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Abstract. We consider complex one-dimensional Bers–Maskit slices through the deformation
space of quasifuchsian groups which uniformize a pair of punctured tori. In these slices, the pleating
locus on one of the components of the convex hull boundary of the quotient three-manifold has
constant rational pleating and constant hyperbolic length. We show that the boundary of such a
slice is a Jordan curve which is cusped at a countable dense set of points. We will also show that
the slices are not vertically convex, proving the phenomenon observed numerically by Epstein,
Marden and Markovic.

1. Introduction

In recent years, there has been considerable interest in the topology of the defor-
mation spaces of Kleinian groups. In particular, the space of punctured torus groups
D , being the most basic example of such spaces, has been widely studied, and great
progress has been made. Here D = D(π1S) the set of PSL(2,C)-conjugacy classes
of discrete and faithful type-preserving PSL(2,C)-representations of the fundamen-
tal group π1S of a once-punctured torus S. The space of punctured torus groups
contains the classical and well-studied subspace QF , called the quasifuchsian space
of punctured tori, the set of ρ ∈ D for which Gρ = ρ(π1S) is a quasifuchsian group
whose conformal boundary uniformizes a pair of punctured tori. By Bers’ simul-
taneous uniformization theorem [14], QF is biholomorphic to H × H, hence we
know the topology of QF very well. Here we use the standard identification of the
Teichmüller space T (S) of punctured tori with the upper half plane H.

The identification of QF with H × H can be extended to the end invariant
map

(1.1) ν : D → H×H \∆

where H = H ∪ R, R = R ∪ {∞}, and ∆ = {(r, r) : r ∈ R} is the boundary
diagonal. The map ν associates to each representation ρ ∈ D a pair of end invariants
(ν+, ν−) which describe the asymptotic geometry of the two noncompact ends of the
truncated manifold obtained from H3/Gρ by removing a neighbourhood of the main
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cusp of the associated hyperbolic 3-manifold H3/Gρ. See [17] and the references
therein for more details.

Minsky [17] proved that the map ν is bijective, but not continuous, while the
inverse map ν−1 is continuous. Thus, the topology of D , in particular that of the
boundary of D , seems to be highly non-trivial. On the other hand, Minsky also
showed that the boundaries of the Bers slices and the Maskit slices, which are
holomorphic slices of D , are Jordan curves, which implies that the total space D
might be complicated, but if we restrict to its holomorphic sections, they are not
so wild. For more details on the topology of deformation spaces see e.g. [1], [2], [4],
[10], [15].

In this paper we consider another holomorphic slice BM c called the Bers–
Maskit slice defined as follows: For ρ ∈ QF , the boundary of the hyperbolic convex
hull ∂Cρ of the limit set Λ(Gρ) in H3 consists of two components ∂C ±

ρ facing the
ordinary set Ω(Gρ)

±. The two boundary components ∂C ±/Gρ are pleated surfaces
whose pleating loci we denote by pl±(ρ). Let α be a free generator of π1S and
suppose that α is the bending locus of ∂C ±/Gρ. We denote the hyperbolic length
of pl±(ρ) = α in ∂C ±

ρ /Gρ by lα(∂C ±/Gρ). Then we define

BM±
c = {ρ ∈ QF : pl±(ρ) = α and lα(∂C ±/Gρ) = c}.

In practice, BM c consists of the closure of BM±
c in QF . Figure 1 shows a

computer-generated image of one such slice, BM c is the region bounded by the two
cusped curves, extended periodically to an infinite strip. The real line corresponds
to Fuchsian groups, BM−

c is the part of BM c contained in the upper half plane.
The Bers–Maskit slices have been investigated by Keen and Series [7] and Mc-

Mullen [15] to prove the existence of pleating coordinates for QF and for (limit)
Bers slices for punctured tori. Epstein, Marden and Markovic [6] also considered
these slices to give a counter-example for the equivariant K = 2 conjecture.

We will show that
(i) The boundary of the Bers–Maskit slice is the disjoint union of two Jordan

arcs.
(ii) At the p/q-cusp boundary point of the Bers–Maskit slice, the complex length

function of the p/q-word is conformal.
(iii) Any cusp boundary point of the Bers–Maskit slice is an inward-pointing

cusp.
(iv) The Maskit slice and the Bers–Maskit slice are not vertically convex.

For the case of the Maskit slice, (i) was proved by Minsky [17], (ii) was shown by
Miyachi [19] and Parkkonen [23], and (iii) was proved by Miyachi [18, 19]. The
fourth claim was observed numerically for the Maskit slice in [25] and for the Bers–
Maskit slices in [6].

We follow the idea of Miyachi [18, 19] to show our results: After preparing basic
notions in section 2, we prove (iii) assuming (i) and (ii) in section 3. We prove (i)
in section 4 and (ii) in section 5. As a corollary of the third claim, we prove (iv) in
section 6.
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Figure 1. The Bers–Maskit slice BM c for c = 2 arcosh(5/4) (tr B = 5/2) and the real locus
of the trace of the word W1/3.
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2. Background and definitions

In this section we define and review briefly the basic objects which are treated
in this paper. We refer to [13, 14] for the basic definitions and the theory of Kleinian
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groups, to [9, 15, 20] for more details on the Bers–Maskit slices, to [17] for a treat-
ment of end invariants and punctured torus groups, and to [7] for a more extensive
treatment of the words Wr, r ∈ Q which are defined in this section.

