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Question 1 Subgroups for appetiser

Sketch a diagram showing all the subgroups of G when:

1. G = (Z/2Z)× (Z/2Z),

2. G = V4 = {Id, (12)(34), (13)(24), (14)(23)} < S4,

3. G = S3,

4. G = Z/nZ, for n up to 12.

Solution 1

1. G has order 4, so any nontrivial subgroup must have order 2. A group of order 2 must

be of the form {1G, g} where g2 = 1G but g ̸= 1G, i.e. g has order exactly 2; conversely,

if g has order exactly 2, then {1G, g} is a subgroup of G. Since 1G = (0, 0) and since

all the other elements of G have order 2:

{(0, 0)}
2

2
2

{(0, 0), (1, 0)} {(0, 0), (1, 1)} {(0, 0), (0, 1)}

G
2

2
2

2. Same logic as for (Z/2Z)× (Z/2Z) (and in fact these two groups are isomorphic).

{Id}
2

2
2

{Id, (12)(34)} {Id, (13)(24)} {Id, (14)(23)}

G
2

2
2

3. This time#G = 6 so the possible orders for subgroups are 2 and 3. As before, subgroups

of order 2 correspond to elements of order 2, i.e. transpositions in this case. Similarly,

if H is a subgroup of order 3 and Id ̸= g ∈ H, then by Lagrange g must have order 3
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so H = {Id, g, g2 = g−1}; and conversely any element of order 3 (i.e. 3-cycle) gives us

a subgroup of order 3. So

{Id}
2 2

2

3{Id, (12)} {Id, (13)} {Id, (23)}

{Id, (123), (132)} = A3

G

3 3
3

2

4. Subgroups of cyclic groups are also cyclic. Besides, for each d | n we have the subgroup

dZ/nZ ≃ Z/n
d
Z, and that’s all the subgroups.

For n = 1, G is the trivial group.

For n = 2, 3, 5, 7, 11, n is prime, so no nontrivial subgroup:

{0} ≃ nZ/nZ
n

Z/nZ

The remaining cases are a little more interesting:

{0}

2

2Z/4Z ≃ Z/2Z

2

Z/4Z

{0}
2

33Z/6Z ≃ Z/2Z

3
2Z/6Z ≃ Z/3Z

2

Z/6Z

{0}

2

4Z/8Z ≃ Z/2Z

2

2Z/8Z ≃ Z/4Z

2

Z/8Z
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{0}

3

3Z/9Z ≃ Z/3Z

3

Z/9Z

{0}
2 3

6Z/12Z ≃ Z/2Z

2
3

4Z/12Z ≃ Z/3Z

2

3Z/12Z ≃ Z/4Z

3

2Z/12Z ≃ Z/6Z

2

Z/12Z

Question 2 Bookwork

Let K ⊂ L be a finite extension, and let Ω ⊃ K be algebraically closed. Which inequalities

do we always have between [L : K], #AutK(L), #HomK(L,Ω)? When are they equalities?

State equivalent conditions.

Solution 2

We always have

#AutK(L) ≤ #HomK(L,Ω) ≤ [L : K].

The left inequality is an equality iff. L is normal over K, which means that there exists

F (x) ∈ K[x] such that L is (K-isomorphic to) the splitting field of F over K. An equivalent

characterisation is that any irreducible P (x) ∈ K[x] having one root in Lmust split completely

over L.

The right inequality is an equality iff. L is a separable extension of K, which means that

the minpoly over K of any element of L is separable.

Question 3 Yoga with the Galois correspondence

Let L/K be a finite Galois extension with Galois group G = Gal(L/K). Let K ⊆ E1, E2 ⊆ L

be intermediate extensions, and let H1, H2 ⩽ G be the corresponding subgroups.

We denote by E1E2 the subfield of L generated by E1 and E2, and by H1H2 the subgroup

of G spanned by H1 and H2.
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Find the intermediate extensions corresponding toH1H2 and toH1∩H2, and the subgroups

corresponding to E1E2 and to E1 ∩ E2.

Solution 3

Let E correspond to H1 ∩ H2, and let H correspond to E1E2. The Galois correspondence

being inclusion-reversing, we know that E will be bigger than E1 and E2, and that H will be

bigger than H1H2. We are actually going to prove that E = E1E2 and that H = H1H2.

