Group representations cheat sheet Nicolas Mascot, Trinity College Dublin March 28, 2023

Definition. Representation of a group, subrepresentation, irreducible representation. Degree = dimension. (Iso)morphism of representations. Direct sum of representations.

Theorem (Maschke). Over \mathbb{C} , every representation of a finite group decomposes into a direct sum of irreducible representations.

Definition. Character: $\chi(g) = \operatorname{Tr} \rho(g)$.

Definition. Trivial character: $\mathbb{1}(g) = 1$ for all $g \in G$.

Proposition. $\chi(1_g) = \deg \chi \pmod{\chi}$

Lemma. Let V_1 , V_2 have characters χ_1 , χ_2 . Then $V_1 \oplus V_2$ has character $\chi_1 + \chi_2$, Hom (V_1, V_2) has character $\overline{\chi_1}\chi_2$, and Hom (V_1, \mathbb{C}) has character $\overline{\chi_1}$.

Theorem. Let ϕ, ψ be characters of G. Then $\phi + \psi$, $\overline{\phi}$, and $\phi \psi$ are characters of G. If deg $\phi = 1$, then ϕ is irreducible. If ϕ is irreducible, so is $\overline{\phi}$. If ϕ is irreducible and deg $\psi = 1$, then $\phi \psi$ is irreducible.

Theorem. Two representations are isomorphic \iff they have the same character.

Definition. Inner product of characters: $(\phi | \psi) = \frac{1}{\#G} \sum_{g \in G} \phi(g) \overline{\psi(g)}.$

Lemma. $(\phi | \psi) = \dim \operatorname{Hom}_{G}(\phi, \psi)$ is always a nonnegative integer.

Theorem. # irreducible representations of G = # conjugacy classes of G. This means that the character table is **square**.

Let W_1, \dots, W_r be the irreducible representations of G. Let χ_1, \dots, χ_r be their characters, and let d_1, \dots, d_r be their degrees.

Remark. WLOG, $W_1 = \mathbb{1}$, $\chi_1 = \mathbb{1}$, $d_1 = 1$.

Theorem. $d_1^2 + \cdots + d_r^2 = \#G$.

Corollary. G Abelian $\iff d_1 = \cdots = d_r = 1$.

Theorem (First orthogonality relations). $(\chi_i | \chi_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$ This expresses that the **rows** of the character table are orthonormal.

Theorem (Second orthogonality relations). Let $g, h \in G$, and let $C = cc_G(g)$ be the conjugacy class of g. Then $\sum_{j=1}^r \chi_j(g) \overline{\chi_j(h)} = \begin{cases} \frac{\#G}{\#C} & \text{if } h \in C, \\ 0 & \text{if } h \notin C. \end{cases}$

This expresses that the **columns** of the character table are orthogonal.

Theorem (Information about G from its character table). For each $j = 1, \dots, r$, let $N_j = \text{Ker } \chi_j = \{g \in G \mid \chi_j(g) = d_j\}$ (remember $d_j = \chi_j(1_G)$). Then the N_j are normal subgroups of G; conversely, every normal subgroup of G is obtained as the intersection of some of the N_j .

The derived subgroup of G is $D(G) = \bigcap_{d_j=1} N_j$.

The centre of G is the set of elements that sit alone in their own conjugacy class.

Theorem (Fundamental). Let V be a representation of G of character ψ . Suppose V decomposes into $(n_1 \text{ copies of } W_1) \oplus \cdots \oplus (n_r \text{ copies of } W_r)$. Then

- $\psi = n_1 \chi_1 + \dots + n_r \chi_r$,
- $n_j = (\psi | \chi_j)$ for all $j = 1, \dots, r$,
- $(\psi \mid \psi) = n_1^2 + \dots + n_r^2$. In particular,
- V is irreducible $\iff (\psi \mid \psi) = 1.$

Definition. Let $V = \bigoplus_i V_i$ be a decomposition of V into irreducible subrepresentations, and let W be an irreducible representation of G. The W-isotypical component of V is the subrepresentation of V formed by the V_i such that $V_i \simeq W$.

Theorem. The projection onto the W_j -isotypical component parallel to the others is

$$\pi_j = \frac{d_j}{\#G} \sum_{g \in G} \overline{\chi_j(g)} \rho(g).$$

This means that $\pi_{j|V_i} = \begin{cases} \text{Id } if V_i \simeq W_j, \\ 0 if V_i \neq W_j. \end{cases}$

Let now H be a subgroup of G. Let ψ be a character of G, and let η be a character of H.

Proposition. Res^{*G*}_{*H*} $\psi = \psi_{|H}$.

Theorem. deg $\operatorname{Ind}_{H}^{G} \eta = [G:H] \operatorname{deg} \eta$.

Lemma (First induced character formula, less useful). For all $g \in G$,

$$(\operatorname{Ind}_{H}^{G}\eta)(g) = \frac{1}{\#H} \sum_{x \in G} \eta^{0}(xgx^{-1}), \quad where \quad \eta^{0}(g) = \begin{cases} \eta(g) & \text{if } g \in H, \\ 0 & \text{if } g \notin H. \end{cases}$$

Theorem (Second induced character formula, more useful). Let $g \in G$. Decompose $\operatorname{cc}_G(g) \cap H = \coprod_j \operatorname{cc}_H(h_j)$. Then $(\operatorname{Ind}_H^G \eta)(g) = \frac{[G:H]}{\#\operatorname{cc}_G(g)} \sum_j \#\operatorname{cc}_H(h_j)\eta(h_j)$ (this means 0 if $\operatorname{cc}_G(g) \cap H = \emptyset$).

Theorem (Frobenius reciprocity, even more useful).

$$(\operatorname{Ind}_{H}^{G} \eta \,|\, \psi)_{G} = (\eta \,|\, \operatorname{Res}_{H}^{G} \psi)_{H}.$$