2.1. The space of punctured torus groups. Let S be a once-punctured
torus, and let π1S be the fundamental group of S. A representation of π1S into
PSL(2,C) is called type-preserving if the image of the commutator of (any) free
generators of π1S is parabolic. Let R = R(π1S) denote the space of type-preserving
representations of π1S into PSL(2,C) up to conjugation by Möbius transformations.
Note that we do not require that the representations in R are faithful (i.e. injective).
Denote by D = D(π1S) the subset of R which consists of discrete and faithful
representations, and by QF the set of [ρ] ∈ D for which ρ(π1S) is a quasifuchsian
group which uniformizes a pair of punctured tori. It is well known that D is closed
and QF is open in R, see e.g. [14].

An element [ρ] ∈ D and the corresponding Kleinian group Gρ = ρ(π1S) are
both referred to as a punctured torus group. In order to simplify notation, we will
write ρ ∈ D instead of [ρ] ∈ D . To each punctured torus group ρ we associate
the pair of end invariants (ν+, ν−) which describe the asymptotic geometry of the
two noncompact ends of the associated hyperbolic 3-manifold H3/Gρ as follows: If
ρ ∈ QF , the end invariants are the Teichmüller parameters of the pair of punctured
tori which correspond to ρ. Using the standard identification of the Teichmüller
space T (S) of punctured tori with H, the pair of end invariants in this case is a
point in H×H. In general, we have a map

(2.1) ν : D → H×H \∆

where H is the upper half plane, H = H∪R, R = R∪{∞} and ∆ is the boundary
diagonal {(r, r) : r ∈ R}. The restriction of ν to QF is homeomorphic onto H×H:
ν+ is holomorphic whereas ν− is anti-holomorphic on QF . Minsky [17] proved that
the map ν is bijective, but not continuous, (see [1, 17]). On the other hand the
inverse map ν−1 is continuous. By means of this, he showed that D is the closure
of QF in R, which gives a positive answer to a conjecture of Bers [3] in the case
of punctured torus groups.

Quasifuchsian space QF contains a real 2-dimensional manifold F which con-
sists of ρ ∈ QF for which Gρ is a Fuchsian group. The image of F under the end
invariant map is equal to the diagonal {(τ, τ) : τ ∈ H}.

2.2. Complex Fenchel–Nielsen coordinates. Fix free generators g and h of
π1S. They represent simple closed curves α and β on S whose intersection number
is one. Let [ρ] ∈ R. We can choose a representative ρ = ρλ,µ for this class such that

A = ρλ,µ(g) =

(
cosh(λ/2) cosh(λ/2) + 1

cosh(λ/2)− 1 cosh(λ/2)

)
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B = ρλ,µ(h) =

(
cosh(µ/2) coth(λ/4) − sinh(µ/2)

− sinh(µ/2) cosh(µ/2) tanh(λ/4)

)
.

The parameters λ and µ are related with the geometry of the quotient 3-manifold:
λ is the complex translation length of the geodesic corresponding to A and µ is
the complex shear parameter with respect to A and B. For more details and the
definition of complex shear we refer to [21].

Kourouniotis [12] and Tan [24] showed that the map FN : QF → C2 given by
FN(ρ) = (λ(ρ), µ(ρ)) is a complex analytic embedding. This map is referred to as
the complex Fenchel–Nielsen parametrization of QF . On F , FN has real values
and it gives the classical Fenchel–Nielsen coordinates of Teichmüller space, with λ
the hyperbolic translation length of A and µ the twist parameter with respect to A
and B, see e.g. [5]. The image of FN is also studied in [20].

We will denote the restriction of λ on F (the hyperbolic length function) by lα.
For any c > 0 we can also define the earthquake path

Ec := {ρ ∈ F : lα(ρ) = c}
which is the locus of punctured tori in F on which lα is constant. This curve is
parametrized by the twist parameter µ.

2.3. Enumeration of simple closed curves. The set of free homotopy classes
of unoriented and non-boundary parallel simple closed curves on S can be naturally
identified with Q = Q ∪ {∞} satisfying the following condition: The boundary
point p/q ∈ R = ∂T (S) of the Teichmüller space T (S) = H is the point where
the hyperbolic length of the unique geodesic in the homotopy class corresponding
to p/q has shrunk to zero. We denote the unique geodesic in the homotopy class
corresponding to p/q in H3/Gρ by γp/q. For each p/q ∈ Q, we can find an explicit
word Wp/q in the marked generators 〈g, h〉 of π1(S) representing γp/q recursively as
follows:

W1/0 = W∞ = g−1 and W0/1 = W0 = h.

If a/b < c/d (with the convention 1/0 = ∞ > r for all r ∈ Q) satisfy ad− bc = −1,
we set

W(a+c)/(b+d) = Wc/dWa/b.

The construction of the words implies that for p ≥ 0, p is the number of g−1’s and q
is the number of h’s in Wp/q. For p < 0, −p is the number of g’s in the word Wp/q.

2.4. Pleating locus. We will discuss the convex hull boundary and the pleat-
ing locus. Let Ω(G) be the ordinary set (or the set of discontinuity), and Λ(G) be
the limit set of a Kleinian group G. If ρ ∈ QF , then the regular set Ω(Gρ) consists
of two invariant components Ω(Gρ)

±. Let ∂Cρ be the boundary of the hyperbolic
convex hull of Λ(Gρ) in H3. Then ∂Cρ consists of two components ∂C ±

ρ facing
Ω(Gρ)

±.
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The two connected components of ∂Cρ/Gρ are pleated surfaces in H3/Gρ. For
Gρ non-Fuchsian, the pleating loci with bending angles are measured geodesic
laminations on S. We denote these laminations by pl±(ρ), and their projective
classes by |pl±(ρ)|. Let PML(S) be the set of projective classes of measured ge-
odesic laminations on S. Then PML(S) can be naturally identified with R and
H = T (S) ∪ PML(S) is the Thurston compactification of the Teichmüller space of
once-punctured tori. Since measured geodesic laminations on S are uniquely er-
godic, we can identify GL(S), the set of geodesic laminations on S, with PML(S)
(see [9] p. 459, Section 2.2).

