Group representations
 Exercise sheet 4

https://www.maths.tcd.ie/~mascotn/teaching/2023/MAU34104/index.html
Version: March 24, 2023
Email your answers to mascotn@tcd.ie by Monday April 3rd, 12:00.

Exercise 1 The character table of A_{4} (100 pts)
Let $G=A_{4}$ be the alternating group of even permutations on 4 objects.

1. (20 pts) Let V_{4} be the Klein subgroup of A_{4} consisting of the double transpositions and of the identity. Prove that V_{4} is normal in A_{4}, and that A_{4} / V_{4} is cyclic.
2. (10 pts) Prove that (123) and (132) are not conjugate in A_{4}.
3. (50 pts) Determine the character table of A_{4}.

You may want to define $\omega=e^{2 \pi i / 3}$; note that $\omega^{2}=\bar{\omega}=-\omega-1$.
4. (10 pts) Deduce that V_{4} is the derived subgroup of A_{4}.
5. (10 pts) Determine the decomposition into irreducible representations of the restriction to A_{4} of each the five irreducible representations of S_{4}.
6. (Bonus question, 0 pts) We admit that the group of rotations of \mathbb{R}^{3} that leave the regular tetrahedron invariant is isomorphic to A_{4} via the permutations induced on the 4 vertices, whence a representation of A_{4} of degree 3 . Write down the decomposition (over \mathbb{C}) of this representation into irreducible representations.

This was the only mandatory exercise, that you must submit before the deadline. The following exercises are not mandatory; they is not worth any points, and you do not have to submit them. However, I strongly suggest you can try to solve them, as this is excellent practice for the exam. You are welcome to email me if you have questions about them. The solution will be made available with the solution to the mandatory exercises.

Exercise 2 The character table of D_{8}

1. Let G be a non-Abelian group with 8 elements. Determine the degrees of the irreducible representations of G, and deduce that G must have exactly 5 conjugacy classes, and that the quotient $G / D(G)$ of G by its derived subgroup must have order 4.
2. Let $G=D_{8}$ be the group of symmetries of the square, most of whose elements we name as follows:

Determine the derived subgroup $D(G)$ and the structure of the quotient $G / D(G)$.
3. Determine the character table of D_{8}.

Exercise 3 The character table of Q_{8}

Let $Q_{8}=\{1,-1, I,-I, J,-J, K,-K\}$ be the (Hamiltonian) quaternionic group, whose multiplication is defined by the rules

$$
\begin{aligned}
& \text { For all } x, y \in Q_{8},(-x) y=x(-y)=-(x y), \text { and } x 1=1 x=x, \\
& \qquad I^{2}=J^{2}=K^{2}=-1, \\
& I J=K=-J I, \quad J K=I=-K J, \quad K I=J=-I K
\end{aligned}
$$

1. By the first question of the previous exercise, Q_{8} has exactly 5 conjugacy classes. Check that these classes are $\{1\},\{-1\},\{I,-I\},\{J,-J\}$, and $\{K,-K\}$.
2. Determine the centre Z of Q_{8}.
3. Prove that Q_{8} / Z is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$.
4. Determine the character table of Q_{8}. Any comments?
5. It is standard to realise Q_{8} as a group of complex matrices by identifying I with $\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$, J with $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, and K with $\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$ (since these matrices satisfy the relations defining the group law of Q_{8}, as you may check if you wish). How would you interpret this in terms of the character table of Q_{8} ?

Exercise 4 When $s^{* *} t$ gets real

Nicolas M., lecturer at a college somewhere in Europe, has been pestering some of his students for writing things such as

$$
(\chi \mid \chi)=\frac{1}{\# G} \sum_{g \in G} \chi(g)^{2}
$$

when instead they should have written

$$
(\chi \mid \chi)=\frac{1}{\# G} \sum_{g \in G}|\chi(g)|^{2}
$$

He admits that most of the characters in his lectures were real-valued. But how come?

1. Let G be a finite group. Prove that every character of G is real-valued if and only if every $g \in G$ is conjugate to its inverse.
Hint: Recall that $\chi\left(g^{-1}\right)=\overline{\chi(g)}$.
2. Let $n \in \mathbb{N}$. Prove that every character of S_{n} is real-valued. What about A_{4} ?