First, a “down-to-earth” proof. We will be relying a lot on the Galois correspondence

being inclusion-reversing.

Since E1E2 ⊇ E1, we have Gal(L/E1E2) ⩽ Gal(L/E1) = H1; similarly, Gal(L/E1E2) ⩽

H2, whence Gal(L/E1E2) ⩽ H1 ∩ H2. The reverse inclusion Gal(L/E1E2) ⩾ H1 ∩ H2 is

proved by noticing that any element of H1 ∩H2 acts trivially on E1 and on E2, and therefore

of E1E2.

Similarly, H1H2 ⩾ H1 so LH1H2 ⊂ LH1 = E1, and LH1H2 ⊆ E2 by the same logic, so

LH1H2 ⊆ E1∩E2. The reverse inclusion L
H1H2 ⊇ E1∩E2 is trickier to prove directly; however,

it is equivalent by the Galois correspondence to the statement that H1H2 ⩽ Gal(L/E1∩E2),

which we are now going to prove: E1 ⊇ E1 ∩ E2 so H1 = Gal(L/E1) ⩽ Gal(L/E1 ∩ E2),

and by the same logic H2 ⩽ Gal(L/E1 ∩ E2). Therefore H1 ∪ H2 ⊆ Gal(L/E1 ∩ E2),

so H1H2 ⩽ Gal(L/E1 ∩ E2) since the RHS is a subgroup whereas the LHS is the smallest

subgroup containing H1 ∪H2. This completes this proof.

However, a much more conceptual proof is possible: H1 ∩H2 (respectively H1H2) is the

largest subgroup contained both in H1 and H2 (respectively, containing both H1 and H2), i.e.

they are the places where H1 and H2 merge (above and below) in the diagram of subgroups of

Gal(L/K). Similarly, E1E2 and E1∩E2 are the places where E1 and E2 merge in the diagram

of intermediate extensions. But the Galois correspondence says that these two diagrams are

the same, whence the result.
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Question 4 Galois group computations

Determine the Galois group over Q of the polynomials below, and say if they are solvable by

radicals over Q: x3 − x2 − x− 2, x3 − 3x− 1, x3 − 7, x5 + 21x2 + 35x+ 420,

x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1.

Solution 4

Note: By Exercise 6, we have a general method for degree 3, based on whether the polynomial

has a rational root, and whether its discriminant is a square in Q. This allows us to deal with

the first 3 polynomials.

1. Looking for rational roots, we find the factorisation f = (x − 2)(x2 + x + 1). The

second factor has ∆ = −3 < 0 so is irreducible over R and hence over Q. As a result,

the polynomial is separable and has Galois group {Id} × S2. This is Abelian, hence

solvable, so this polynomial is solvable by radicals.

2. No rational roots, so irreducible (since degree 3). disc = 81 = 92 so A3. This group is

Abelian, hence solvable, so this polynomial is solvable by radicals.

3. No rational roots, so irreducible (since degree 3). disc = −33 · 72 is clearly not a square

in Q, so S3. This group is solvable because Id ◁A3 ◁ S3 has Abelian factors, so this

polynomial is solvable by radicals.

Note: since S3 is solvable, any subgroup is also solvable, so any equation of degree 3 is

solvable by radicals.

4. Eisenstein at 7 so irreducible, so transitive Galois group. Mod 2, factors as

x5 + x2 + x = x(x4 + x+ 1).

The second factor is irreducible: if not, it would have a factor of degree 1 or 2, but

gcd(x4+x+1, x22−1) = gcd(x4+x+1, x4−1−(x4+x+1)) = gcd(x4+x+1, x) = 1

so it has no irreducible factor of degree dividing 2. So we have a 4-cycle.
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Mod 3, factors as

x5 − x = (x− 1)x(x+ 1)(x2 + 1)

with x2 + 1 irreducible mod 3 (degree ≤ 3, no roots), so we have a 2-cycle.

Conclusion: S5. We know that this is not a solvable group, so this polynomial is not

solvable by radicals.

5. This is the cyclotomic polynomial Φ11(x), so Galois group (Z/11Z)×. This is Abelian,

hence solvable, so this polynomial is solvable by radicals even though it has degree ≥ 5

(indeed, the roots are 11
√
1...)