For ρ ∈ D in general, Ω(Gρ)
+ or Ω(Gρ)

− may not be a simply connected domain.
In this case we can consider the end invariants ν± ∈ PML(S) as follows: If Ω(Gρ)

+

is an infinite union of round disks, then Ω(Gρ)
+/Gρ is a thrice-punctured sphere,

obtained from S by deleting a simple closed geodesic γp/q. In this case Wp/q ∈ Gρ

is parabolic and we define the ending invariant ν+ = p/q. If Ω(Gρ)
+ is empty,

then we can find a sequence of simple closed geodesics {γpn/qn} in S whose geodesic
representatives in H3/Gρ are eventually contained in any neighborhoods of the end
e+, and pn/qn converges in R to a unique irrational number r. In this case we define
the ending invariant ν+ = r.

2.5. BM-slices. For any c > 0, let Vc be the subspace of C2 in complex
Fenchel–Nielsen coordinates defined by the condition λ = c (we will usually identify
Vc with C). Let

QF c = {ζ ∈ Vc : (c, ζ) ∈ FN(QF )}.
Thus, QF c corresponds to the intersection of QF with Vc. It should be remarked
that the real line of Vc is equal to the earthquake path Ec. We denote by BM c the
component of QF c which contains Fuchsian groups, and call it the Bers–Maskit-
slice or BM-slice (see [9]). Let us consider the set of ρ ∈ QF such that the pleating
locus of the convex hull boundary ∂C ±

ρ is equal to α and the hyperbolic length
of α in H3/Gρ is equal to c. Then A = ρ(g) must be purely hyperbolic (see [7]
Lemma 4.6), hence the image of this set in complex Fenchel–Nielsen coordinates is
also in Vc. We denote it by BM±

c . The basic properties of BM±
c are given by the

following theorem:

Theorem 2.1. ([9, 15]) The complement of the Fuchsian locus F in BM c

consists of two connected components BM +
c and BM−

c meeting F along the real
line corresponding to the earthquake path Ec. The slice BM c is simply connected
and invariant under the action of the Dehn twist along α. The component BM−

c

is in H while BM +
c is in the lower half plane: They are interchanged by complex

conjugation.

Parker and Parkkonen also studied BM c by the name λ-slice and proved a
similar result, Theorem 4.2 in [20]. The outside of BM c in QF c was studied by
Komori and Yamashita (see [11]). They also draw exotic pictures of QF c by means
of Jorgensen’s algorithm for discreteness of ρ ∈ R.
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2.6. End invariants and BM-slices. In sections 3 and 4 we want to control
the image of a BM-slice under the end invariant maps ν±. This can be achieved
by means of the following result of McMullen which compares the various lengths
associated with the free homotopy class of a curve α in a quasifuchsian 3-manifold:

Theorem 2.2. ([15] Corollary 3.5) Let G be a marked quasifuchsian and not
Fuchsian group whose bending locus of ∂C −/G is α. Then

lα(Ω−/G) < lα(∂C −/G) = lα(H3/G) < lα(Ω+/G).

Corollary 2.3. The restriction of the end invariant map (2.1) to BM−
c satisfies

ν+(BM−
c ) ⊂ {τ+ ∈ H : lα(τ+) > c}

and
ν−(BM−

c ) ⊂ {τ− ∈ H : lα(τ−) < c}.
2.7. Complex earthquakes. We also need McMullen’s results on complex

earthquakes which are essential for our results in section 3 and 4. For more details
we refer to [15] and the references therein.

Our definition of a complex earthquake is slightly different from the original
one: Let X be a once-punctured torus, and let L denote the closure of the lower
half plane L. When λ ∈ L the complex earthquake eqλ(X) of X along α is defined
as the composition of twisting of distance Re λ and grafting of height − Im λ. Recall
that grafting means that the surface is cut along α and a Euclidean right cylinder
of height − Im λ is inserted.

Let D(X, α) be the union of L and BM−
lα(X). The complex earthquake map

f : D(X,α) → T (S) is defined by

f(λ) =

{
eqλ(X), if λ ∈ L,

Ω+/G, if λ ∈ BM−
lα(X),

where G is the quasifuchsian group corresponding to λ.
McMullen [15] proved that the complex earthquake map f is conformal, and

that it maps L onto {Y ∈ T (S) : lα(Y ) ≤ lα(X)}. Identifying T (S) with H, this
implies that f is a conformal map from BM−

lα(X) onto {τ ∈ H : lα(τ) > lα(X)}.
Since f = ν+ on BM−

lα(X), we have the following theorem:

Theorem 2.4. (BM−
c as a parameter space of once-punctured tori) The end

invariant map ν+ : BM−
c → {τ+ ∈ H : lα(τ+) > c} is a conformal surjective map.

We should remark that the surjectivity of the above map is a key point to define
the curve σ(s) in the proof of Theorem 3.1.

3. Cusps are inward-pointing cusps

The word cusp in the title of this section refers to two a priori different objects:
On the one hand, it is customary to call a geometrically finite boundary point of a
deformation space a cusp. In a BM-slice these points coincide with the endpoints
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of rational pleating rays (see [9, 15, 20] and Section 5). These boundary points of
the deformation space correspond to Riemann surfaces which are obtained from the
surfaces represented by the interior points of the deformation space by pinching,
which produces Riemann surfaces with a number of cusps. On the other hand, if
U ⊂ C is an open set, a boundary point ζ ∈ ∂U is called an inward-pointing cusp
of U if there is a disk D = {z ∈ C : |z − z0| = |z0|} ⊂ C (tangent to the origin in
C), such that the map

fζ,θ(z) = ζ + eiθz2

is an embedding of D into U for some 0 ≥ θ ≥ 2π. The image fζ,θ(D) is a cardioid,
and its cusp is at ζ.

