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Exercise 1 Preservation of semi-simplicity (50 pts)

In this exercise, all modules are over a fixed ring R, and all modules are Artinian1,
meaning that there cannot exist an infinite descending chain of submodules.

1. (20 pts) Prove that a submodule of a semi-simple module is also semi-simple.

2. (20 pts) Prove that if f : M −→ N is a module morphism, and if M is
semi-simple, then Im f is also semi-simple.

3. (10 pts) Let now G be a group, K a field, and f : V −→ W be a morphism
between representations of G over K of finite degree. Prove that if V is semi-
simple, then so are Ker f and Im f .

Solution 1

We will constantly use the result that a module is semi-simple iff. every submodule
admits a supplement.

1. Let M be a semi-simple module, and let N ⊆ M be a submodule. If P ⊂ N
is a submodule of N , then it is also a submodule of M ; as M is semi-simple,
there exists a submodule S ⊆ M such that M = P ⊕ S, so that every m ∈ M
can be uniqueley decomposed as m = p + s with p ∈ P and s ∈ S. Let
S ′ = S ∩N ; this is a submodule of N . If n ∈ N , then also n ∈ M , so we can
write n = p+ s with unique p ∈ P and s ∈ S. Then s = n− p ∈ N as P ⊆ N ,
so actually s ∈ S ∩N = S ′. This shows that N = P ⊕ S ′, whence the result.

2. Since M is semi-simple, the submodule Ker f ⊆ M admits a supplement M ′.

Restricting f to M ′ and corestricting to Im f yields f ′ = f|M ′ : M ′ −→ Im f ,
which is injective since if m ∈ Ker f ′, then m ∈ Ker f ∩ M ′ whence m = 0,
and surjective, as if n ∈ Im f , then n = f(m) for some m ∈ M , which can be
(uniquely) decomposed as m = k +m′ with k ∈ Ker f and m′ ∈ M ′, but then
n = f(m) = f(k +m′) = f(k) + f(m′) = f(m′) as k ∈ Ker f .

Therefore f ′ is an isomorphism between M ′ and N . As M ′ is semi-simple by
the previous question, so is N .

1NB we make this assumption to make our lives easier, but it can be shown that the properties
established in this exercise actually remain valid without this assumption.
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3. We can view V and W as R-modules where R = K[G], which are Artinian
since a descending chain of submodules would in particular be a descending
chain of K-subspaces, and thus cannot be infinite (consider dimensions); and
we can view f as a module morphism. Then Ker f is a submodule of V , and
is therefore semi-simple by the first question, whereas Im f is a submodule of
W , which is semi-simple by the second question.

Exercise 2 A non-semi-simple ring (50 pts)

Let K be a field, and let G be a finite group of order n = #G. We will sometimes
see the group ring K[G] = {

∑
g∈G λgeg | λg ∈ K for all g ∈ G} as a module over

itself.

1. (5 pts) Let Σ =
∑

g∈G eg ∈ K[G]. Prove that ehΣ = Σ for all h ∈ G.

2. (5 pts) Prove that S = {λΣ, λ ∈ K} is a sub-K[G]-module of K[G].

3. (5 pts) Identify S as a representation of G.

From now on, we assume that n = 0 in K.

4. (5pts) Prove that Σ2 = 0 in K[G].

5. (10pts) Deduce that 1− λΣ is invertible in K[G] for all λ ∈ K, where 1 = e1G
is the multiplicative identity of K[G].

Note that since K[G] is not commutative in general, you must prove that your
inverse works on both sides.

Hint: For x ∈ R and m ∈ N, what is the formula for the geometric series
1 + x+ x2 + · · ·+ xm? How do you prove it?

6. (20 pts) Deduce that K[G], viewed as a K[G]-module, is not semi-simple.

Solution 2

1. For all h ∈ G, we have

ehΣ = eh
∑
g∈G

eg =
∑
g∈G

ehg =
∑
g∈G

eg = Σ

as
G −→ G
g 7−→ hg

is a bijection.

