have ugyuizuqz.

Let ¢ = min{ey, e9,€3,64}, where &1 = — cos <uixug, €9 = — cos <ugyuy, €3 =
— cos <ujugz and €4 = — cos <usu;z. Then

d(y,z) > d(ug, z) — d(us,y)
> eqd(us,ur) + d(uq, 2) — d(us, y)
> ey(ead(us, y) + d(y,u1)) + d(ui, uz) + e3d(ug, 2) — d(us,y)
> eq(ead(ug, y) + d(y,ur)) + d(uy, x) + e1d(z, ug) + e3d(ug, z) — d(us, y)
> e(d(y, ur) + d(ur, 7) + d(w, uz) + d(uz, 2)) + (€2 — 1)d(uz, y)
> e(d(y, x) + d(w, 2)) + (% — 1)d(us, y).

Denote
)\1 - C('Ia Uy, u2)2d(u1a U2)2a
Ay = C(y7 U, U3)2d(ul, U3)2,
A3 = ¢(z, ul,u2)2d(u1, z)Q,
Ay = c(z, ul,u3)2d(u3, 2)2.
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Now
A< ,LL(B(:E,GZ(;:)’)UQ) / - /n(x c(21, 7, 23)° dpi® (21, z2) dpuzs,
& M(B@/,(ffléll;)f’z)(sm W) /<> /sm(y» ol 22 20)" i’ (e, 22) dpza
S BT AT gy o 57050 o2

2
N BT ST oty o 50708 00 2)

Using this we get

(G = UG

<d(y,x)+d(z,z) —d(y, z)

< (1—e)(d(y, x) + d(x,2)) + (1 — e*)d(uz, y)

< (1—e*)(d(y,r) +d(z,2) + d(us,y))

(11)
1
< Z_l max{)\l, )\27 )\37 )\4}((1(@/, ilf) + d(l’, Z) + d(u;g, y))
< Oy / / / (21, 22, 23)% dpzy dpzy dpzs,
B(z,R46™) T2(23) T2(23)\B(22,r46™)
where
(CQ — 80)(1 -+ 7’1) -+ 27"1
R4 = 5 )
T,,?(Zg) = .B(Zg7 (7“3 + Tl)(sn_l)\B(Zg, (7“2 — 7”1)(5”)
and

MyGd(us, 2)*(d(y, ) + d(z, z) + d(us, y))
4 - 20r2d(y, x)?*riom

3MTr2(2 4 62 1 d 3
= 80(1 — 2<m)r rl)éz (MQ (02 SRt ) Flmar 2T5) -
5

Case 4. d(y, z) < d(x, z) for all z € D}~ ](y).

Assume that {z1,20} € P{7(y) such that {z1,20} C D}~|(y). Now d(y,v) <
Cy(1+7)6" t for all v € D}~ (y). Thus by the (n—1, k—1) -property we have z,yz.

Since 6R3 > (1+ Cy)(1471) and Ry < 1 —2r, we have {y,z, 21,22} € O(gp). Now
d(vi,v9) < Kd(vs,vy) for all vy, ve, v3,v4 € {21, 2,y, 20}, U3 # 14, and gg > K/(K+1)
for K = max{2Cy, (1+ Cy)(1+r1)(1 —2r;)"'}. Since now zyz; and xyzy, it follows
from Lemma 2.2 of [3] that yzi2e or yzez1, which is a contradiction. Thus the
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assumption above is false and for fixed z € DZ:II (y) there exists b € Vk"__ll\Dzzll
such that {z,b} € P/ (y).
We set V;* ! = V,*' U {x} and define

Byt = (B2 \{y. 01} U {{z,w} {03}

Further we define w} ' and P! by setting

d(x,y) for e = {z,y},
wpH(e) = qwis{({y,b}) for e = {x,b},
wpy(e) for e € E;7\{{y,b}}
and
{H{y,b}} for v =z,
Py w) = ¢ (P (o\{z,0}}) U {{z,2}} forv=y,
P (v) for v € Dy~ {\{y}.
Now
(12) UG = UG = d(z,y).