In this section we prove that in the boundary of a Bers–Maskit slice the first
meaning of the word cusp actually implies the second one. We follow the outline
of Miyachi’s proof of the analogous statement for the Maskit embedding in [18].
Figure 1 illustrates the fractal-like structure of the boundary of a Bers–Maskit slice.

Let r ∈ PML = R ∪ {∞}. The r-pleating ray in BM−
c is

Pr = {µ ∈ BM−
c : pl+(ρc,µ) = r}.

If r corresponds to a simple closed curve (and to a rational number in the identifica-
tion PML = R∪{∞}), we say that Pr is a rational pleating ray. On the boundary
of either half of the BM-slice, say BM−

c , for any p/q ∈ Q there is a unique non-
Fuchsian, geometrically finite boundary point µ(p/q) called the p/q-cusp, which is
the endpoint of the p/q-pleating ray.

Our first theorem is about the shape of the BM-slice at the cusp points:

Theorem 3.1. For any p/q ∈ Q, the cusp µ(p/q) at the boundary of BM−
c is

an inward-pointing cusp.

Proof. Consider the map Π: C → Vc defined by Π(t) = µ(p/q) + t2. Fix a
component of Π−1(BM−

c ) and denote it by B̃M
−
c . Note that Π(0) = µ(p/q),

and that 0 ∈ ∂B̃M
−
c . To prove the existence of a cardioid stated in the theorem,

we will show that there is a round disk B1 in B̃M
−
c whose boundary contains 0.

In order to establish this, we will find a curve σ(s) (s ∈ R) in B̃M
−
c such that

lims→±∞ σ(s) = 0 and which is sufficiently flat at 0 so that it separates a round disk
in B̃M

−
c containing 0 on the boundary, from the boundary of B̃M

−
c , see Figure 2.

To define σ(s) and check its properties, we will use the following coordinate
change of the end invariants related to p/q: Take h ∈ PSL(2,Z) satisfying h(p/q) =
∞, and let ν±[p/q] = h◦ν±. Note that h is not uniquely determined (it is determined
only up to postcomposition by a horizontal translation), but the quantity ν+[p/q]−
ν−[p/q] is well-defined.

Now we define σ(s) as follows:

(3.1) σ(s) = Π−1 ◦ ν+[p/q]−1(s + ri) (s ∈ R)
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Figure 2. The preimage Π−1BM c of BM c in C with the curve σ defined by (3.1), and the
disks B1 and −B1. In this figure we have used the slice of Figure 1 and the ‘main cusp’ p/q = 0/1
on the imaginary axis. The preimage of this cusp in Π is 0.

where ν+[p/q] and Π are only considered on BM−
c and B̃M

−
c respectively, and

r = r(c) is a function of c satisfying the condition that lα(s + ri) > c for all s ∈ R.
We can find such r since the earthquake path Ec ⊂ H is a periodic topological
horocycle tangent to R at h(1/0). In particular, it is bounded in the ν+[p/q]-
coordinate, see Corollary 2.3. Theorem 2.4 implies that Π ◦ σ(s) is contained in
BM−

c .
To prove that σ(s) converges to 0 when s → ±∞, it is enough to show that

Π ◦ σ(s) converges to µ(p/q) when s → ±∞. This follows from the next theorem
which we will prove in section 4. See also Figure 1:

Theorem 3.2. The boundary of BM c consists of two Jordan arcs.

The horizontal line s + ri (s ∈ R) in H arrives at ∞ on the boundary of
H when s → ±∞. Theorem 3.2 implies that the map ν−1

+ [p/q] extends to the
boundary. Thus, Π ◦ σ(s) converges to µ(p/q) when s → ±∞.
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It remains to consider the regularity of σ(s) at 0 ∈ ∂B̃M
−
c . Let λp/q(t) denote

the complex translation length of Wp/q(Π(t)). Note that λp/q(0) = 0, and that λp/q

extends as a holomorphic function in a neighborhood of 0 satisfying lp/q := Re λp/q >

0 on B̃M
−
c . From the equality

tr Wp/q(Π(t)) = 2 cosh(λp/q(t)/2),

we get that the derivative of tr Wp/q vanishes at µ(p/q) if and only if the derivative
of λp/q vanishes at 0. Furthermore, in section 5 we prove the following result:

Theorem 3.3. The derivative of tr Wp/q is nonzero for any p/q ∈ Q.

Thus, λp/q is conformal at 0, and the shape of the curve λp/q(σ(s)) is conformally
the same as that of σ(s). We get the smoothness of λp/q(σ(s)) (and that of σ(s) by
the above reasoning) from the following result of Minsky:

Theorem 3.4. (Pivot theorem, [17]) There are universal constants ε, c1 > 0
such that if lp/q < ε, then

dH

( 2πi

λp/q

, ν+[p/q]− ν−[p/q] + i
)

< c1,

where dH is the hyperbolic metric on H.

Note that lp/q(σ(s)) < ε for sufficiently large |s|, since σ(s) arrives at 0 when
s → ±∞ and λp/q(0) = 0. Hence, we can apply Theorem 3.4 to our curve σ(s).
Moreover, by (3.1), the curve in H defined by

(3.2) ν+[p/q](Π ◦ σ(s))− ν−[p/q](Π ◦ σ(s)) + i

can be written as
s + (r + 1)i− ν−[p/q](Π ◦ σ(s)).