Question 5 From the 2019 exam

Let K be a field, let F (x) ∈ K[x] be separable and irreducible over K, and let α be a root

of F (x) (in some extension of K). Suppose that GalK(F ) is Abelian. Prove that K(α) is a

splitting field of F (x) over K.

Show that all the hypotheses are necessary (give counter-examples).

Solution 5

First proof: Let L be the splitting field of F overK, so that Gal(L/K) = GalK(F ) is Abelian,

and let H = Gal(L/K(α)) be the subgroup corresponding to the subextension K(α). We

want to prove that K(α) contains all the roots of F . But since Gal(L/K) is Abelian, all its

subgroups are automatically normal, so H ◁G, so K(α)/K is Galois and therefore normal. As

F (x) ∈ K[x] is irreducible over K and has a root in the normal extension K(α), it actually

has all its roots in K(α) by one of the characterisations of normal extensions.

Second proof: Let α1 = α, α2, · · · , αd be the roots of F in L, where d = degF since

F is separable. Then G = GalK(F ) should be thought of as a subgroup of Sd permuting

these roots. Let αj be any of the roots of F ; then the subgroup Hj of G corresponding to

the subextension K(αj) of L is the stabiliser of αj. As F is irreducible, G is transitive, so we

can find a σ ∈ G such that αj = σ(α1); but then the stabiliser Hj is the conjugate σH1σ
−1

of H1, and therefore agrees with H1 as conjugation does nothing in the Abelian group G.
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As Hj = H1, the Galois correspondence shows that K(αj) = K(α1); it follows that K(α1)

contains all the roots of F .

Variant of the second proof (more focused on the Galois correspondence): α1 and αj

are conjugate over K as they have the same minimal polynomial over K (namely F (x)), so

K(α1) and K(αj) are conjugate, so the corresponding subgroups of G are conjugate in G.

But conjugacy in G does nothing since G is Abelian, so these subgroups are the same, so

K(α1) = K(αj).

As for counterexamples: G being Abelian is of course crucial, as shown by the counterex-

ample K = Q, F (x) = x3− 2. But F (x) being irreducible is also important, as shown by the

counterexample K = Q, F (x) = (x2 − 2)(x2 − 3).

Question 6 Correspondence in degree 3

Note: This exercise has a lot of overlap with the next one.

Let K be a field, and F (x) ∈ K[x] be separable and of degree 3. Denote its 3 roots in

its splitting field L by α1, α2, α3.

1. What are the possibilities for GalK(F )? How can you tell them apart?

2. For each of the cases found in the previous question, sketch the diagram showing all

the fields K ⊂ E ⊂ L and identifying these fields. In particular, locate K(α1), K(α2),

K(α3), K(α1, α2), etc.

3. In which of the cases above is the stem field of F isomorphic to its splitting field?

(Warning: there is a catch in this question.)

Solution 6

Some general remarks first. In any case, GalK(F ) is a subgroup of S3 acting on the roots

of F ; the only such subgroups are S3, A3, {Id×S2}, and {Id}. Besides, we know that

α1 + α2 + α3 ∈ K by Vieta’s formulas (it is the negative of the coefficient of x2 in F ), so

α3 = (α1 + α2 + α3)− α1 − α2 ∈ K(α1, α2; as a result, we always have

K(α1, α2) = K(α1, α2, α3).
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We can also recover this fact by Galois theory: if σ ∈ Gal(K(α1, α2, α3)/K(α1, α2)), then

σ ∈ §3 fixes 1 and 2, so it must be the identity. Therefore K(α1, α2, α3) and K(α1, α2) both

correspond to the same subgroup, namely {Id}, so they are the same field.

Similarly, we have

K(α1, α3) = K(α2, α3) = K(α1, α2, α3).

Let us now examine the possible cases.