Since xyz, Ry > (1 4+ Co)(1 +71)0 +7r(1 —60)7!, Ry < 1—2r (1 —4§)"" and
r < €o(l — 0 — 2rq), we have the (n — 1,k)-property at y by Lemma 3.1. The
construction will show that for each m > n there is v € D such that {v,b} € EJ’
and wi*({v,b}) = wi={ ({y,b}). We define I;'! and f{ ' as in Case 1.

4. Construction of Gy

Denote D' = {a%, 1,... ;@ pn}. We define inductively Dy~ = (D}
{ap}) U{gn(@})} for k = #A, +1,...,#Dy. Let k € {#A, +1,...,#Dj} and
assume by induction that we have constructed a graph G}~ = (V;*7', Ef~}) with
a weight function w'”!: E?~! —]0,00[ and a 1-Lipschitz surjection f;—}!': I~}
D}, where I} C [0, 20(T}"—1)]. We also assume that we have defined a functlon
P

We denote = zf. We set V"' = (V;*7"\{z}) U {gn(2)} and define

Byt = (B \{z,v} s v e VI (@)}) U {{ga(2),v} - v € VI (@)}

Further we define w%l: By~ —]0, 0o by setting

—

w,?:ll({:v,v}) + 710" for e = {q,(z),v}, where v € DZ:ll(a:),
wip'(e) = Swpti ({=,v}) for e = {g,(z), v}, where v € V;" ' (2)\E,
w1 (e) for e € B} \{{z,v} : v € V" }(x)}.
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For any v € Dy~ 1(z) let 2(v) € V"' (v) for which {z,2(v)} € P} (v). We define
P! by setting

P,:L_’ll(:c) for v = g, (),
Prl(y) = (P O\, 2(0)}}) U {{an(2), 2(v)}}  for v € D~ (),
: Priw) for v & D1\ (D7 (2)

Further we set [,’j,gl = I;'"} and define fﬁglz Iﬁgl — D! by setting

iy {0 ) =
. () i Rl (s) #

Let {y1,. -, Ym} = DZ:ll(x) andi € {1,...,m}, where m = #Dz:ll(x) Assume
by induction that we have defined a function ﬁ;_ll; [’?’;_11 — DU Let (t,t) €
Ji7 ({2, u}). We set

5 = (127, 0 [0,46]) U (15 N [tay 00]) + 7467)

and define f;';0: I}'7h — D! by setting

n=1(g) = 1?,;—11(5) for s € [1?,;_11 N[0, ],
RO ,Z;ll(s —ro") forse (I,Z;ll N [ta, oo[) + ro™.
If #J,?:ll({x,yi}) =1, we put I,’;Z.’l = I,:‘;(l) and f,?,;l = f,?;é Else let uy,us € I,:‘;(l)
such that uy — u; = wi—{ ({x, yi}), ;?z_é({uhﬂa}) = {7,y;} and _];;;ém Jur, ug[= 0.
We set

Lt = (Lo N 10, w]) U ((I7g O [ug, 0of) 4 716™)
and define f,g;l by setting

11 () = ,?Z_é(s) for s € I;‘Z_é N[0, uy],
ot ,?Z_é(s —ri0") for s e (]1?@_3 N [us, 00[) + r16™.