Because ν−[p/q](BM−
c ) is a bounded domain in H, we can find a horizontal line

in H lying above λp/q(σ(s)) which guarantees the existence of a round ball B1 in

B̃M
−
c whose boundary contains 0 by Minsky’s pivot theorem. This concludes the

proof of Theorem 3.1. ¤

4. The boundary of BM c

In this section we will prove theorem 3.2. Since BM +
c is the image of BM−

c

under the complex conjugation, we restrict our attention only to BM−
c . See 2.5

and 2.6 for background material for this section.

4.1. The boundary in D and in Vc. The boundary of BM−
c in Vc ⊂ C2 is

naturally identified with that of FN−1(BM−
c ) in D : The complex Fenchel–Nielsen

coordinate map FN is a complex analytic embedding of the set

{ρ ∈ D : A = ρ(g) is not parabolic}
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into C2 (see the proof of proposition 2.1 in [21]), and

FN−1(BM−
c ) ⊂ {ρ ∈ D : tr ρ(g) = tr A = 2 cosh(c/2)}

with c 6= 0. Hence, to prove Theorem 3.2, it is enough to show that the boundary of
FN−1(BM−

c ) in D consists of the earthquake path Ec and a Jordan arc. In order to
simplify notation, we will write BM−

c for FN−1(BM−
c ) in the rest of this section.

4.2. The image ν(BM−
c ) as a graph in H×H. Theorem 2.4 implies that

there is a continuous function

h : {τ+ ∈ H : lα(τ+) > c} → {τ− ∈ H : lα(τ−) < c}
such that ν(BM−

c ) can be written as the graph of h:

ν(BM−
c ) = {(τ+, h(τ+)) ∈ H×H : τ+ ∈ ν+(BM−

c )}.
To prove the next proposition, we will use the following result about bending

coordinates of the limit Bers slice due to McMullen [15]: Let [ω] ∈ PML(S) = R ∪
{∞}. The subset B[ω] := ν−1({[ω]}×H) is called the limit Bers slice corresponding
to ω.

Theorem 4.1. (Coordinates of a limit Bers slice, [15]) There is a homeomor-
phism B[ω] → (R ∪ {∞} − {[ω]})×R+, given by

G 7→
(

[β],
lβ(∂C −/G)

i(β, ω)

)
,

where β is the bending lamination of ∂C −/G, lβ is the length function of β, and
i(β, ω) is the intersection number of measured laminations β and ω.

Proposition 4.2. The function h has a unique continuous extension

h : {τ+ ∈ H : lα(τ+) ≥ c} ∪R → {τ− ∈ H : lα(τ−) ≤ c}.
Proof. Let τ∞+ ∈ R. There is a sequence {τ+,n} in {τ+ ∈ H : lα(τ+) > c}

converging to τ∞+ . Since {τ− ∈ H : lα(τ−) ≤ c} ∪ {1/0} is compact, we can take
a convergent subsequence {h(τ+,nj

)} from {h(τ+,n)}. Let τ∞− be the limit of this
sequence.

First we show that τ∞− is not equal to 1/0. Suppose τ∞− = 1/0. Then the
sequence {ν−1((τ+,nj

, h(τ+,nj
))} in BM−

c converges to ν−1(τ∞+ , τ∞− ) which must be
in the closure of BM−

c because of the continuity of ν−1. Since the negative end
invariant of ν−1(τ∞+ , τ∞− ) is equal to 1/0, A is parabolic for ν−1(τ∞+ , τ∞− ). On the
other hand, tr A is continuous on R, and from the definition of BM−

c , tr A is
constant on the closure of BM−

c , which is a contradiction.
Next we show that τ∞− does not depend on the choice of convergent subsequences.

This implies that {h(τ+,n)} itself converges to τ∞− and we can define h(τ∞+ ) = τ∞− .
There are two cases to be considered: First suppose that τ∞+ is on the earthquake
path Ec. Then the end invariants of ν−1(τ∞+ , τ∞− ) are both in H, hence it must be a
quasifuchsian group. On the other hand, the condition lα(Ω+/G) = lα(∂C −/G) = c
implies that ν−1(τ∞+ , τ∞− ) is Fuchsian from Theorem 2.2 hence τ∞− = τ∞+ . Next



190 Yohei Komori and Jouni Parkkonen

suppose that τ∞+ is on the boundary R. Then ν−1(τ∞+ , τ∞− ) must be a boundary
group of BM−

c since τ∞+ ∈ R. Consider ν−1(τ∞+ , τ∞− ) as a point of the limit Bers
slice Bτ∞+ and apply Theorem 4.1, then τ∞− is uniquely determined by τ∞+ .

It is clear from the construction that the extension is a continuous function. ¤
This proposition implies that the closure ν(BM−

c ) of ν(BM−
c ) in H×H \∆

is the graph of f over {τ+ ∈ H : lα(τ+) ≥ c} ∪R, and we have the following result:

Corollary 4.3. The projection pr+ is a homeomorphism from ν(BM−
c ) onto

{τ+ ∈ H : lα(τ+) ≥ c} ∪R.

