
Group representations
Exercise sheet 1

https://www.maths.tcd.ie/~mascotn/teaching/2023/MAU34104/index.html

Version: January 30, 2023

Email your answers to mascotn@tcd.ie by Friday Feburary 10, 13:00.

Exercise 1 Decomposition over R (100 pts)

You are allowed to use without proof the results from Exercises 2-4 to solve this
exercise (but I highly recommend you try to solve Exercises 2-4 as well!).

In this exercise, we consider over K = R two representations of G = S3 con-
structed in the lectures, namely the permutation representation

Perm : S3 −→ GL3(K)

induced by S3 ⟳ {1, 2, 3}, and

◁ : S3 −→ GL2(K), (123) 7→
(
−1 −1
1 0

)
, (12) 7→

(
1 1
0 −1

)
obtained by labelling the vertices of an equilateral triangle by {1, 2, 3}.

1. (35 pts) Prove that ◁ is irreducible. Is ◁ indecomposable?

2. (65 pts) Prove that Perm ≃ 1⊕ ◁ as representations of S3.

Solution 1

1. Since deg ◁ = 2, if it were reducible, then it would have a subrepresentation of
degree 1.

We know that (123) ∈ S3 acts on the representation space R2 of ◁ by a rotation
of angle 2π/3; therefore, it does not stabilise any vector line, so ◁ is irreducible.

Here is a more algebraic1 way to say this: by the previous exercise, a sub-
representation of ◁ of degree 1 would be spanned by a common eigenvector

for all g ∈ S3, yet the matrix

(
−1 −1
1 0

)
of (123) has characteristic polyno-

mial x2 + x+ 1, which has negative discriminant, so (123) has no eigenvector
over R.

1I do not mean to imply that this more algebraic way is better. In fact, I personally find the
geometric argument more convincing!
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Here is another proof, which shows that ◁ is actually irreducible even over C:

the matrix

(
1 1
0 −1

)
clearly has eigenvalues 1 and −1, with respective eigen-

vectors v+ =

(
1
0

)
and v− =

(
1
−2

)
; but since since neither is an eigenvector

of (123), there is no common eigenvector for all S3.

Anyway, we conclude that ◁ is irreducible, and therefore also indecomposable.

2. • Analysis: Let us define σ = (123), τ = (12). The representation space
of 1 is R, with trivial action of S3; let u be a vector which spans it. The
representation space of ◁ is R2; let (e1, e2) be its standard basis, on which

the matrix of σ is S =

(
−1 −1
1 0

)
and that of τ is T =

(
1 1
0 −1

)
. Finally,

the representation space of Perm is R3, on which S3 acts by permuting
the coordinates.

Suppose we have a representation morphism f : 1 ⊕ ◁ −→ Perm, and
define v = f(u), f1 = f(e1), f2 = f(e2) ∈ R3.

Since gu = u for all g ∈ S3, we must also have gv = v for all g ∈ S3;

therefore v is a multiple of

1
1
1

.

We also observe that τe1 = e1, so τf1 = f1, which means that f1 =a
a
b

 for some a, b ∈ R. Furthermore, we have σe2 = −e1, so e2 =

−σ−1e1, whence f2 = −σ−1f1 =

−a
−b
−a

. Besides, from the fact that T

is triangular, we see that it has the eigenvalue −1, and we compute that
the corresponding eigenspace is the span of e1−2e2, so that τ(e1−2e2) =

−(e1−2e2) whence

a+ 2b
3a

b+ 2a

 = τ(f1−2f2) = −(f1−2f2) =

 −3a
−a− 2b
−b− 2a

;

this forces b = −2a.

• Synthesis: Let f : 1 ⊕ ◁ −→ Perm be the linear transformation defined
by

f(u) = v =

1
1
1

 , f(e1) = f1 =

 1
1
−2

 , f(e2) = f2 =

−1
2
−1

 .