Denote

P = { {Ula UQ} € Plgl:ll(x) :max{d(Qn(x)a Qn,n(vl))a d(Qn(x)v Qn,n(UQ))} < 02(1 + Tl)(sn
and {vy, v} C Dg:ll (x) }

_ n—1 __ n—1 n—1 _ yn—1 n—1 _  pn—1
If P =10, weset wy " = wpo s I =L, and fi'7 = fif. From now on we

assume that {y,z} € P. Let us define w}'~" by setting

p for e = {y, ()},
wpte) =97 for e = {qn(x), 2},
wiyt(e) for e € BN\ {{y, ¢n(2)}, {qn(2), 2}},
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where
p = max {wp=| ({y, 2}) — 118", d(y. g (2 ))} ;
7 =max {w;_; ({y, 2}) + wii ({2, 2}) — p,d(gu(2), 2) } -
Let {e1,ea} = {{y, qn(2)},{qn(x),2}} and i € {1,2} and assume by induction
that we have defined a function f,c mlﬂ » ],?;HZ 1 D”_l. Let t1,15 € ]Zmlﬂ 1

such that t, —t; = wy o' (€:), fimioi({t1,t2}) = €; and [,:Lmlﬂ (Nt1, ta[= 0. We set

Lmyio = J1U s,

where J; = Igmlﬂ L N10,t1] and J = (IgmlH 1 N [te, OOD +w(e;) + t; — ta, and
define f" ! i I,’;mlﬂo — D! by setting

L (s) = fkarz 1(s) for s € Ji,
kmﬂo fk;m+z (s —wim eg) =ty + o) for s € Ja.

If there exist uq, ug € ]k “mi0 Such that u # 11, ug—uy = w}zygl( €i)s kmﬂo({ul,uQ})

= ¢; and [,?mlﬂoﬂ Jug, us] = 0, we set

Il = U s,

where J; = I,’jmﬂrlo [0,u1] and Jo = (Igmim [ug, oo[) + w,’j_l(ei) + uy — us, and
define f" ! i Lim .. — D! by setting

k,m—+1
1 (s) = fkarzO( s) for s € Jy,
m fk i, 0( U)Z 1(61') — 11+ tQ) for s € Js.
Else we pUt IlzlmlJrz = Il?m1+10 and fk m+z = I?T_n1+10
We set I} I,?m 4o and f'7 = fil e By the construction there exists

{y.2'} € P;zi( z) such that {y, 2’} C DI, qun(y) = Gun(y) and gun(2') =
qnn(2). Since 6 <1 —2r;, we have max{d(z,y’),d(z,2")} < Co(1411)0" 4 210" <
Co(1 +7r1)0" 1. Thus yq,(z)z|eo by the (n — 1,#A,) -property and we have
wi (Y, an(@)}) + 0y ({ga(2), 23) —wpZi({y, 2}) — wiZi ({2, 2})
< max{d(y, gn(v)) + d(qu(2), 2) — d(y, ¥) — d(z, 2), 0}
< d(y, 4a(2)) + d(gn(2), 2) — d(y, 2)

< (1 — o) min{d(y, gn(z)), d(gn(z), 2)}.

If ¥(gn(z),n) < 9 we get as in Case 1

wi T ({y: a(@)}) + 07 ({an(2), 2}) — iy ({y 2}) — wiZi ({z, 2}) < ho™

< Cs / / / (21, 20, 23)? dpzy dpzo dpizs,
B(gn(z),(Rs+r0)d™) J T} (23) J Ty (23)NT}} (22)

(13)

(14)
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where h = min{2ry, (1 —&0)(Co(1+71)+71)} and Cs = MZhc;'ry®. We now assume
that 9(ga(x).n) > = and there is m > n such that {gnn(y): dnn(@)}: {dma (@),
Gmn(2)}} N F = (. Denote

Oé:Mg(CQ(l—f—Tl)—f‘Tl‘i‘dl),

where d; = C;'(1—7;)—dy. Let N, be the smallest integer such that C46™2 < d(E).
By assuming n > N, and using max {r{(1 — )7, r5} < gody, max {rsd=1, Ry} <
dl —27'5, T2 S (S(dl —7'5) — T, T3 2 C§+CQ(1+7’1)+2(7”1 —|—7“5>, R3 2 C§+r1+2r5
and g5 > (4K — 1)/(4K + 1), where

Cé+02(1+T1)+’I"1+2’I"5

K =
d1—2T5 ’

we get as in Case 3

wi ™ ({ys an(2)}) +wi ™ ({an (@), 2}) — wiZ) ({y, o}) — wi ({2, 2})
< d(y, QH(x)) + d(Qﬂ(x>> Z) - d(?/? Z)