Proof of Theorem 3.2. From Corollary 4.3, we get that the boundary of ν(BM−
c )

corresponds to two Jordan arcs Ec and R under the homeomorphism pr+. The map
ν−1 is a continuous bijection from ν(BM−

c ) onto ν−1(ν(BM−
c )) containing BM−

c .
To show that the restriction of ν−1 on ν(BM−

c ) is homeomorphic, we consider the
action of the Dehn twist along α : ν(BM−

c ) is invariant and ν−1 is equivariant
under the Dehn twist along α. The quotient space of ν(BM−

c ) by this action is
homeomorphic to the quotient space of {τ+ ∈ H : lα(τ+) ≥ c} ∪ R by the action
of the translation τ+ 7→ τ+ + c. Thus, it is topologically a closed annulus, hence in
particular a compact set. Therefore ν−1 on ν(BM−

c ) is homeomorphic. ¤

5. Nonfaithful representations close to the cusps

In this section we study the representations close to the cusp for which the
element, which is hyperbolic in the interior of BM c and parabolic at the cusp is
a primitive elliptic transformation. Recall that an elliptic element is primitive if
it has minimal rotation around its axis in H3 among all elements in the group it
generates.

As in section 4, we will consider representations in BM−
c , and the corresponding

results for BM +
c follow by symmetry. Let us fix c > 0, and let µ ∈ H.

We will use the following notation: The parameter µ ∈ H corresponds to a
representation ρ, and µ∞, µn ∈ H (n ∈ N) correspond to specific representations
ρ∞, ρn defined later in this section. Furthermore, G∞ = Gρ∞ , and Gn = Gρn . A
similar convention is used for subgroups of Gn defined in the course of the proof of
Theorem 5.1.

5.1. Fuchsian subgroups. If c > 0 and µ ∈ H, then the subgroup

Γρ = ρ〈g, hg−1h−1〉 = 〈A,BA−1B−1〉
is a Fuchsian group of the second kind, and H/Γρ is a “punctured cylinder” with
boundary geodesics of equal lengths corresponding to the generators A and BA−1B−1.
For fixed c all groups Γρ = Γρc,µ are conjugates of the same group by Möbius trans-
formations. Recall that if ρ ∈ BM−

c , then the pleating locus on ∂C −/Gρ is α,
which corresponds to the generator A of Γρ.
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5.2. Koebe groups and b-groups. In the proof of Theorem 5.1, we will use
the results of [7, 22, 23] on the combinatorial structure and the deformation spaces
of terminal regular b-groups and Koebe groups of type (1,1). A Kleinian group H is
a Koebe group of type (1, 1) if its regular set consists of an invariant component ∆0

and a collection of disks ∆i, i ∈ N, such that ∆0/H is a punctured torus and the
stabilizers of the disks are Fuchsian triangle groups. Such a group H is a terminal
regular b-group if the invariant component is simply connected. See Figure 3 for
examples of limit sets of Koebe groups and b-groups.

For any cusp µ∞ ∈ ∂BM c the corresponding group G∞ is a terminal regular
b-group. There is some word Wr, r ∈ Q (see 2.3 for the definition of Wr) for
which ρ∞Wr is parabolic. In Theorem 5.1, we will show that there are unique
points µn close to µ∞ in the complement of BM c such that, for the corresponding
representation ρn, ρnWr is primitive elliptic and the corresponding Kleinian group
Gn is a Koebe group.

5.3. Circle chains. In Theorem 5.1, we use circle chains in a manner similar
to [23]: Let A and B be Möbius transformations such that A is either hyperbolic,
parabolic or a primitive elliptic of order n, and F = 〈A, BA−1B−1〉 is a Fuchsian
group which uniformizes a punctured cylinder, a thrice punctured sphere or a punc-
tured sphere with two cone points of order n on its invariant disk, according to the
type of A. Note that F is a Fuchsian group of the second kind (i.e. its limit set
is not a circle) in the first case, while in the other cases it is of the first kind. Let
Wp/q = Wp/q(A,B) be the p/q-word in the generators . A collection {δi}, i ∈ Z, of
closed, round disks δi ⊂ Ĉ is a (combinatorial) p/q-chain for the group 〈A,B〉 (with
generators A and B) if it satisfies the following conditions:

(i) δ0 is tangent to the invariant circle of F which contains Λ(F ) at the fixed
point of the parabolic element

K = W−1
r/sW

−1
p/qWr/sWp/q,

where r/s is a Farey neighbour of p/q,
(ii) Wp/qδ0 = δ0,
(iii) B(δj) = δj+p for all j = 0, . . . , q, and
(iv) A(δj) = δj+q for all j ∈ Z.

The chain is proper if
(v) the interiors of the disks δi are contained in Ω(G) for all i,
(vi) the interiors of adjacent disks δi and δi+1 intersect for all i, and
(vii) int δi ∩ int δj = ∅ for |i− j| > 1.
Note that this definition enables us to work with circle chains in quasifuchsian

groups, terminal b-groups and Koebe groups depending on whether the generator
A is hyperbolic, parabolic or primitive elliptic. The circle chain does not close up
for the quasifuchsian group, it is an infinite chain with one accumulation point for
the terminal b-group, and a finite chain consisting of n copies of the “basic piece”
for the Koebe group. See Figure 3.
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Figure 3. Limit sets of a quasifuchsian group, a terminal b-group and a Koebe group with
c = 1/2 and r = 2/5. The circle chain {δi} consists of the shaded disks and the exterior of the
biggest disk in each case.
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The existence of circle chains is closely related with the pleating structure of
∂C : As in [7] for the Maskit slice, µ ∈ Pr, r ∈ Q if and only if Gρ has an r-chain
for the generators A and B. For more details of pleating rays and related material
we refer to [7, 8, 9, 23].

Theorem 5.1. Let c > 0, r ∈ Q. Let µ∞ be the cusp at the end of the rational
pleating ray Pr ∩BM−

c . Then there is a sequence of parameters µn ∈ C \BM
−
c

and corresponding representations ρn such that
(i) ρn(Wr) is primitive elliptic of order n, and
(ii) limn→∞ µn = µ∞,
(iii) Gn = ρn(π1S) is discrete, and Ω(ρn)/Gn is the disjoint union of a punctured

torus and a 2-orbifold of signature (0, 3; n, n,∞).
Furthermore, the sequence µn is uniquely determined for n big enough.

