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Abstract. Using the fact that a manifold can be identified with the quotient of its univer-
sal cover by its fundamental group, we show that weakly coupled expanding maps on compact
manifolds have an SRB-measure.

1. Introduction

There has been some interest in the class of infinite dimensional dynamical
systems called coupled map lattices. This class of discrete time systems (M,T )
was introduced by Kaneko (see [K] and references therein). The phase space
M =

∏
i∈L Mi is the product of manifolds (or topological spaces) Mi over a

countable set L and the dynamics is given by the map T = A◦F : M → M , where
F is the uncoupled map, that is, the product of maps Fi: Mi → Mi , and A is
the coupling. These systems are used as discretizations of some partial differential
equations and also directly as models of many physical systems. Mathematically
these systems are interesting since they are in some sense quite simple and yet
infinite dimensional. So they are nice objects to study when we want to know which
results of the large theory of finite dimensional dynamical systems can be extended
to infinite dimensional ones. Especially, they are good systems for finding out if
there are some interesting phenomena which are genuinely of infinite dimensional
nature.

It is well known in the ergodic theory of finite dimensional dynamical sys-
tems that an expanding C1+δ -map F on a closed compact manifold M has the
SRB-measure (for Sinai, Ruelle, and Bowen), that is, a unique F -invariant Borel
probability measure which is absolutely continuous with respect to the Lebesgue
measure. Here C1+δ means differentiable maps whose derivatives are Hölder con-
tinuous with exponent δ . The same is true of transitive Anosov diffeomorphisms
except that the absolute continuity is defined on unstable manifolds. In the ex-
panding case the SRB-measure is also mixing (in fact exact) and the Lebesgue
measure converges strongly to it under the iteration of F (see for example [M,
Chapter III]).
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In coupled map lattices it is not natural to study measures which are abso-
lutely continuous with respect to the product of the Lebesgue measures, since the
“natural” measures are most probably singular with respect to it. (Consider for
example an uncoupled map which is the product of a map F , whose SRB-measure
is not the Lebesgue measure.) Instead, invariant measures have been looked for
whose projections onto finite subsets, that is, onto sets

∏
i∈Λ Mi , where Λ ⊂ L is

finite, are absolutely continuous with respect to the Lebesgue measure. First exis-
tence results for this kind of measures are due to Bunimovich and Sinai [BS], who
studied expanding C1+δ -maps on the unit interval coupled with a small near-
est neighbour coupling over one dimensional lattice Z . In [BK] Bricmont and
Kupiainen proved that expanding C1+δ circle maps, which are weakly coupled
with an exponentially decreasing coupling over d -dimensional lattice Zd , have an
SRB-measure µ . (They define an SRB-measure to be a measure with properties
described above.) Furthermore, they prove that µ is exponentially mixing and a
class of so called regular measures converge weakly* to µ under the iteration of
the dynamics. In [J] we studied real analytic circle maps with a small mean field
coupling and showed that these a priori finite dimensional systems have an infinite
dimensional limit. This was done by showing that the SRB-measures converge
weakly* to a product measure as the dimension tends to infinity. We called the
limit measure also an SRB-measure.

The purpose of this note is to extend the results of [BK] and [J] to the case
where the circle is replaced by a compact manifold M without a boundary. The
basic observation is that a manifold M can be identified with the quotient of its
universal cover by the fundamental group π1(M). This allows us to set up the
framework of both [BK] and [J], and thus their proofs can be extended to this
general case. For the precise formulations of these results see Theorem 2 and
Theorem 3.

2. The main observation

We use the following definitions and notation. The tangent space of a (finite
dimensional) manifold M at a point m ∈ M is denoted by TmM . (We assume
a manifold to be connected.) A differentiable map F : M → M is expanding if
there exists λ > 1 and a norm ‖ · ‖ induced by some Riemannian metric such
that ‖DF (m)v‖ > λ‖v‖ for all m ∈ M and v ∈ TmM \ {0} , where DF is
the derivative (or tangent map) of F . Let N be the universal cover of M and
p: N →M the projection. A lift of an object O of M (object=path, map, . . .) is
denoted by Ô . A covering domain D is a closed, connected, and simply connected
subset of N such that p(D) = M and the restriction of p to the interior of D
is an injection. The neutral element of the fundamental group of M , denoted by
π1(M), is called e . The natural action of π1(M) on N is denoted by τ , or by
τ g , if an element g ∈ π1(M) is given (see [Ma, p. 133]).