(15)
< Cs / / / c(z1, 20, 23)? dpzy dpzo dpizs,
B(gqn(z),R56™) JT2(23) JT72(23)\B(22,r46™)

where

d

C3MIr3(2 +62) (Cy + Co(l+11) + 71 + 275)°
B 80741102 '

If kK = #Dj, we now set V' = V,f’l, Ey = E}:’l, wy = wZ’l, P} = P,:L’l,
Ir = 17" and f = fi7'. Since (Co(1 +71) + 2r1)d < Cy(1 + 11), the (n,0)-
property is satisfied. Note also that {gm..(v1), gmn(v2)} € FJ* for all m > n if
{v1,v2} € Fj such that d(vq,ve) > Co(1 4 r1)d".

2
Ry =Co(1+m)+ (1 + —> 1,

Co

5. End of the proof

By iterating the above algorithm, we construct a sequence (G{}),>n, of graphs
and a sequence fi': I — D{ of 1-Lipschitz surjections such that I C [0, 2{(TF)]
for all n > ny.

Let n > ng, k € {1,...,#A,} and y € D}~|. Denote

S = (i k. A A} 9l n) > e and d(al,y) = d(a?, DI }
and further for j =0,1,2,... set
Si={ie s (1+eg) 7 'd<d(a},y) <(14+e)7d},

where d = max{d(z?,y) : i € L} < (1+7r)0" ' Let j € {0,1,2,...}. We show
that #.#; < 2. Suppose this fails and there exist iy, 149,43 € &; with 41 < iy < 3.
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Since Ry <1 —2r; and 0Rg > 2(1 + 1), we have {y, 2}, x
dy = d(z},y) for [ =1,2,3. Since g9 > 1/2,

dy + eods + eo(dy + €od3) — (dy + dy) > (269 — 1)(1 + &) ?d > 0.

Thus we have z; 2oy for some 21, 20 € {z},, 27, 2}, }. This implies d(21, 22) < d(21,y)—
god(29,y) < (1 + &9)~71d, which is a contradiction. So we have

> d(ap,y) = ZZd z,y) <221+50 :2(12—050)@

=N j=0 ic.7;

'} € O(gg). Denote

) 7,27 7,3

Let ng <n' <m, k' € {1,...,#A,}, and assume that {¢/, '} € F,?,l_’ll. Then, since
0<1-—2r,

. ?) (=50

(an’(y> ( ,)) 1—0—2n '

Suppose that Cyd(z},y") < d(y/,

(16)

) If now ' <n <m and z € A,,, we have

n—n'—1 n—n'—1
d(ijgfl> < (1 +T1)5n71 < (1 +T1)5 d(wk,,y) < (1 +T1)5 d(y 7z)

1-— 27"1 - (1 - 27"1)02
Using these estimates and (8) we get
Y. WEmTh-uEEn+ 3 > UG - uGE)
kel (y )UA,, (2"), k>K n=n'+1keA,(y)UA,(2")

< Mid (G (Y'); G (7)) < Muwg' ({@omn (Y), G (2')})
for all m > n’, where

Ap(v) ={ke{l,...,#4,} : ¥}, n) > e and d(2}, gro1,w(v)) = d(z}, D}}) }
for v € D;’gil and

4(1 4 20)(1 + 20 (1 — 8)(1 — 1) (1 147 )
026()(]_—(5—27‘1) (1 —27”1)<1—(5)

M, =

From this we get

(17) Z > (UG = UGED) < M(TEY)

n=no+1 keAl
for all m > ng, where
A ={ke{1,...,#A,} : Case 2 applies to ] at stage n }.