Suppose first that F is irreducible over K, and that discF is not a square in K. Then

GalK(F ) is a transitive subgroup not contained in A3, so it is S3. To find the intermediate

fields, we start with the subgroups:

{Id}
2

2
2

3{Id, (12)}

3

{Id, (23)}

3

{Id, (13)}

3 A3

2

S3

Since {Id, (23)} is the stabiliser of α1, the corresponding field is K(α1), which is indeed an

extension of K of degree 3 since F , being irreducible, is the minpoly of α1. Similarly for

K(α2) and K(α3). Finally, let E correspond to A3; then the extension E ⊂ K(α1, α2, α3) is

Galois of Galois group A3, so discF is a square in E. Besides [E : K] = [S3 : A3] = 2 and
√
discF ̸∈ K by assumption, so E = K(

√
discF ). We thus get

K(α1, α2, α3)
2

2
2

3K(α3)

3

K(α2)

3

K(α1)

3 K(
√
discF )

2

K
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In particular, the stem fieldsK(α1),K(α2),K(α3), which are all isomorphic (toK[x]/F (x),

that’s a theorem) but distinct, are smaller than the splitting field K(α1, α2, α3) in this case.

Suppose now that F is irreducible and discF is a square in K. Then GalK(F ) = A3

since it is transitive and contained in A3. Since A3 ≃ Z/3Z has prime order, it cannot have

any nontrivial subgroup, so by the Galois correspondence the only intermediate fields are

K(α1, α2, α3)

#A3=3

K.

Since F is irreducible over K, it has no root in K, so α1 ̸∈ K, so K(α1) ⊋ K, so

K(α1) = K(α1, α2, α3).

We can also see this by noting that the corresponding subgroup is the stabiliser of 1 in A3,

which is reduced to {Id}. Similarly

K(α2) = K(α3) = K(α1, α2, α3).

So this time, the stem fields K(α1), K(α2), K(α3) are all the same (not only up to isomor-

phism), and agree with the splitting field K(α1, α2, α3).

Suppose now that F factors as 1 + 2 over K, and let α1 be the root of F in K. Then

F (x) = (x − α1)G(x), where G(x) = (x − α2)(x − α3) is irreducible over K. In particular

GalK(F ) = Id×GalK(G) = Id×S2. Again this does not have any nontrivial subgroups, so

the only intermediate fields are

K(α1, α2, α3)

2

K.

We have K(α1) = K, but K(α2) = K(α3) = K(α1, α2, α3).
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Finally, if F factors completely over K, then all the αi are in K, so the only intermediate

field is

K = K(α1, α2, α3)

which is of course also K(αi) for any i. This checks out with Galois theory, since in this case

GalK(F ) = {Id} has only one subgroup (including itself and{Id}, which is the same thing in

this case).

In the last two cases, there is no stem field anymore since F is not irreducible (that was

the catch).
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Question 7 Cube roots (From the 2021 exam)

Note: This exercise has a lot of overlap with the previous one.

Let K be a subfield of C. Let 0 ̸= a ∈ K, and let α ∈ C be such that α3 = a. Let

f(x) = x3 − a ∈ K[x],

and let S ⊂ C be the splitting field of f(x) over K.

Finally, let ζ = e2πi/3 = −1+i
√
3

2
∈ C.

Note that a may or may not be a cube in K, and that ζ may or may not lie in K.

1. (a) Prove that if a is not a cube in K, then f(x) is irreducible over K.

(b) Prove that [K(ζ) : K] ⩽ 2.

(c) Express the complex roots of f(x) in terms of α and ζ.

In what follows, we denote these roots by α0 = α, α1, and α2.

(d) Prove that S ∋ ζ.

(e) Prove that S is a Galois extension of K.

In what follows, we write G for Gal(S/K), and we view G as a subgroup of S3

acting on α0, α1, α2.

2. In each of the following situations:

(a) a is not a cube in K and ζ ̸∈ K,

(b) a is not a cube in K but ζ ∈ K,

(c) a is a cube in K but ζ ̸∈ K,

(d) a is a cube in K and ζ ∈ K,

determine [S : K], explain how G acts on α0, α1, α2, explain how G acts on ζ, draw a

diagram showing all the intermediate fields K ⊆ E ⊆ S, and say which of these E are

Galois over K. Justify your answers.

Page 12 of 25

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2023



MAU34101

Solution 7

1. (a) Since f(x) has degree 3, if it were reducible, then it would have a root in K.

(b) ζ is a root of the polynomial Φ3(x) = x2+x+1 ∈ K[x], and is therefore algebraic

of degree at most 2 over K.

(c) Since ζ3 = 1, clearly αj = ζjα is a root of f(x) for j = 0, 1, 2. These roots are

pairwise distinct, e.g. since α2 = α1 would force 0 = ζ(ζ − 1)α, whence α = 0 as

ζ, ζ − 1 ̸= 0, in contradiction with our assumption that a ̸= 0.