Proof. Let us consider π1S with generators Wr = Wr(g, h) and Ur, where
Ur = Wt(g, h) is a (non-uniquely determined) element which corresponds to any
Farey neighbour t of r. There is some s ∈ Q such that Ws(Wr, Ur) = g±1, the
s-word in the generators Wr and Ur. See [16] for details on how s depends on r.

By the analyticity of the trace of Wr, there are parameters µn in any neighbour-
hood of the cusp µ∞ for which

tr ρnWr = ±2 cos π/n,

where the sign is the same as for the cusp parameter µ∞. In other words, ρnWr is a
primitive elliptic transformation of order n. For parameters µ ∈ Pr, the subgroup

Φρ = ρ〈Wr, U
−1
r W−1

r Ur〉
is a Fuchsian group of the second kind, Φ∞ = Φρ∞ is a torsion-free triangle group,
and Φn = Φρn is a triangle group of signature (n, n,∞) for n ∈ Z, n ≥ 3.

Let
Vr = {µ ∈ Vc : tr ρWr ∈ R}

denote the real locus of Wr in C. Recall that Pr ⊂ Vr ∩BM−
c . Assume µ ∈ Vr.

The fact that ∂C −
ρ is pleated along the orbit of the axis of A in H3 for µ ∈ BM−

c

implies that there is a proper combinatorial s-chain {δj,µ}j∈Z in Ω(Gρ) with respect
to the generators ρc,µWr and ρc,µUr, where the disks δj,µ are stabilized by conjugates
of the Fuchsian group Γρ of the second kind, see 5.1. Recall that all such groups
with equal values of c are conjugate in PSL(2,C).

The cusp group G∞ is a terminal regular b-group of the type treated in [7].
The circle chain {δi} in the invariant component Ω0(G∞) is proper, and the closures
of any two disks the chain are disjoint unless they are adjacent in the chain. If
s = N/M , with N, M ∈ Z, then

δi+kN = W k
r (δi)

for all k ∈ Z. Thus, it is enough to consider the perturbation of a finite collection of
circles to understand the behaviour of the chain {δi,µ} when the parameter µ varies.
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The continuity of the circles in the parameter µ, along with the fact that ρnWr is a
primitive elliptic transformation, implies that for big enough n the group Gn has a
finite proper combinatorial s-chain {δj,n}j∈Z with respect to ρnWr and ρnUr. This
chain consists of n copies of the “basic chain” δ1,n, δ2,n, . . . , δN,n. See [23] Section 9
for more details. In [23] the same situation is treated in the case of the Maskit
embedding, which corresponds to c = 0, and the subgroup corresponding to Γρ is
the triangle group of signature (∞,∞,∞).

The facts that

(5.1) Gn = Φn ∗ρn(Ur)

i.e. that Gn is the HNN extension of of the triangle group Φn of signature (n, n,∞)
by the element ρn(Ur), and that Gn is a discrete group follow using Maskit’s second
combination theorem [13, VII.E.5]: Let us begin by constructing a topological disc
D0 for the cusp group G∞, which is precisely invariant under ρ∞Wr in Φn and such
that the disc ρ∞U−1

r (Ĉ \D0) is precisely invariant under ρ∞(U−1
r W−1

r Ur), and the
closures of D0 and ρ∞U−1

r (Ĉ\D0) are disjoint. This can be done by a modification of
Wright’s method for groups where ρg is parabolic as in [25], or by the following non-
constructive argument: Let γ be a simple closed geodesic on the punctured torus
Ω(G∞)/G∞ in the free homotopy class determined by Wr. Let γ̃ be the closure of
the lift of γ to the invariant component of G∞ which is invariant under ρ∞Wr. Let
D0 be the component of Ĉ \ γ̃ which does not contain any points of the limit set of
the triangle group Γr,µ∞ . By construction, γ̃ ∩ g(γ̃) = ∅ for all g ∈ G∞ \ 〈ρ∞Wr〉.

Let n be big enough so that Gn has a proper finite s-chain as constructed
above. By continuity of the circles δi,µ in µ, the circle δi,n is very close to δi for all
i ∈ {1, 2, . . . , N}. Thus, we can assume

γ̃ ∩ (
δ1 ∪ δ2 ∪ · · · ∪ δN

) ⊂ γ̃ ∩ (
δ0,n ∪ δ1,n ∪ · · · ∪ δN,n ∪ δN+1,n

)

Pasting together n copies of this arc with small adjustments in the ρnWr trans-
lates of δ0,µn produces a loop γ̃n which is precisely invariant under 〈ρnWr〉 in Φn, and
satisfies ρnUr(γ̃n)∩γ̃n = ∅. The loop γ̃n bounds a topological disk D0,n which satisfies
the conditions of Maskit’s second combination theorem. This implies discreteness
and the group theoretical structure (5.1). The groups Gn are Koebe groups, which
have an infinitely connected invariant component, see [22].

It remains to prove the uniqueness of the “elliptic values”. This follows from the
existence of pleating coordinates for the deformation spaces of Koebe groups proved
in [22]: Assume there are two parameters tn and t′n arbitrarily close to the cusp
which satisfy the condition (i) in the statement of this theorem. We can assume
the parameters are in the neighbourhood where (i) and (iii) hold for tn and t′n. The
convex hulls are pleated along the image of g in the groups. Thus, ρc,tn and ρc,t′n)
are both determined by c, which is the translation length of of both ρc,tn(g) and
ρc,t′(n)(g). This implies tn = t′n, see [22] Section 3. ¤
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Proof of Theorem 3.3. Theorem 5.1 implies that close to the cusp there is only
one parameter for which tr Wr = ±2 cos(π/n) for n big enough. The holomorphicity
of µ 7→ tr Wr implies there is no critical point. ¤

6. The slices are not vertically convex

In this section we show that the Maskit slice and the Bers–Maskit slices are not
vertically convex, i.e. that there are vertical lines in parameter space such that the
intersection of such a line with M or BM c is not connected. This phenomenon was
observed experimentally for the Maskit slice by Wright [25], and for the Bers–Maskit
slices it was pointed out by Epstein, Marden and Markovic [6].