Now we are ready to formulate the main lemma of this note.
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Lemma 1. Let M be a compact differentiable (at least C1 ) Riemannian
manifold without a boundary and F : M → M expanding. Then there exists a
covering domain D and a finite set G ⊂ π1(M) such that e ∈ G and

F̂−1(x) =
⋃

g∈G

(F̂ )−1
(
τ g(x)

)

for all x ∈ D .

Proof. It is a simple exercise to show that the universal cover N has a unique
differentiable structure such that N , the projection p , and the action τ g for all
g ∈ π1(M) are as smooth as M . Then any lift F̂ of F is expanding in the pull
back metric of the chosen metric on M . According to [S, Lemma 1], F̂ is also
a diffeomorphism. Let x0 be the unique fixed point of a chosen lift F̂ (see [S,
Theorem 1]) and D 
 x0 a covering domain. According to [Ma, Lemma 8.1,
p. 136], M is homeomorphic to N/π1(M), where the quotient is taken with respect
to the natural action τ . Let x ∈ N and g ∈ π1(M). Then there exists g′ ∈ π1(M)
such that F̂

(
τ g(x)

)
= τ g′(

F̂ (x)
)
. Since π1(M) acts properly discontinuously on

N , this g′ is unique and independent of x in a small neighbourhood of x , and thus
in N (N is connected). In this way we clearly obtain a subgroup G′ of π1(M).
Since F is a covering map (see [S, Lemma 1]) of finite number of sheets (M is
compact), the quotient group π1(M)/G′ is finite. Now pick up one representative
for each element of π1(M)/G′ to form a set G such that

⋃
g∈G τ g(D) is a covering

domain for G′ (to be more precise, for p′: N → N/G′ ). Then for all x ∈ D , we
have that the lift of the operation of taking the preimages F−1

(
p(x)

)
is

F̂−1(x) =
⋃

g∈G

(F̂ )−1
(
τ g(x)

)
.

Using the fact that under the assumptions of Lemma 1 the universal cover is
diffeomorphic to Rn (see [S, Theorem 1]), where n is the dimension of M , we are
ready to set up the framework of [BK].

Let M , D , and F be as in Lemma 1 such that M is at least C1+δ and the Ja-
cobian of F (denoted by JacF ) is Hölder continuous (we use on M the canonical
volume form given by the metric and after normalization to a probability measure,
it is called the Lebesgue measure both on M and on the covering domain D).
Further, let d ≥ 1 be an integer, M = MZd

equipped with the product topology,
and let T = A ◦ F : M → M , where F is the product of F ’s. Assume that A
is a small perturbation of the identity in the following sense. Let Ai be the i :th
component of A and Âi its lift for all i ∈ Zd such that Â(x0) ∈ DZd

, where x0 is
the constant “sequence” of the fixed point x0 of the chosen lift F̂ . We assume that
Âi is C1 as a function of xj and that it commutes with τ g for all g ∈ π1(M) and
for all i, j ∈ Zd , where xj ∈ Rn belongs to the j :th component of (Rn)Z

d

=: M̂ .
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(Bricmont and Kupiainen proved the commutativity. Their proof does not work
here, because τ does not necessarily commute with the translations of Rn . How-
ever, since π1(M) acts properly discontinuously, this assumption means only that
A is a small perturbation of the identity as a continuous function.) Let DjÂi

denote the derivative of Âi considered as a function from the j :th component
Rn to the i :th component Rn . Let | · | be the maximum metric on Zd , d( · , · )
be the distance in Rn induced by the Riemannian metric and ‖ · ‖ be the norm
induced by the same metric (we use the canonical identification of the tangent
spaces TxRn and TyRn ). We further assume that