Let n > ng, k € {1,...,#A,} and {y,b} € E}~}, where b € V" "\D}~|.
Denote
I ={ie{k, ... #A,} : {a0,b} € B}
and further for j =0,1,2,... let

={ies : (14+e) 7 Md<d@!, D)< (1+e)7d},
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where d = max{d(z?, D}}') : i € £} < (1+1,)0""L. We show that #.#; < 2 for
all 7. Suppose that this fails and for some j there exist iy, 19,135 € &, i1 < 13 < i3,
such that d(z}, 2} ) = d(z}, D;” 1) for I = 2,3. Denote z; = 2 for [ =1,2,3 and

let zy € E such that d(zq,zq) = d(zq, DZ__ll). Now xyx; 12140 for [ =0, 1. Namely,
if this is not true for fixed [, there exists a nonempty set {yi,...,y,} C D} such

ll+2
that y,T1 117142, Ti1 21 and yeyg1241 for ¢ =1,...,p — 1. Since (1+¢&) 77 1d<
d(z1, 29) < 3(1 + e9)~7d for each distinct points z1, 2o € {0, x1, T2, T3,Y1,...,Yp} C
B(x1,2(14¢€¢)77d), 9(x1,n) > g9 and we have chosen 6 Rz > 2(1+71), Ry < 1—2r,
and

o 12(1+50)—17
12(1 + ) + 1

{z0, 1,2, 23,91, ..,Yp} has an order by Lemma 2.3 of [3|, from which we conclude

T1T141712. Since max{d(z, D;\” ) s x € Ay} = d(xy, 20) < d(29,70), there exists

z € D '\{z¢} such that d(xs,z) < d(x1,2). As above, {z¢, 1, 72,73, 2} has an

i1—1
order. Since d(x;, x,-1) = d(2f, DI'_1) for | = 1,2, 3, we must have zoz129232. From

this we get d(zs,2) > d(z2,73) + cod(x3,2) > (1 +&9)?d > d(x1,x0), which is a
contradiction. Thus we have

_ . - 2(1 4 eo)d
n n—1\ __ n n 1 —
Zd(mi,Di_l)—ZZd(agi,Dil <> 2(1+4g)Yd= —
€S Jj=0 ie.g; 7=0
Using this and (12) we get
(18) Z > (UG —UGD) < Mi(UGE) — UTE)
n=no+1 keA2

for all m > ng, where

A2 ={ke{l,...,#A,} : Case 4 applies to x} at stage n },

, 2(1—|—€0) 1+7’1
My =20 E2) () .
1T T e ( +(1—2r1)(1—5))

Since d™F! < d(E) < C16M~1 (see pages 102 and 109), we have Ny — ng <
2 —log C/logd. Using this and #A, < 2MZ6"d(E) we get

Ni—1
> #AL (1 —g)(1+1)0" " < CYd(E),
n=ng+1

where

. log C1\ 2MZ(1 — &o)(1 + 1)
Cl=1(1- .
log § )
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Thus by using (9), (16) and (11) we get

Z 3" (UG = UG < CYd(EB) + Mal(Ty)

n=no+1 keA3

o / / / c(21, 22, 23)" dpzy dpuzy dppzs,
Z Z xk,Rzl(S”) T2(23) J T2(23)\B(22,m40™)

n=N1 keA3

(19)

for all m > ng, where

A2 ={ke{l,...,#A,} : Case 3 applies to o} at stage n },
1-— 60)(1 - (5)(]_ — 7’1)
1—5—27”1 .

M2:(

Since Ny —ng < 2 — log C%/log ¢ (see page 116) and #Dj < 2M25"d(E) for
n > ng, we have

Na—1
min{2ry, 1 — g}d(E) + Y #Dy~' - hd" < CYd(E),
n=ng+2
where
, 2MZhé log C;
Cy = min{2r,1 — o} — OIngg

Let ng < n' < m and assume that b € VJ'\Dg'. For any n > n’ let kL(b) €
{1,...,#D{} be the unique index such that b € V#Zi(mzl (»))- Denote also by y,(b)

’;lhe unique vertex in Dzlgi{k}b(b%#An} for which {nn(yn (b)), b} € I (gnn (T} ). We
ave

> (i Ha @ w) v} — Wi (25 6, (D))

n>n’, kl( )>#An

< Z 7"15” = 7'15”

and
WG (G (T35 1)) b) = Wi (qn,m,@;;;,(b)), b) > Cy(1 — 2r,)0"™.

