
Abstract

This is a translation from French of an ENS exam which I particularly loved as a student.

It gives an elementary proof, due to Selberg, of Dirichlet's theorem on primes in arithmetic progressions: Whenever a and b are coprime positive integers (why do we require that?), there exist infinitely many prime numbers of the form $a k+b$.

All it requires is basic group theory and basic material about series, as well as some skill and courage!

Dirichlet's theorem is obtained at the end of part V; part VI is an application to cyclotomic polynomials, which may be left aside.

First Mathematics Composition (Common exam ENS Ulm / Lyon, 1993) Duration: 6 hours

Nicolas Mascot*
Trinity College, Dublin

June 2, 2022

Candidates may answer any part by admitting results stated in the previous parts. It should be noted that once the results of part V have been admitted, the final part is independent from the previous parts.
The symbols m, n (respectively, x) will denote integers (respectively, a real number) $\geqslant 1$. The symbol p will always denote a prime number.
We denote by $v_{p}(n)$ the highest power ${ }^{11}$, possibly 0 , of p which divides n.
The integer $[x]$ denotes the floor ${ }^{2}$ of x.
Whenever f, g are real-valued functions defined on a neighbourhood of $+\infty$, the notation $f=O(g)$ means that f is the product of g by a function which is bounded in a neighbourhood of $+\infty$. Similarly, whenever u_{n}, v_{n} are complex-valued sequences, the notation $u_{n}=O\left(v_{n}\right)$ means that the sequence u_{n} is the product of the sequence v_{n} and of a sequence which is bounded in a neighbourhood of $+\infty$.
The notation $\sum_{d \mid n} u_{d}$ denotes the sum of the u_{d} ranging over the integers $d \geqslant 1$ that divide n.
We denote by log the natural logarithm.
We fix once and for all a positive integer N.
We denote by $G(N)$ the multiplicative group of invertible elements of the ring $\mathbb{Z} / N \mathbb{Z}$.

Preliminary

1. Let $\sum_{n \geqslant 1} u_{n}$ and $\sum_{n \geqslant 1} v_{n}$ be two series of complex numbers. Let $U_{n}=$ $\sum_{k=1}^{n} u_{k}$ be the partial sum. Check the identity

$$
\sum_{k=1}^{n} u_{k} v_{k}=U_{n} v_{n}+\sum_{k=1}^{n-1} U_{k}\left(v_{k}-v_{k+1}\right)
$$

[^0]Let G be a finite Abelian group whose operation is written multiplicatively. We say that a homomorphism from G to the multiplicative group \mathbb{C}^{\times}is a character of G. Let χ and χ^{\prime} be two characters of G. The product $\chi \chi^{\prime}$ is defined by the formula

$$
\chi \chi^{\prime}(g)=\chi(g) \chi^{\prime}(g) \text { for } g \in G
$$

We denote by 1 the constant character of value 1 . The set \widehat{G} of characters of G is thus endowed with a group law whose identity element is 1 .
We denote by $\widehat{\widehat{G}}$ the group of characters of \widehat{G}.
Finally, we denote by $\bar{\chi}$ the character which maps $g \in G$ to the conjugate $\overline{\chi(g)}$ of $\chi(g)$.
For all $x \in G$, consider the map $\phi_{x} \in \widehat{\widehat{G}}$:

$$
\begin{array}{rll}
\widehat{G} & \longrightarrow \mathbb{C}^{\times} \\
\chi & \longmapsto & \chi(x) .
\end{array}
$$

Our first goal is to prove that the morphism

$$
\text { (*) } \begin{aligned}
& \\
& \longrightarrow \\
x & \longmapsto \phi_{x}
\end{aligned}
$$

is injective.