2. For all
∑

g∈G λgeg ∈ K[G] we have(∑
g∈G

λgeg

)
Σ =

∑
g∈G

λg(egΣ) =
∑
g∈G

λgΣ =

(∑
g∈G

λg

)
Σ,

which proves that M = {λΣ, λ ∈ K} ⊂ K[G] is closed by multiplication by
all “scalars” in K[G]. Since it is also an additive subgroup of K[G] (and even
a K-subspace), it is a submodule of K[G].
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3. We can therefore view M as a representation of G over K. Its degree is
dimK M = 1, and since for all h ∈ G, ehΣ = Σ, we see that G acts trivially on
it. Thus this is the trivial representation 1.

4. We compute that

Σ2 =

(∑
g∈G

eg

)
Σ =

∑
g∈G

egΣ =
∑
g∈G

Σ = nΣ

as we have proved that egΣ = Σ for all g ∈ G in the previous question. As
n = 0 in K and therefore in K[G], the result follows.

5. Expanding shows that (1 − x)(1 + x + x2 + · · · + xn) = 1 − x + x − x2 +
· · · − xn + xn − xn+1 = 1 − xn+1 for all x ∈ R, and in fact this identity
remains valid in any ring, even if it is not commutative, since powers of x and
1 always commute with each other. In particular, for n = 1 we have that
(1− x)(1 + x) = 1− x2, so (1− λΣ)(1 + λΣ) = 1− λ2Σ2 = 1 as Σ2 = 0, and
similarly (1+λΣ)(1−λΣ) = 1−λ2Σ2 = 1. This shows that 1−Σ is invertible
in K[G], with inverse 1 + Σ ∈ K[G].

6. Suppose by contradiction that K[G] is semi-simple. An infinite descending
chain of submodules of K[G] would in particular be a descending chain of
K-subspaces, which cannot exist (consider dimensions). Therefore, the sub-
module M of K[G] would admit a supplement S, that is to say K[G] = M⊕S.
Then we could decompose (uniquely) 1 = m + s with m ∈ M and s ∈ S, so
we would have m = λΣ for some λ ∈ K and s = 1−m = 1− λΣ. As shown
in the previous question, there exists t ∈ K[G] such that ts = 1; but then
Σ = Σ1 = (Σt)s would lie in S since Σt ∈ K[G], s ∈ S, and S is a submodule;
therefore 0 ̸= Σ ∈ M ∩ S, which contradicts K[G] = M ⊕ S as we would have
the two decompositions Σ = Σ + 0 = 0 + Σ.

These were the only mandatory exercises, that you must submit before
the deadline. The following exercise is not mandatory; it is not worth
any points, and you do not have to submit them. However, you can try
to solve it for practice, and you are welcome to email me if you have
questions about them. The solution will be made available with the
solution to the mandatory exercises.

Exercise 3 Annihilators and simple modules

Let R be a ring, which need not be commutative. We say that I ⊆ R is a left ideal
if it is an additive subgroup of (R,+) and if ri ∈ I for all r ∈ R and i ∈ I. We
define right ideals similarly. If I is both a left ideal and a right ideal, then we say
that it is a two-sided ideal. A maximal left ideal is a left ideal M ̸= R such that
there are no left ideals I such that M ⊊ I ⊊ R.
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1. Let M be an R-module. Define its annihilator as

AnnM = {r ∈ R | rm = 0 for all m ∈ M} ⊆ R.

Prove that AnnM is a two-sided ideal of R.

2. The ring R can be viewed as a module over itself; we denote this module
by RR, so as to clearly distinguish between the ring R and the R-module RR.
Identify the submodules of RR.

3. Let S be a module, and let s ∈ S.

(a) Prove that the map
fs : RR −→ S

r 7−→ rs

is a module morphism.

(b) Prove that S is simple iff. fs is surjective for all s ̸= 0.

(c) Deduce that if S is simple, then it is isomorphic to RR/M , where M is a
maximal left ideal of R.

(d) Prove that conversely, if M is a maximal left ideal of R, then RR/M is a
simple R-module.