(d) By definition, S = K(α0, α1, α2). Therefore, ζ = α1/α0 ∈ S.

(e) Since S/K is a splitting field, it is normal. Besides, it is separable since K, being

a subfield of C, has characteristic 0 and is therefore perfect.

2. (a) f(x) is irreducible over K by question 1a, so [K(α) : K] = 3, so 3 | [S :

K(α)][K(α) : K] = [S : K] = #G. Besides, question 1b forces [K(ζ) : K] = 2,

so 2 | #G by the same argument. Therefore #G ⩾ 6; but since G ⩽ S3,

necessarily G is the whole of S3, so in particular [S : K] = 6.

The non-trivial subgroups of G are the ones of order 2, formed of Id and of a

transposition, and the alternating group A3. The subgroup lattice is thus

{Id}

H0

2

H1

2

H2

2

A3

3

S3

3 3 3

2

where for each j = 0, 1, 2, Hj is the subgroup spanned by the transposition that

fixes j.

We have [SHj : K] = [G : Hj] = 3, and αj ∈ SHj so K(αj) ⊆ SHj , whence

SHj = K(αj) by degrees since f(x) is the minimal polynomial of αj over K.

The 3-cycles fix ζ = α1

α0
= α2

α1
= α0

α2
, so K(ζ) ⊆ SA3 , and again that’s an equality

since [SA3 : K] = [G : A3] = 2.
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We deduce the following diagram:

S

K(α0)
2

K(α1)
2

K(α2)
2

K(ζ)

3

K

3 3 3

2

In particular, an element of G fixes ζ iff. it lies in A3; else, it takes it to its other

conjugate, which is ζ2 since it is the other root of x2+x+1, whose roots multiply

to 1.

The only normal subgroups of G are the trivial group, G, and A3; therefore the

only intermediate extensions which are Galois over K are S, K, and K(ζ).

(b) By the same logic as in the previous question, [K(α0) : K] = 3. However, since

ζ ∈ K, we then have αj ∈ K(α0) for all j. It follows that K(α0) ⊆ S =

K(α0, α1, α2) ⊆ K(α0), so S = K(α0). In particular, G is a subgroup of S3 of

order [S : K] = 3, so G = A3. This means that G permutes the αj cyclically;

besides, it fixes ζ since ζ ∈ K. Finally, since G has no proper subgroups, there

is no intermediate field strictly between S and K. Obviously, both S and K are

Galois over K.

(c) Let b ∈ K such that b3 = a. Then b is a root of f(x), so it is one of the αj;

WLOG α0 = b ∈ K. If we had α1 ∈ K, then ζ = α1/α0 ∈ K, absurd; similarly,

if α2 ∈ K, then ζ = α0/α2 ∈ K, absurd. So f(x) has exactly one root and

one irreducible factor of degree 2, so G ⩽ S1 × S2 whence #G ⩽ 2. On the

other hand, #G = [S : K] > 1 since ζ ∈ S. Therefore [S : K] = #G = 2,

so G ≃ Z/2Z swapping the two roots α1, α2 of f(x) which do not lie in K, and

swapping ζ and its conjugate ζ2. Since G has no nontrivial subgroups, there are

no nontrivial intermediate fields. Obviously, both S and K are Galois over K.

(d) Again let b ∈ K such that b3 = a. Then b is one of the αj, which thus lies in K,

so they all lie in K since ζ ∈ K. Therefore S = K, [S : K] = 1, and G is the

trivial group. Obviously, S = K is Galois over itself.
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Note: One may also point out that disc f = −27a2 = −3(3a)2, so that G ⩽ A3 iff.

−3 is a square in K iff.
√
−3 ∈ K iff. ζ = −1+

√
−3

2
lies in K.
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Question 8 The fundamental theorem of algebra

The goal of this Question is to use Galois theory to prove by contradiction that C is algebraically

closed.

You may use without proof the following facts:

• If F (x) ∈ R[x] is a polynomial of odd degree, then F (x) has at least one root in R.

• If G(x) ∈ C[x] is a polynomial of degree 2, then G(x) has at least one root in C.

• If G is a finite group of cardinal #G = 2ab with b odd, then G has at least one subgroup

of cardinal 2a.