sup
x∈M̂

‖DjÂi(x) − δij Id ‖ ≤ εe−β|i−j|

and
‖DjÂi(x) −DjÂi(y)‖ ≤ ε

∑
k∈Zd

e−β(|i−j|+|i−k|)d(xk, yk)δ

for some ε, β, δ > 0. The coupling A is also supposed to be translation invariant
(by Zd ) although this is not necessary (see [BK]). We adopt still a few definitions
from [BK]. Recall that a Borel probability measure µ on M is called an SRB-
measure, if µ is T -invariant and the projection of µ onto the set MΛ is absolutely
continuous with respect to the Lebesgue measure for all finite Λ ⊂ Zd . The space
of real valued Hölder continuous functions on MΛ , Λ ⊂ Zd , equipped with the
norm

‖G‖δ := ‖G‖∞ + sup
x �=y∈MΛ

|G(x) −G(y)|∑
k∈Λ d(xk , yk)δ

is denoted by C δ(MΛ). A Borel probability measure µ on M is called regular, if
for all finite Λ ⊂ Zd its projection µΛ onto the set MΛ is absolutely continuous
with respect to the Lebesgue measure and log hΛ ∈ C δ(MΛ), where hΛ is the
Radon–Nikodym derivative of µΛ with respect to the Lebesgue measure.

Now we are ready to state our main result.

Theorem 2. Let F be an expanding C1+δ -map, A satisfy the assumptions
above (described by Â), and T = A ◦F . Then there exists ε0 > 0 such that for
ε < ε0 , T has an SRB-measure µ . Furthermore, µ is invariant and exponentially
mixing under the space-time translations generated by T and the generators of
Zd : there exist m > 0 and C < ∞ such that for all finite B,D ⊂ Zd and for all
G ∈ L∞(MB ) and H ∈ C δ(MD)∣∣∣∣

∫
G ◦ T tH dµ−

∫
Gdµ

∫
H dµ

∣∣∣∣ ≤ C‖G‖∞‖H‖δe
−m(t+dist(B,D)),

where dist(B,D) is the distance between B and D and C depends on the diam-
eters of B and D . Finally, any regular measure ν converges weakly* to µ under
the iteration of T , that is, w- limt→∞(T t)∗ν = µ .
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Proof. The proof is the same as the proof of [BK, Theorem 3] with obvious
changes in notation. We repeat however the main steps here for the sake of easier
reading.

First one defines finite dimensional approximations AΛ (and TΛ ) by fixing
some element in MZd\Λ . Then one notices that the Perron–Frobenius operator
P̂Λ for T̂Λ can be written as

P̂Λh(x) = Jac Â−1
Λ (x)

∑
g∈GΛ

h
(
ψΛg(x)

)
∏

i∈Λ Jac F̂
(
ψΛg(x)i

) ,

where ψΛg(x)i = (F̂ )−1
(
τ gi

(
Â−1

Λ (x)i

))
and g = (gi)i∈Λ with gi ∈ G for all

i ∈ Λ. Letting ΛN = {0, 1, . . . , N} × Λ for all N ∈ N , Ω(0,i) = D for all
i ∈ Zd , and Ω(t,i) = G for all t ∈ N \ {0} and i ∈ Zd , one defines the spaces
ΩΛN =

∏
(t,i)∈ΛN

Ω(t,i) .
Now one starts to iterate the constant function 1 by the Perron–Frobenius

operator P̂Λ and writes the result in the form

(P̂N
Λ 1)(x) =

∑
g1,...,gN∈GΛ

e−HΛN
(s),

where s = (x, g1, . . . , gN ).
As the notation suggests, the next step is to find interactions ΦΛN on ΩΛN

such that HΛN are their Hamiltonians, and to prove that the interactions ΦΛN

converge to an interaction Φ on ΩN×Zd with suitable properties. In this case
suitable means that Φ can be written as Φ = Φ0+Φ1 , where Φ0 is one dimensional
(in the direction determined by N) finite range interaction and Φ1 is small and
exponentially decreasing with the diameter, that is,

∑
X�0 e

β diam(X)‖Φ1
X‖∞ ≤ δ

for some β > 0 and for some small δ ≥ 0. The interactions ΦΛN can be found by
a special telescope construction (see [BK, formula (18)]).