Since

∣∣∣∣∣∣
1 1 −1
1 1 2
1 −2 −1

∣∣∣∣∣∣ = 9 ̸= 0 ∈ R, we see that this linear transformation

is invertible. It remains to check if it is a representation morphism, that
is to say if f(gw) = gf(w) for all w ∈ 1 ⊕ ◁ and g ∈ S3. Clearly, it is
sufficient to check this for w ranging over the basis (u, e1, e2) of 1 ⊕ ◁,
and also for g = σ and τ since σ and τ generate S3.

By construction, we have f(gu) = f(u) = v = gf(v) for all g ∈ S3.
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We also have f(τe1) = f(e1) = f1 = τf1 by construction, and we check

that f(σe1) = f(−e1 + e2) = −f1 + f2 =

−2
1
1

 = σf1.

And finally, we check that f(τe2) = f(e1− e2) = f1−f2 =

 2
−1
−1

 = τf2,

and we have f(σe2) = f(−e1) = −f1 = σf2 by construction.

In conclusion, the answer is yes, and we have exhibited an isomorphism
of representations f : 1⊕ ◁ ≃ Perm.

Remark: we can summarise the verification calculations that we have just
performed by saying that the respective matrices of σ and τ on the basis
(v, f1, f2) of R3 are 1 0 0

0 −1 −1
0 1 0

 =

(
1 0
0 S

)
and

 1 0 0
0 1 1
0 0 −1

 =

(
1 0
0 T

)
.

This way, we really “see” the representation isomorphism at work.

You may also have noticed that we had no special reason to take a = 1,
nor to decide that v is not another multiple of (1, 1, 1). Indeed, any other
choice also “works”. This demonstrates the existence of automorphisms
of the representation 1 ⊕ ◁ ≃ Perm (and it can be shown that this is
actually all of its automorphisms).

Finally, we note that it is possible to “see” the decomposition Perm ≃ 1⊕◁
purely geometrically: imagine an orthonormal frame in R3 with 3 mutu-
ally orthogonal unit vectors shooting from the origin, and a tilted plane
resting on the tip of these 3 vectors. Drawing line segments joining these
3 vector tips, we get an equilateral triangle in this plane; and the line
spanned by the vector (1, 1, 1) goes through the origin and the centre of
this triangle, where it shoots perpendicularly through this plane. As S3

permutes these 3 vectors (by definition of Perm), the vertices of the tri-
angle are also permuted, but the plane remains globally invariant, whence
the subrepresentation ◁, whereas the points of the line spanned by (1, 1, 1)
remain all fixed, whence the subrepresentation 1.

This is the only mandatory exercise, that you must submit before the
deadline. The following exercises are not mandatory; they are not worth
any points, and you do not have to submit them. However, I strongly
recommend you try to solve them for practice, and you are welcome to
email me if you have questions about them. The solutions will be made
available with the solution to the mandatory exercise.
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Exercise 2 Representation morphisms form a subspace

Let G be a group, K a field, and let ρ1 : G −→ GL(V1) and ρ2 : G −→ GL(V2) be
two representations of G over K.

Recall that the set Hom(V1, V2) of all linear transformations from V1 to V2 has
a vector space structure, with addition and scalar multiplications defined pointwise
(that is to say if T, U ∈ Hom( V1, V2) and λ ∈ K, then T + U is defined as (T +
U)(v1) = T (v1) + U(v1) for all v1 ∈ V1, and λT is defined as (λT )(v1) = λ

(
T (v1)

)
for all v1 ∈ V1).

Prove that the subset HomG(V1, V2) consisting of linear transformations which
are representation morphisms is a subspace of Hom(V1, V2).

Solution 2

We must prove that whenever T, U ∈ HomG(V1, V2) and λ ∈ K, T + U and λT also
lie in HomG(V1, V2).