• If H is a finite group whose cardinal #H = 2a is a power of 2, then for each integer

0 ⩽ n ⩽ a, H has at least one subgroup of cardinal 2n.

1. Prove that if C were not algebraically closed, then there would exist a finite nontrivial

extension K of C (that is to say K ⊋ C and 1 < [K : C] < ∞).

2. Deduce that there would exist a finite nontrivial extension C ⊊ L such that the extension

R ⊊ L is Galois.

3. Prove that [L : R] would necessarily be a power of 2.

4. Prove that there would exist an intermediate field C ⊊ F ⊆ L such that [F : C] = 2.

5. Derive a contradiction.

Note: the admitted facts at the top of the Question follow respectively from elementary

calculus (limits at ±∞ and then intermediate value theorem), the formula to solve quadratic

equations and the fact that every element of C admits a square root in C, Sylow’s theorem,

and Sylow’s theorem again.

Solution 8

1. If C is not algebraically closed, then there exists an irreducible polynomial P (x) ∈ C[x]

of degree d ⩾ 2. We may then take K to be the stem field C[x]/(P ), which satisfies

[K : C] = d.
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2. The tower law ensures that [K : R] = [K : C][C : R] = 2d, so K is a finite extension

of R. Its normal closure L (over R) is thus also a finite extension of R, which is a

nontrivial extension of C since it contains K ⊋ C.

3. Let G = Gal(L/R). This is a finite group of order [L : R], which we may factor as 2ab

with b odd. By the admitted facts above, there exists a subgroup H ⊂ G of order 2a

and thus of index b. The Galois correspondence attaches to it an intermediate extension

E = LH such that [E : R] = b.

We claim that E = R. Indeed, let e ∈ E. Then e is algebraic over R since [E : R] =

b < ∞, and the degree of its minimal polynomial over R is [R(e) : R], which divides

[E : R] = b by the tower law, and is therefore odd. This polynomial must thus have a

root in R, which contradicts its irreducibility unless it has degree 1; but this means that

e ∈ R.

In conclusion, b = [E : R] = 1, so #Gal(L/R) = 2ab = 2a.

4. We are in the following situation: R ⊊ C ⊊ L, with L Galois of degree 2a over R.

In particular, L is also Galois over C, of degree 2a−1 by the tower law (in particular

a ⩾ 2); therefore Gal(L/C) makes sense and is a group of cardinal 2a−1. By the above,

it admits a subgroup of order 2a−2, and thus of index 2. The corresponding field F

satisfies R ⊊ C ⊊ F ⊊ L and [F : C] = 2.

5. Let f ∈ F . As [F : C] = 2 < ∞, f is algebraic over C, of degree 1 or 2. If that

degree were 2, then its minimal polynomial over C would be an irreducible polynomial

of degree 2 over C, and we have agreed that such a thing does not exist. Therefore this

degree is 1, so f ∈ C.

This proves that F = C, in contradiction with [F : C] = 2.
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Question 9 A cosine formula

1. Prove that the group (Z/17Z)× is cyclic, and find a generator for it.

2. Let c = cos(2π/17). Prove that c is algebraic over Q.

3. Determine the conjugates of c over Q, and its degree as an algebraic number over Q.

4. Explain how one could in principle use Galois theory (and a calculator / computer) to

find an explicit formula for c.

Solution 9

1. This group is cyclic (of order 16 of course) because 17 is prime. Let us look for a

generator. 2 does not work because 24 = 16 ≡ −1 mod 17, so 28 = 1, so 2 has order

8 < 16. However 3 is a generator since

32 = 9, 34 = 92 = 81 ≡ −4, 38 ≡ (−4)2 ≡ −1.

2. Let ζ = exp(2πi/17), a primitive 17-th root of 1. Since ζ is clearly algebraic over Q

(as a root of x17 − 1 / even better: of Φ17(x)), Q(ζ) is a finite extension of Q. As a

result, it is an algebraic extension of Q, which means that all its elements are algebraic

over Q. This applies in particular to c = ζ+ζ−1

2
.

3. Let ζ as above, and L = Q(ζ). We know that L is Galois over Q; since c ∈ L, this

implies that the conjugates of c are the σ(c) for σ ∈ Gal(L/Q). It remains to determine

them explicitly.