It is easy to check that the intersection of a vertical line through a cusp of M
with integer or half-integer index is connected. We will show that this is not true
in general for other indices. To be more precise, we show that there are points close
to the cusps at the ends of the −1/3-rays in M and BM c, c > 0, which make it
impossible for these slices to be vertically convex.

The proof is based on the results of section 3 and the following completely
elementary observation: Let C be the interior of the standard cardioid defined in
polar coordinates by the equation

r = 2(1 + cos φ).

One sees from the equation that any line through the origin, except the horizontal
one, intersects ∂C in three points. Thus, the intersection of this line, and of nearby
parallel lines to one side of it, with C is not connected. If a scaled and rotated copy
of C is embedded in one of our slices such that the origin is mapped to a cusp and
the axis of symmetry of the image is not vertical, then this observation implies that
the slice is not vertically convex.

The case of the Maskit slice can be treated by a relatively simple calculation,
whereas the Bers–Maskit slices require the manipulation of hyperbolic functions.
However, even these expressions simplify sufficiently to be manageable explicitly.
We will study the real locus of the transformation

W−1/3 = B2AB.

For computations it is convenient to replace W−1/3 by a conjugate transformation
B3A whose real locus is identical. Note that the notation here differs slightly from
section 5 where the words Wr were elements of π1S.

The trace of W−1/3 can be computed by finding the expression of W−1/3 from
the generators, or by using the relation

(6.1) tr MN + tr MN−1 = tr M tr N (∀M, N ∈ SL(2,C))

which implies

(6.2) tr W−1/3 = (tr2 B − 2) tr AB − tr AB−1.

Proposition 6.1. The Maskit slice is not vertically convex.
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Proof. It follows from Theorem 2 of [18] (this is the analog of our Theorem
3.1) that there is an embedded cardioid in M at the cusp which is symmetric with
respect to reflection in the tangent direction of the pleating ray at the cusp. If the
tangent direction of the pleating ray at the cusp is not vertical, there is a point z in
the lower half of the cardioid such that the intersection of the vertical line through
z and M has at least two components. We will show that the pleating ray P−1/3

does not have a vertical tangent at the cusp µ−1/3.
The trace of the transformation which defines this cusp is

tr W−1/3 = i(µ3 + 2µ2 + 3µ + 2).

Let µ = x + iy. The real locus of W−1/3 is determined by the equation

f(x, y) = 2 + 3x + 2x2 + x3 − 2y2 − 3xy2 = 0.

This curve has vertical tangent only at points where

∂yf(x, y) = −2y(2 + 3x) = 0.

It is easy to check that this happens only at the point µ = −1 which is outside M .
Thus, the cusp cardioid at µ−1/3 is tilted. The claim now follows from the above
observations on cardioids. ¤

A perturbation argument using the convergence of the Bers–Maskit slices to the
Maskit slice and the continuity of pleating rays would give the nonconvexity of the
Bers–Maskit slices for small c. However, the following result shows that the result
holds for all c > 0.

Proposition 6.2. The Bers–Maskit slice BM c is not vertically convex for any
c > 0.

Proof. We will follow the same method of proof as in Proposition 6.1. Let us
consider the cusp µ−1/3 ∈ ∂BM−

c . Using (6.2) or a direct computation (with the
aid of symbolic computation software such as Mathematica) we get an expression
for the trace in terms of the parameters µ and c (in the following formulas we denote
hyperbolic cosine, sine and tangent by ch and sh and th to make the formulas more
compact):

2 sh3 c
2

ch c
2

tr W−1/3 =

2 ch
c− 3 µ

2
+ 8 ch

c− µ

2
+ ch

3 (c− µ)

2
+ 4 ch

c + µ

2
+ ch

c + 3 µ

2
.

Let µ = x + iy. A calculation (again using appropriate software) shows that the
imaginary part of tr W−1/3 is equal to

2 sin y
2

th3 c
2

(
sh

3x− c

2
+

(
3 sh x

2
− ch x

2
th c

2

)

ch c
2

− 2 cos y sh
c− 3x

2

)
.
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The real locus of W−1/3 outside the locus y = 0 is therefore determined by the
equation

(6.3) sh
3x− c

2
+

(
3 sh x

2
− ch x

2
th c

2

)

ch c
2

− 2 cos y sh
c− 3x

2
= 0.

The dependence of the real locus on the parameter y is surprisingly simple! As in
Proposition 6.1 it is enough to show that the common zeros of (6.3) and its partial
derivative with respect to y,

(6.4) 2 sin y sh
c− 3x

2
= 0

do not contain a point of the pleating ray P−1/3 such that y 6= 0.
Suppose that P−1/3 has a vertical tangent vector at a point (x, y) with y 6= 0.

Then (6.4) implies x = c/3. Now, the value of the left hand side of (6.3) is

8 sh3(c/6)

ch(c/6)(2 ch(c/3)− 1)2
,

which is readily seen to be positive for all c > 0. Thus, the pleating ray does not
have a vertical tangent outside the Fuchsian locus {y = 0}. This implies the claim.

¤
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