First of all, recall that HomG(V1, V2) is defined as the set of T ∈ Hom(V1, V2)
such that for all g ∈ G and v1 ∈ V1,

T
(
ρ1(g)(v1)

)
= ρ2(g)

(
T (v1)

)
.

So let T, U ∈ HomG(V1, V2), and let v1 ∈ V1 and g ∈ G. Then

(T + U)
(
ρ1(g)(v1)

)
= T

(
ρ1(g)(v1)

)
+ U

(
ρ1(g)(v1)

)
by definition of T + U

= ρ2(g)
(
T (v1)

)
+ ρ2(g)

(
U(v1)

)
as T, U ∈ HomG(V1, V2)

= ρ2(g)
(
T (v1) + U(v1)

)
as ρ2(g) : V2 → V2 is linear for all g ∈ G

= ρ2(g)
(
(T + U)(v1)

)
by definition of T + U ,

which proves that T + U ∈ HomG(V1, V2). Similarly, if λ ∈ K, T ∈ HomG(V1, V2),
v1 ∈ V1, and g ∈ G, then

(λT )
(
ρ1(g)(v1)

)
= λ

(
T
(
ρ1(g)(v1)

))
by definition of λT

= λ
(
ρ2(g)

(
T (v1)

))
as T ∈ HomG(V1, V2)

= ρ2(g)
(
λ
(
T (v1)

))
as ρ2(g) : V2 → V2 is linear for all g ∈ G

= ρ2(g)
(
(λT )(v1)

)
by definition of λT .

Exercise 3 Representations of degree 1

Prove that a representation of degree 1 is always indecomposable and irreducible.

Solution 3

Let ρ : G −→ GL(V ) be a representation of degree 1. This means that dimV = 1,
so V has no subspaces apart from {0} and itself. In particular, ρ does not have any
subrepresentatinos apart from {0} and V , which proves that ρ is irreducible.

Since irreducibility always implies indecomposability, it follows that ρ is also
indecomposable.
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Exercise 4 Subrepresentations of degree 1

Let G be a group, K be a field, and V a representation of G over K. Prove that
there exists a subrepresentation of V of degree 1 iff. there exists a nonzero vector
v ∈ V which is an eigenvector for all g ∈ G (possibly with an eigenvalue which
depends on g).

Solution 4

Let V ′ ⊂ V be a subrepresentation of degree 1. Then V ′ is spanned by a nonzero
vector v, so V ′ = {λv, λ ∈ K}. Since V ′ is a subrepresentation, for each g ∈ G we
have gv ∈ V ′, so gv = λgv for some λg ∈ K, which means that v is an eigenvector
for all g ∈ G.

Conversely, suppose 0 ̸= v ∈ V is an eigenvector for all g ∈ G, so that for all g ∈
G we have gv = λgv for some λg ∈ K. Then for all g, h ∈ G, ghv = gλhv = λhgv =
λhλgv so λgh = λgλh; besides λ1G = 1 so, taking h = g−1, we must have λg ̸= 0 for
all g ∈ G. This shows that g 7→ λg is a group morphism G −→ K× = GL1(K), so
that the span of v in V is a subrepresentation.

The following exercise has been included for those of you who wish
to try their skills in more “exotic” situations. It is not meant to be as
profitable for your understanding of the material of this module as the
previous exercises. You are still welcome to try to solve it for practice,
and to email me if you have questions about it. The solution will be also
made available with the solution to the other exercises.

Exercise 5 Decomposition over Z/pZ
Redo Exercise 1, but with K = Z/pZ instead of R, with p ∈ N prime. Is ◁ still
irreducible? Indecomposable? Do we still have Perm ≃ 1⊕ ◁?
Your answers may depend on the value of p; explore all cases!

Solution 5

1. We can still argue that if ◁ is reducible, then it has a subrepresentation of de-

gree 1, and thus a common eigenvector for S =

(
−1 −1
1 0

)
and T =

(
1 1
0 −1

)
.