Assume now that {y, z} € F"/_1 such that {gun(y), gnw(2)} € F for all n > n'.
For z € D"A1 and n > n’ let k2( ) € {1,...,#Dg} such that gu—1,w(x) = 5,
Denote also

n(zy, ) =inf{n >n': v,(xry,29) € E and -1 (1) € Ay }
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for {x1, 20} € F;/;l,, where v, (x1, z5) is the unique vertex in V" aX{k2 (1) A} such
that {qn,n/(l?)a Qn,n’ (’Un(iﬁl, $2))} S PO (Qn,n (xl)) Now

Z wkg {qnn( ) Un(yvz)}) +wk2 ({QTLn ( ) pn(zay)})
— iz ({10 (1) 0n(y, 2)}) — Wiz ) ({10 (9), a2, 9)}))
+ Z wkz z) {ann (), vn(2,9)}) +wk2 2)({%” ((2),aly: 2)})

n=n(z,y)

- wk%(z)—l({Qn—Ln’(z)aUn(zvy)}) wk2 Z) 1({Qn ln( )7pn(ya Z)}))
< M3w6n<{Qm,n/ (y>7 Qm,n’('z)})?

where p,, (71, x2) € DZ;?(;) such that g n(pn (21, 22)) = @uuw(z1) for {1, 20} € F;A’II
and

4T1

My=——1
3 1—6+2T1

Using these estimates, (13), (14) and (15) we get

(20)
#Dy

Z > UGeyhH - uG)

n=no+1 k=#An,+1
< CYA(E) + Msl(Ty") + My (LG — I(T))

+ Cs / / / (21, 22, 23)? dpzy dpnzy dpzs
Z Z R3+T0 5") Tl Zg) Tl Z3 22)

n=no+1lzeH}

o / / / (21, 22, 23)% dpzy dpzy dpzs
Z Z (z,R56™) JT3(z3) J T3(23)\B(22,r46™)

n=Nz z€H?

for all m > ng, where

Cl(l — 27"11)< 5)7
={z€qD;™) : z,n) <eo},
HS ={z€q(Dy") : I(x,n)>e}.

M;Z
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Combining the estimates (6), (7), (17), (18), (19), and (20) we get for all m > ny

WTT) < (1420 + CY + CY)d(E) + (My + My + M3)I(T})

+ Cy Z / / / (21, 20, 23)* dpzy dpzy dpzs
B(x,R00™) J Tn(z3) Y Tn(23)\B(22,006™)

n=no+1zeD}
+ (M + M = )(UGT) = UTF™),
where
Co = max {Cs5, Cy, C5,Cs}
Ry = max{R3 + ro, R4, R5},
po = min{ Ry — 279,74},
T.(2) = B(z, R10")\B(z, p10")
for z € E, where
Ry = max{2(R3 + r0), (13 + )0 '},
p1 = min{ Ry — 2r¢,ry — 11 }.
Let n > ng, y € E and D = B(y, (Ry +1)d") N (A, UD;™"). Then
Mo ((Ro +11)8" +6"/2) > pu(B(y, (Ro +11)d" +9"/2))

" #D-5”
>ZM (x,0"/2)) > N
z€D 0

from which we get

# (B(y, Rod™) N DY) < #D < MZ (2(Ro +11) +1).
Suppose now that k1 < ko and Ty, (y) N Ty, (y) # 0. Then p;0* < Ry6%2, which gives
log Ry — log py

ko — k
2 1S —logd

Thus we have for all m > ng

Z Z / / / 0(21,22,23)2 dpzy dpzy dpzs
B(z,Ro0™) J Tn(z3) ¥ Tn(23)\B(22,000™)

n=ng+1 JUED"
/ / (21, 22, 23)° dpzy dpzy dpzs
n(23) J T (22,23)

scg/
n=ng+1

< C(’)C(’)’/ // (21, 22, 23)° dpzy dpzy dpzs
E JE J T (22,23)