4. Beware that in general, the annihilator of RR/M , which is a two-sided ideal,
does not agree with the left ideal M ! Here is an example: Take R = M2(R),
and S = R2, which is an R-module if we view its elements as column vectors.
Prove that S is simple, determine AnnS, and find a maximal left ideal M of R
such that S ≃ RR/M .

Solution 3

1. Let m ∈ M . Then 0m = 0, so 0 ∈ AnnM . Besides, if r, s ∈ AnnM , then
(r − s)m = rm − sm = 0 − 0 = 0, so r − s ∈ AnnM as this holds for any
m ∈ M . Finally, let r ∈ AnnM and x ∈ R. Then (xr)m = x(rm) = x0 = 0,
and (rx)m = r(xm) = 0 as xm ∈ M as M is a module; since these hold for
any m ∈ M , AnnM is a two-sided ideal of R.

2. Let M ⊆ RR be a submodule. Then M ⊆ (R,+) is an additive subgroup, and
besides xm ∈ M for all x ∈ R and m ∈ M , so M is a left ideal. Conversely, we
see that any left ideal of R is actually a submodule of RR. So the submodules
of RR are precisely the left ideals of R.

3. (a) fs is additive since for all r, r
′ ∈ RR = R, f(r+r′) = (r+r′)s = rs+r′s =

f(r) + f(r′), and linear because for all λ ∈ R = RR and r ∈ RR = R,
f(λr) = (λr)s = λ(rs) = λf(rs).

(b) Note that s = fs(1R) ∈ Im fs. So if s ̸= 0, then Im f is a nonzero
submodule of S. So if S is simple, then this submodule must be all of S,
so fs is surjective.

Conversely, suppose that S is not simple. Then it has a non-trivial sub-
module {0} ⊊ T ⊊ S. As T ̸= {0}, we can find 0 ̸= t ∈ T ; then t ∈ S,
and Im ft = {rt, r ∈ R} ⊆ T is strictly smaller that S as it is contained
in T , so ft is not surjective.
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(c) As S is simple, S ̸= {0}, so let 0 ̸= s ∈ S. The previous question
ensures that fs is surjective, so the isomorphism theorem for modules
yields S ≃R R/M where M = Ker fs. In particular, M is a submodule
of RR, and therefore a left ideal by the first question.

If M were not maximal, we could find another ideal (=submodule) M ′

subst that M ⊊ M ′ ⊊ RR, and then M ′/M would be a non-trivial
submodule of R/M , which is absurd as R/M ≃ S is simple, so M must
be maximal.

(d) The submodules of the quotient RR/M are precisely the M ′/M , where
M ′ is a submodule (= left ideal) of RR which contains M . As M is
maximal, there are exactly two such submodules, namlely M and RR, so
correspondingly RR/M has only two submodules, which are M/M = {0}
and RR/M =itself. This shows that RR/M is a simple module.

4. Let e1 =

(
1
0

)
∈ R2, and e2 =

(
0
1

)
∈ R2; recall that for all A ∈ M2(R), Ae1 is

the left column of A, and Ae2 is the right column of A.

Let now 0 ̸= v ∈ R2, and let w ∈ R2. There exists a matrix B ∈ GL2(R)
whose first column is v, so that B−1 takes v to e1, and a matrix C ∈ M2(R)
whose first column is w, so that it takes e1 to w; then A = CB−1 ∈ M2(R)
satisfies Av = w. This shows that the map fv : A 7→ Av is surjective for all
v ̸= 0, so by question 2, R2 is a simple M2(R)-module. Still by question 2, for
any 0 ̸= v ∈ R2, the M2(R)-module R2 is isomorphic to M2(R)/N , where N
is the left ideal {A ∈ M2(R) | Av = 0}. For instance, if we take v = e1, then

N = {A ∈ M2(R) | Ae1 = 0} =

{(
0 x
0 y

) ∣∣∣ x, y ∈ R
}

=

(
0 ∗
0 ∗

)
.

However, AnnR2 is the set of matrices A ∈ M2(R) such that Av = 0 for all
v ∈ R2; taking v to be e1, we get that the left column Ae1 of A must be 0, and
then taking v = e2, we see that the right column of A must also be 0. Thus

AnnR2 = {0} ≠ N.
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