1. Let $x \in G, x \neq 1$, and let $\langle x\rangle$ be the subgroup of G spanned by x. Prove that there exists a character χ of $\langle x\rangle$ such that $\chi(x) \neq 1$.
2. Let F be the set of subgroups H of G containing $\langle x\rangle$ such that χ may be extended into a character of H. Prove that F contains an element G^{\prime} of maximal order. Suppose $G^{\prime} \neq G$. Let y be an element of G which does not lie in G^{\prime}. By considering the smallest $n \geqslant 1$ such that $y^{n} \in G^{\prime}$, whose existence you must justify, prove that χ may be extended to the subgroup spanned by G^{\prime} and y. What can you conclude from this?
3. Let $\chi^{\prime} \in \widehat{G}$ and $x \in G$. Compare the sums

$$
\sum_{\chi \in \widehat{G}} \chi(x) \text { and } \sum_{\chi \in \widehat{G}} \chi \chi^{\prime}(x) .
$$

By suitably choosing χ^{\prime}, prove the formulae

$$
\begin{gathered}
\sum_{\chi \in \widehat{G}} \chi(x)=0 \text { if } x \neq 1 \\
\sum_{\chi \in \widehat{G}} \chi(x)=|\widehat{G}| \text { if } x=1
\end{gathered}
$$

Similarly, prove the formulae

$$
\begin{gathered}
\sum_{x \in G} \chi(x)=0 \text { if } \chi \neq 1 \\
\sum_{x \in G} \chi(x)=|G| \text { if } \chi=1
\end{gathered}
$$

4. By considering the sum $\sum_{\chi, x} \chi(x)$, prove that $|G|=|\widehat{G}|$. What can you conclude about the morphism $G \longrightarrow \widehat{\widehat{G}}$ described at $(*)$?

II

You are reminded that the symbol p denotes a prime number.
Recall the formula $\log n!=n \log n-n+O(\log n)$.

1. Prove the identity

$$
v_{p}(n!)=\sum_{k=1}^{+\infty}\left[\frac{n}{p^{k}}\right] .
$$

Deduce the bounds

$$
\frac{n}{p}-1<v_{p}(n!) \leqslant \frac{n}{p}+\frac{n}{p(p-1)}
$$

2. By considering the expression $(1+1)^{2 m+1}$, prove that $\binom{2 m+1}{m} \leqslant 4^{m}$. Deduce the upper bound

$$
\prod_{m+1<p \leqslant 2 m+1} p \leqslant 4^{m}
$$

3. Prove the upper bound

$$
\prod_{p \leqslant n} p \leqslant 4^{n}
$$

by induction on n.
4. By considering $\log n$!, prove the estimate

$$
\sum_{p \leqslant x} \frac{\log p}{p}=\log x+O(1)
$$

III

From now on, by character, we mean character of $G(N)$. We say that a character $\chi \neq 1$ is nontrivial. We still denote by χ the map from \mathbb{N} to \mathbb{C} defined by $\chi(m)=\chi(m \bmod N)$ if m and N are coprime and $\chi(m)=0$ else. We have the identity $\chi(a b)=\chi(a) \chi(b)$ for all a, b.

1. Let χ be a nontrivial character. Prove that series $\sum_{n \geqslant 1} \frac{\chi(n)}{n}$ (respectively, $\sum_{n \geqslant 1} \frac{\chi(n) \log n}{n}$) converges. We denote its sum by $L(\chi)$ (respectively, by $L_{1}(\chi)$).
In this part, from now on, χ is a nontrivial real-valued character.
2. Let $f(n)=\sum_{d \mid n} \chi(d)$. Prove that $f(m n)=f(m) f(n)$ whenever $\operatorname{gcd}(m, n)=$ 1. Deduce the lower bounds

$$
f(n) \geqslant 1 \text { if } n \text { is a square, and } f(n) \geqslant 0 \text { else. }
$$

For $x \geqslant 0$, define $g(x)=\sum_{n \leqslant x} \frac{f(n)}{\sqrt{n}}$. How does g behave when $x \rightarrow+\infty$?
3. Prove very carefully the identity

$$
g(x)=\sum_{d^{\prime} \leqslant \sqrt{x}} \frac{1}{\sqrt{d^{\prime}}} \sum_{\sqrt{x}<d \leqslant \frac{x}{d^{\prime}}} \frac{\chi(d)}{\sqrt{d}}+\sum_{d \leqslant \sqrt{x}} \frac{\chi(d)}{\sqrt{d}} \sum_{d^{\prime} \leqslant \frac{x}{d}} \frac{1}{\sqrt{d^{\prime}}} .
$$

By a thorough analysis of the two terms of this sum, prove that the difference $g(x)-2 \sqrt{x} L(\chi)$ is bounded.
4. Prove that $L(\chi)$ does not vanish in this case.