= 066’6’/ c(z1,22,z3)2 d,u?’(zl,zQ 23),
T
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where C) = MZ(2(Rog +71) + 1), CJ = (log p; — log R;)/logé and
T = { (21,29, 23) € E® : d(z1, 25) < Kod(2, %) for all 4, j, k, 1 € {1,2,3}, k #1 } ,
T (20,23) ={2 € FE : (2,20,23) € T },

where

_ Rimax{2pg, p1 }
Pop1 .
By choosing the constants suitably we have M;+ M+ M3 < 1 and M|+ M} < 1.
Thus there exists a constant C' (depending on Mj) such that
20(Ty") < O((B) +d(E))

for all m > ny. We denote I,, = I and f, = fJ for n > ny. Since now I, C
[0, C((E)+d(FE))] for all n > nyg, there exists a compact set I C [0, C(c*(E)+d(FE))]
such that I,, — [ in the Kuratowski sense:

Ko

(i) If @ = limg_ ay, for some subsequence (a,, ) of a sequence (a,) such that
a, € I, for any n, then a € I.
(ii) If a € I, then there exists a sequence (a,) such that a, € I, for any n and
a=lim, . a,.
Let a € I and let (a,), be a sequence such that a,, € I, for any n and a,, — a as
n — oo. Let m > n > ng. By the construction there is b € I, such that

27“15n+1 2r15n+1
1-9 1-9

<= ) 2t <b—a, <20(TY") - UTY)) +

k=n-+1
and d(fn (D), fulan)) < rd"H(1 —6)~!. Using this we get
d(frm(am), fn(an)) < d(fm(am), fm (b)) + d(fn(b), fn(an))
< |am — an| + |an — b + 76" (1 =)
< am — an| + 2 (UTF) — U(TF)) + 3r "1 —6)7 1.

From this we see that (f.(a,)) is a Cauchy sequence in E. Thus we can define
f: I — FE, where E is the completion of F/, by setting for a € I

fla) = lim f(a)

where (a,,) is a sequence such that a,, € I, for any n and a,, — a as n — oo. Clearly
f(a) does not depend on the choice of the sequence (a,). Let a,b € I and let a,, — a
and b, — b such that a,,b, € I, for any n. Now, since f,, is 1-Lipschitz for each n,

d(f(a), f(b)) < d(f(a), fa(an)) + d(fnlan), fu(bn)) + d(fn(bn), f (D))
< d(f(a), fulan)) + lan = bu| + d(fu(bn), F(b)) = [a = D]

as n — 0o0. So f is 1-Lipschitz. It is also surjective. To check this let x € E
and r > 0. Let k > ng such that (1 + 7,)6% + ri6**1(1 — §)~' < r. Now there is
cx € I such that d(fi.(ci),z) < (1+47,)6%. By the construction we have a sequence
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(Cn)nsk such that ¢, € I, d(fu(cn), falcr)) < rd* (1 —6)7! and |coy1 — ] <
2(U(Tythy — I(TE) + r0™*Y) for any n > k. From this we see that (c,) is a Cauchy
sequence and thus there is ¢ € [0, C(c*(E) + d(E))] such that ¢, — ¢. Now ¢ € [
by (i) and d(f(c),z) < r. Since f(I) is compact, we deduce E C f(I). Finally, we
restrict f to f~'(F). The proof of Theorem 1.1 is now complete.

We actually showed that

(21) (B)<C ( /y (21, 2, 2)2 i (21, 22 25) + d(E)) |

A slight modification of the proof gives that we can take Kj in the definition of
Z as a universal constant such that (21) holds for some C' depending only on the
regularity constant of E.
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