The eigenvalues of the triangular matrix T are ±1. If p ̸= 2, they are disctinct,

so T is diagonalisable, with eigenspaces spanned respectively by v+ =

(
1
0

)
and

v− =

(
1
−2

)
; thus the subrepresentation must be one of these. We compute

that Sv+ =

(
−1
1

)
is not collinear to v= for any p because of its second

component, so it never spans a subrepresentation; and that Sv− =

(
1
1

)
. If
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Sv− were collinear to v−, then by the first coefficient we would actually have
Sv− = v−, which happens iff. p = 3. So for p ≥ 5, ◁ is still irreducible
and in particular indecomposable, whereas for p = 3, ◁ is reducible, but still
indecomposable as we have proved that it has only one subrepresentation of
degree 1 (we would need two of them to decompose ◁).

Finally, if p = 2, then the only eigenvalue of T is 1 = −1, so T is not diagonal-
isable (else T would be conjugate to the identity, and therefore equal to the
identity). its egeinspace is still spanned by v+, and as Sv+ is not collinear to
v+, we conclude that ◁ is still irreducible (and in particular, indecomposable)
for p = 2.

2. No matter what the value of p is, the computations done in the Synthesis
part in the answer to the previous exercise show that the map f defined there
is still a morphism of representations from 1 ⊕ ◁ to Perm. Besides, it is an

isomorphism provided that

∣∣∣∣∣∣
1 1 −1
1 1 2
1 −2 −1

∣∣∣∣∣∣ = 9 ̸= 0, i.e. that p ̸= 3. So the

answer is still yes if p ̸= 3.

Let us now suppose that p = 3, and let us take a look again at v− = e1−2e2 =
e1+e2. We still have Tv− = −v−, but now that p = 3, we also have Sv− = v−.
Therefore, if Perm were isomorphic to 1⊕◁, it would contain a nonzero vector

which is negated by (12) and thus of the form

 c
−c
0

 with 0 ̸= c ∈ Z/3Z, and

fixed by (123) which is a contradiction. So for p = 3, the answer is no!

Actually, we can prove that Perm is indecomposable when p = 3. This imme-
diately implies that Perm ̸≃ 1 ⊕ ◁. Although of course this was not required
by the exercise, this has the advantage of answering the question in a less
“magic” way than the previous approach, which throws in v− without really
explaining where the idea comes from.

First of all, observe that

x3 = x for all x ∈ Z/3Z = {0, 1, 2 = −1}. (1)

If Perm decomposed, it would be either into a direct sum of two representations
of degrees 1 and 2, or three of degree 1. Putting two of them together in the
latter case, we may assume that Perm decomposes as L ⊕ P with degL = 1,
degP = 2.

Let S =

0 0 1
1 0 0
0 1 0

 be the matrix of (123) on the standard basis of Perm.

Its characteristic polynomial is x3 − 1, so its only eigenvalue is 1 by (1), and

we find that the corresponding eigenspace is spanned by

1
1
1

. As L must be
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spanned by an eigenvector of S, it must be this eigenspace.

Now that L is determined, let us focus on P . It is a hyperplane, so of the
form P = Ker l for some linear form l ̸= 0 (i.e. it is defined by a single
linear equation, which is not the trivial equation 0 = 0), which is unique up to
scaling. Let

(
a b c

)
be the matrix of l (i.e. l(x, y, z) = ax+by+cz). Since P is

stable by S3 and in particular by (123), we must have Ker l = P = Ker(lS), so
lS =

(
a b c

)
is proportional to l. This means that there exists 0 ̸= λ ∈ Z/3Z

such that lS = λl, whence b = λa, c = λb, a = λc. This implies a = λ3a,
b = λ3b, c = λ3c; since a, b, c are not all 0, we must have λ3 = 1, whence
λ = 1 in view of (1). Thus a = b = c, so P must be the hyperplane defined by
x+ y + z = 0. But then L and P are not in direct sum since L ⊂ P , absurd.
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