IV

1. We denote by $\mu(n)$ the integer defined by $\mu(n)=0$ if n is divisible by the square of a prime number, else $\mu(n)=(-1)^{r}$ if n admits r (non-repeated) prime factors ${ }^{3}$. Prove that for all $n \neq 1$, we have the identity

$$
\sum_{d \mid n} \mu(d)=0
$$

2. Let H be a nonzero function from \mathbb{N} to \mathbb{C} such that for all $m, n \in \mathbb{N}, H(m n)=$ $H(m) H(n)$. Determine $H(1)$. Suppose also that F and G are functions from $[1,+\infty)$ to \mathbb{C} such that

$$
\forall x \in[1,+\infty), G(x)=\sum_{1 \leqslant k \leqslant x} F(x / k) H(k)
$$

Prove the formula ${ }^{4}$

$$
\forall x \in[1,+\infty), \quad F(x)=\sum_{1 \leqslant k \leqslant x} \mu(k) G(x / k) H(k) .
$$

3. Let Λ be the function ${ }^{5}$ from $[1,+\infty)$ to \mathbb{R} which maps p^{n} to $\log p$ and which vanishes at all the real numbers which are not integers of the form p^{n}. Prove the formula

$$
\Lambda(m)=\sum_{d \mid m} \mu(d) \log (m / d) .
$$

V

Let χ be a nontrivial character which may or may not be real-valued.

1. Let $G(x)=\sum_{1 \leqslant n \leqslant x} \frac{x}{n} \chi(n)$. Prove that $G(x)-x L(\chi)$ is bounded.

Suppose $L(\chi) \neq 0$. By using part IV, deduce that $\sum_{n \leqslant x} \frac{\mu(n) \chi(n)}{n}$ is bounded.
2. Suppose that $L(\chi)=0$. Define $G_{1}(x)=\sum_{1 \leqslant n \leqslant x} \frac{x}{n} \log \left(\frac{x}{n}\right) \chi(n)$. Prove that $G_{1}(x)=-x L_{1}(\chi)+O(\log x)$. As in the previous question, deduce that the function

$$
L_{1}(\chi) \sum_{n \leqslant x} \frac{\mu(n) \chi(n)}{n}+\log x
$$

is bounded.

[^1]3. By using part IV, prove that
$$
L_{1}(\chi) \sum_{n \leqslant x} \frac{\mu(n) \chi(n)}{n}=\sum_{p \leqslant x} \frac{\chi(p) \log p}{p}+O(1)
$$
4. Deduce from the above that
\[

\sum_{p \leqslant x} \frac{\chi(p) \log p}{p}=\left\{$$
\begin{array}{l}
O(1) \text { if } L(\chi) \neq 0 \\
-\log x+O(1) \text { if } L(\chi)=0
\end{array}
$$\right.
\]

5. Let T be the number of nontrivial characters such that $L(\chi)=0$. By considering the expression

$$
\sum_{\chi \in \widehat{G(N)}} \sum_{p \leqslant x} \frac{\chi(p) \log p}{p}
$$

prove the estimate

$$
|G(N)| \sum_{\substack{p \leqslant x \\ p \equiv 1 \bmod N}} \frac{\log p}{p}=(1-T) \log x+O(1)
$$

6. Prove that $T=0$ (make the distinction between the real-valued case and the complex-valued case).
Let ℓ be an integer which is coprime to N. By considering the sum

$$
\sum_{\chi \in \widehat{G(N)}} \sum_{p \leqslant x} \bar{\chi}(\ell) \frac{\chi(p) \log p}{p}
$$

prove that $t^{[6}$ there exists infinitely many primes p such that $p \equiv \ell \bmod N$.

