Group representations cheat sheet
 Nicolas Mascot, Trinity College Dublin
 March 28, 2023

Definition. Representation of a group, subrepresentation, irreducible representation. Degree $=$ dimension. (Iso)morphism of representations. Direct sum of representations.

Theorem (Maschke). Over \mathbb{C}, every representation of a finite group decomposes into a direct sum of irreducible representations.

Definition. Character: $\chi(g)=\operatorname{Tr} \rho(g)$.
Definition. Trivial character: $\mathbb{1}(g)=1$ for all $g \in G$.
Proposition. $\chi\left(1_{g}\right)=\operatorname{deg} \chi$ (meaning $\left.\operatorname{dim} \chi\right)$.
Lemma. Let V_{1}, V_{2} have characters χ_{1}, χ_{2}. Then $V_{1} \oplus V_{2}$ has character $\chi_{1}+\chi_{2}$, $\operatorname{Hom}\left(V_{1}, V_{2}\right)$ has character $\overline{\chi_{1}} \chi_{2}$, and $\operatorname{Hom}\left(V_{1}, \mathbb{C}\right)$ has character $\overline{\chi_{1}}$.

Theorem. Let ϕ, ψ be characters of G. Then $\phi+\psi, \bar{\phi}$, and $\phi \psi$ are characters of G. If $\operatorname{deg} \phi=1$, then ϕ is irreducible. If ϕ is irreducible, so is $\bar{\phi}$. If ϕ is irreducible and $\operatorname{deg} \psi=1$, then $\phi \psi$ is irreducible.

Theorem. Two representations are isomorphic \Longleftrightarrow they have the same character.
Definition. Inner product of characters: $(\phi \mid \psi)=\frac{1}{\# G} \sum_{g \in G} \phi(g) \overline{\psi(g)}$.
Lemma. $(\phi \mid \psi)=\operatorname{dim} \operatorname{Hom}_{G}(\phi, \psi)$ is always a nonnegative integer.
Theorem. \# irreducible representations of $G=\#$ conjugacy classes of G. This means that the character table is square.

Let W_{1}, \cdots, W_{r} be the irreducible representations of G. Let $\chi_{1}, \cdots, \chi_{r}$ be their characters, and let d_{1}, \cdots, d_{r} be their degrees.

Remark. WLOG, $W_{1}=\mathbb{1}, \chi_{1}=\mathbb{1}, d_{1}=1$.
Theorem. $d_{1}^{2}+\cdots+d_{r}^{2}=\# G$.
Corollary. G Abelian $\Longleftrightarrow d_{1}=\cdots=d_{r}=1$.
Theorem (First orthogonality relations). $\left(\chi_{i} \mid \chi_{j}\right)= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j .\end{cases}$
This expresses that the rows of the character table are orthonormal.
Theorem (Second orthogonality relations). Let $g, h \in G$, and let $C=\operatorname{cc}_{G}(g)$ be the conjugacy class of g. Then $\sum_{j=1}^{r} \chi_{j}(g) \overline{\chi_{j}(h)}=\left\{\begin{array}{l}\# G \\ \# C \\ 0 \text { if } h \in C, \\ 0 \text { if } h \notin \text {. }\end{array}\right.$
This expresses that the columns of the character table are orthogonal.

Theorem (Information about G from its character table). For each $j=1, \cdots, r$, let $N_{j}=\operatorname{Ker} \chi_{j}=\left\{g \in G \mid \chi_{j}(g)=d_{j}\right\}$ (remember $d_{j}=\chi_{j}\left(1_{G}\right)$). Then the N_{j} are normal subgroups of G; conversely, every normal subgroup of G is obtained as the intersection of some of the N_{j}.
The derived subgroup of G is $D(G)=\bigcap_{d_{j}=1} N_{j}$.
The centre of G is the set of elements that sit alone in their own conjugacy class.
Theorem (Fundamental). Let V be a representation of G of character ψ.
Suppose V decomposes into $\left(n_{1}\right.$ copies of $\left.W_{1}\right) \oplus \cdots \oplus\left(n_{r}\right.$ copies of $\left.W_{r}\right)$. Then

- $\psi=n_{1} \chi_{1}+\cdots+n_{r} \chi_{r}$,
- $n_{j}=\left(\psi \mid \chi_{j}\right)$ for all $j=1, \cdots, r$,
- $(\psi \mid \psi)=n_{1}^{2}+\cdots+n_{r}^{2}$. In particular,
- V is irreducible $\Longleftrightarrow(\psi \mid \psi)=1$.

Definition. Let $V=\bigoplus_{i} V_{i}$ be a decomposition of V into irreducible subrepresentations, and let W be an irreducible representation of G. The W-isotypical component of V is the subrepresentation of V formed by the V_{i} such that $V_{i} \simeq W$.

Theorem. The projection onto the W_{j}-isotypical component parallel to the others is

$$
\pi_{j}=\frac{d_{j}}{\# G} \sum_{g \in G} \overline{\chi_{j}(g)} \rho(g)
$$

This means that $\pi_{j \mid V_{i}}=\left\{\begin{array}{r}\text { Id if } V_{i} \simeq W_{j}, \\ 0 \text { if } V_{i} \nsim W_{j} .\end{array}\right.$
Let now H be a subgroup of G. Let ψ be a character of G, and let η be a character of H.

Proposition. $\operatorname{Res}_{H}^{G} \psi=\psi_{\mid H}$.
Theorem. $\operatorname{deg} \operatorname{Ind}_{H}^{G} \eta=[G: H] \operatorname{deg} \eta$.
Lemma (First induced character formula, less useful). For all $g \in G$,

$$
\left(\operatorname{Ind}_{H}^{G} \eta\right)(g)=\frac{1}{\# H} \sum_{x \in G} \eta^{0}\left(x g x^{-1}\right), \quad \text { where } \quad \eta^{0}(g)=\left\{\begin{array}{l}
\eta(g) \text { if } g \in H, \\
0 \text { if } g \notin H .
\end{array}\right.
$$

Theorem (Second induced character formula, more useful). Let $g \in G$. Decompose $\operatorname{cc}_{G}(g) \cap H=\coprod_{j} \mathrm{cc}_{H}\left(h_{j}\right)$. Then $\left(\operatorname{Ind}_{H}^{G} \eta\right)(g)=\frac{[G: H]}{\# \operatorname{cc}_{G}(g)} \sum_{j} \# \mathrm{cc}_{H}\left(h_{j}\right) \eta\left(h_{j}\right) \quad$ (this means 0 if $\left.\mathrm{cc}_{G}(g) \cap H=\emptyset\right)$.

Theorem (Frobenius reciprocity, even more useful).

$$
\left(\operatorname{Ind}_{H}^{G} \eta \mid \psi\right)_{G}=\left(\eta \mid \operatorname{Res}_{H}^{G} \psi\right)_{H} .
$$

