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Suppose n is a positive integer greater than unity and F,, (x) is the n-th cyclo-
tomic polynomial. Let A, be the largest absolute value of any coefficient of
F,(x), let B,, be the maximum value taken on by F, (x) on the interval [0, 1],
and let C,, be the maximum value taken on by F,(x) on the disc |[z] < 1. In a
previous paper (Zbl 038.01004) the author has shown that there is a positive
constant ¢ such that

C,, > expexp{clogn/loglogn}

for infinitely many values of n. Since A,, < C,, < nA,, this is equivalent to the
corresponding assertion for A4,,.

In the present paper the author gives a simpler proof of the more specific
assertion that

(*) B,, > expexp{clognloglogn}

for infinitely many values of n, where c is a suitably chosen positive number.
The values of n considered are products of a large number of very nearly equal
primes and for these values of n the author investigates F), (z) at a carefully
chosen value of z slightly less than 1 — n~/2. (Since F,(0) = F,(1) = 1if n
has more than one prime factor, the maximum value of F,(z) on [0, 1] occurs
at an interior point of the interval.) The argument requires only elementary
results on the distribution of prime numbers. Although the author does not
calculate ¢ explicitly, his proof will give (*) for any c less than % log2, and a
slight modification of the argument will give (*) for any c less than % log 2. The
author believes that perhaps (*) holds for any c less than log 2, but that the
present method of proof is not strong enough to give such a result. On the
other hand, this would be as far as one could go, since, as the reviewer has
remarked (cf. Zbl 035.31102), it is almost immediate that if € > 0, then

B, < C,, <nA, <expexp{(l+¢)(log2)logn/loglogn}

for all large n.
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