Zbl 081.01703

Erdős, Pál

On the growth of the cyclotomic polynomial in the interval (0,1). (In English) **Proc. Glasg. Math. Assoc. 3, 102-104 (1957).**

Suppose n is a positive integer greater than unity and $F_n(x)$ is the n-th cyclotomic polynomial. Let A_n be the largest absolute value of any coefficient of $F_n(x)$, let B_n be the maximum value taken on by $F_n(x)$ on the interval [0, 1], and let C_n be the maximum value taken on by $F_n(x)$ on the disc $|x| \leq 1$. In a previous paper (Zbl 038.01004) the author has shown that there is a positive constant c such that

 $C_n > \exp \exp\{c \log n / \log \log n\}$

for infinitely many values of n. Since $A_n < C_n \leq nA_n$, this is equivalent to the corresponding assertion for A_n .

In the present paper the author gives a simpler proof of the more specific assertion that

(*)
$$B_n > \exp \exp\{c \log n \log \log n\}$$

for infinitely many values of n, where c is a suitably chosen positive number. The values of n considered are products of a large number of very nearly equal primes and for these values of n the author investigates $F_n(x)$ at a carefully chosen value of x slightly less than $1 - n^{-1/2}$. (Since $F_n(0) = F_n(1) = 1$ if nhas more than one prime factor, the maximum value of $F_n(x)$ on [0,1] occurs at an interior point of the interval.) The argument requires only elementary results on the distribution of prime numbers. Although the author does not calculate c explicitly, his proof will give (*) for any c less than $\frac{1}{4} \log 2$, and a slight modification of the argument will give (*) for any c less than $\frac{2}{7} \log 2$. The author believes that perhaps (*) holds for any c less than $\log 2$, but that the present method of proof is not strong enough to give such a result. On the other hand, this would be as far as one could go, since, as the reviewer has remarked (cf. Zbl 035.31102), it is almost immediate that if $\varepsilon > 0$, then

$$B_n \le C_n \le nA_n < \exp \exp\{(1+\varepsilon)(\log 2)\log n / \log \log n\}$$

for all large n.

P.T.Bateman

Classification: 11C08 Polynomials

©European Mathematical Society & FIZ Karlruhe & Springer-Verlag