VI

Let P be a nonzero polynomial with integer coefficients. We denote by $c(P)$ the gcd of the coefficients of P.

1. Prove that if P and Q are nonzero polynomials with integer coefficients, then

$$
c(P Q)=c(P) c(Q)
$$

Hint: Reduce to the case $c(P)=c(Q)=1$, and consider a prime divisor of $c(P Q)$.
2. Let ζ be an n-th root of 1 . Let P_{ζ} be the monic polynomial ${ }^{7}$ with coefficients in \mathbb{Q} and of minimal degree that vanishes at ζ. Prove that the coefficients of P_{ζ} are actually integers.
We denote by $\mathbb{Z}[\zeta]$ (respectively, $\mathbb{Q}[\zeta])$ the subring of \mathbb{C} spanned by \mathbb{Z} and ζ (respectively, by \mathbb{Q} and ζ). Let d be the degree of P_{ζ}.

[^2]3. Prove that $\mathcal{B}=\left(1, \zeta, \zeta^{2}, \cdots, \zeta^{d}-1\right)$ is a basis of the \mathbb{Q}-vector space $\mathbb{Q}[\zeta]$.
4. Let P be a polynomial with integer coefficients. Prove that for any prime number p, there eixts a polynomial G_{p} with integer coefficients such that
$$
P\left(X^{p}\right)=P(X)^{p}+p G_{p}(X)
$$

Whenever $x \in \mathbb{Q}[\zeta]$, let $M(x)$ be the matrix with respect to \mathcal{B} of the \mathbb{Q}-linear map

$$
\begin{aligned}
\mathbb{Q}[\zeta] & \longrightarrow \mathbb{Q}[\zeta] \\
y & \longmapsto x y .
\end{aligned}
$$

5. By using V.7., and by considering matrices $M(x)$ for suitable $x \in \mathbb{Q}[\zeta]$, prove that if ℓ is an integer which is coprime to n, then

$$
P_{\zeta}\left(\zeta^{\ell}\right)=0
$$

6. Prove that the union of the sets

$$
E_{d}=\left\{\left.\frac{k}{d} \right\rvert\, 1 \leqslant k \leqslant d \text { and } \operatorname{gcd}(k, d)=1\right\}
$$

for $d \geqslant 1$ dividing n agrees with

$$
\left\{\left.\frac{k}{n} \right\rvert\, 1 \leqslant k \leqslant n\right\}
$$

ad that the sets E_{d} for $d \geqslant 1$ dividing n are pairwise disjoint. Define

$$
\Phi_{n}(x)=\prod_{\substack{1 \leqslant k \leqslant n \\ \operatorname{gcd}(k, n)=1}}\left(X-e^{2 \pi i k / n}\right)
$$

Prove the identity

$$
\prod_{d \mid n} \Phi_{d}(X)=X^{n}-1
$$

Deduce that $\Phi_{n}(x)$ has integer coefficients for all n.
7. Which conclusions can you draw about P_{ζ} ?

END

[^0]: * mascotn@tcd.ie
 ${ }^{1}$ Translator's note: Actually, the exponent of this highest power, so that $p^{v_{p}(n)} \mid n$.
 ${ }^{2}$ Translator's note: This means the largest integer $\leqslant x$.

[^1]: ${ }^{3}$ Translator's note: μ is called the Möbius function.
 ${ }^{4}$ Translator's note: This is known as the Möbius inversion formula.
 ${ }^{5}$ Translator's note: Λ is called the von Mangoldt function.

[^2]: ${ }^{6}$ Translator's note: This is known as Dirichlet's theorem on primes in arithmetic progressions.
 ${ }^{7}$ Translator's note: Such a polynomial is called a cyclotomic polynomial.