Finally, using the partial polymer expansion developed in [BK], one can prove
the uniqueness of the Gibbs state for Φ and the exponential decay of correlations
(and thus the desired results for the projection of the Gibbs state onto the time
level zero).

Next we recall some definitions from [J]. Our phase space is Mm for some
positive integer m , where M is a compact real analytic Riemannian manifold
without a boundary. Let F : M → M be expanding and real analytic. A mean
field coupling is a global coupling such that Â(x) = x + b(x), where b can be
localized as

bi(x) =
∑

X⊂{1,...,m}
bXi (xX ) +

∑
X⊂{1,...,m}

i∈X

b̃Xi (xX )
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for all x ∈ (Rn)m , where bXi and b̃Xi are real analytic and invariant under the
action of π1(M) in all their arguments for all i ∈ {1, . . . ,m} and X ⊂ {1, . . . ,m} .
Here xX means the restriction of x to (Rn)X . Further, we assume that

sup
Im z<ρ

d(bXi (z), zi) ≤ (|X| − 1)!
( ε

m

)|X|

and

sup
Im z<ρ

d(b̃Xi (z), zi) ≤ (|X| − 1)!
( ε

m

)|X|−1

ε

for some ε ≥ 0 and ρ > 0. Here |X| means the number of the elements in
X and Im z < ρ means that the distance of zi from Rn is less than ρ for all
i ∈ {1, . . . ,m} .

Theorem 3. Let T = A◦F : Mm → Mm , where M , F , and A are as above.
Then there exists ε0(ρ) > 0 such that for ε < ε0 there is a unique T -invariant
Borel probability measure µm which is absolutely continuous with respect to the
Lebesgue measure and it is exponentially mixing, that is, there exists θ < 1 such
that ∣∣∣∣

∫
G ◦ T tH dµm −

∫
Gdµm

∫
H dµm

∣∣∣∣ ≤ C‖G‖∞‖H‖∞θt

for all G ∈ C(MB) and for all real analytic H on MD , where C depends on |B|
and |D| . Furthermore, for all G ∈ C(MB) and H ∈ C(MD) such that B∩D = ∅
we have that ∣∣∣∣

∫
GH dµm −

∫
Gdµm

∫
H dµm

∣∣∣∣ ≤ C

m
‖G‖∞‖H‖∞

and all absolutely continuous measures with real analytic Radon–Nikodym deriva-
tives converge strongly to µm under the iteration of T . Finally, the measures µm

converge weakly* to a product measure as the dimension m tends to infinity.

Proof. Essentially the same as in [J] except that we have to define the re-
coupling by x + λ

(
τ g(x) − x

)
(see [J, Chapter 3]). This causes one extra step

into the tree construction (before [J, Lemma 3.4]), that is, we have new kind of
vertices which are due to the branches growing from apples. However, these can
be handled similarly as circle vertices in [J, formula (6)], and we have to replace
3
√
ε by 6

√
ε in the proof of [J, Lemma 3.4].

The basic idea of the proof is the same as for Theorem 2, except that now
Φ1 is small in the stronger sense, that is,

∑
X�0 e

β|X|‖Φ1
X‖∞ ≤ δ for some mod-

erately big β . Furthermore, one has to use the whole polymer expansion, whose
convergence is proved in [J].
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Remark 4. We do not know whether we can consider hyperbolic maps in the
same way. In the finite dimensional case the situation of Anosov diffeomorphisms
is reduced to the expanding case (see for example [M, Chapter III]), but the result
is a disconnected and non-compact manifold. However, similar results for weakly
coupled Anasov diffeomorphisms can be proved using different methods (see [JP]).
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