We know that Gal(L/Q) ≃ (Z/17Z)×. By the first question, Gal(L/Q) is cyclic of

order 16, and generated by σ3 : ζ 7→ ζ3.

In particular, the conjugates of c are its orbit under σ3. Using c = ζ+ζ−1

2
(and some

patience), we compute that

σ3(c) =
ζ3 + ζ−3

2
= cos(6π/17),

σ2
3(c) =

ζ9 + ζ−9

2
= cos(18π/17) =

ζ−8 + ζ8

2
= cos(19π/17),
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σ3
3(c) =

ζ27 + ζ−27

2
=

ζ−7 + ζ7

2
= cos(14π/17),

σ4
3(c) =

ζ−21 + ζ21

2
=

ζ−4 + ζ4

2
= cos(8π/17),

σ5
3(c) =

ζ−12 + ζ12

2
=

ζ5 + ζ−5

2
= cos(10π/17),

σ6
3(c) =

ζ15 + ζ−15

2
=

ζ−2 + ζ2

2
= cos(4π/17),

σ7
3(c) =

ζ−6 + ζ6

2
= cos(12π/17),

σ8
3(c) =

ζ−18 + ζ18

2
=

ζ + ζ−1

2
= cos(2π/17) = c,

so we stop here (note that since 38 ≡ −1, we already knew that σ8
3 would fix c, so the

orbit would have length ⩽ 8): the conjugates of c are

c = cos(2π/17), cos(6π/17), cos(18π/17), cos(14π/17),

cos(8π/17), cos(10π/17), cos(4π/17), cos(12π/17).

Using a calculator, one checks that they are all distinct. Since they are the roots of the

minimal polynomial of c, we see that the degree of c as an algebraic number is 8.

4. Since Gal(L/Q) is cyclic of order 16, it has precisely one subgroup of the each of

the following orders: 1, 2, 4, 8, 16 (and these all all its subgroups). The Galois

correspondence show that there is a succession of extensions of degree 2 starting at Q

an culminating at L. This are all the subfields of L (since these were all the subgroups).

The field Q(c) must be one of them; since this field has degree 8 over Q by the above,

it is actually the second-to-top one (the top one being L).

Starting with Q, we can now find an explicit generator for each subfield by expressing

a generator in terms of ζ, finding its other conjugate over the subfield just below it

by using the Galois action (there will be only one other conjugate since each extension

step is of degree 2), deducing its minimal polynomial over that subfield, and solving it

(which we can since it will have degree 2).

For instance, for the first step, we see that α =
∑7

k=0 σ
2k
3 (ζ) lies in the extension of

degree 2 over Q since it is fixed by σ2
3 (which generates the corresponding subgroup of
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order 8), and has α′ = σ3(α) =
∑7

k=0 σ
2k+1
3 (ζ) as a conjugate. Sine one checks with a

calculator that α′ ̸= α, we have that α generates the extension of degree 2 (and so does

α′), and satisfies its minimal polynomial A(x) = (x − α)(x − α′) ∈ Q[x]. Expressing

it in terms of ζ (which is really painful without a computer) yields A(x) = x2 + x− 4,

which shows that α, α′ = −1±
√
17

2
, so this extension is actually Q(

√
17).

Next, we find similarly that β =
∑3

k=0 σ
4k
3 (ζ) lies in the extension of degree 4, and

generates it since it is distinct from its conjugate β′ = σ3(β) over Q(α); and since it is

a root of B(x) = (x− β)(x− β′) which must lie in Q(α)[x], we can express it in terms

of α.

With a lot of courage (or in my case, a good computer program), we find that B(x) =

x2 − α + 1 whence β, β′ = α±
√
α2−4
2

. Continuing this way, we finally arrive to the

fantastically horrible formula

cos
2π

17
=

−1 +
√
17 +

√
2
√

17−
√
17 + 2

√
17 + 3

√
17−

√
170 + 38

√
17

16
.

Question 10 Another cosine formula

Let L = Q(z) where z = eiπ/10 which is a primitive 20-th root of unity, and let c = z+ z−1 =

2 cos(π/10). We admit without proof that (Z/20Z)× ≃ Z/2Z×Z/4Z, the first factor being

generated by −9 mod 20, and the second factor being generated by −3 mod 20.

1. What is the minimal polynomial of z over Q?

2. Figure out the diagram of subgroups of (Z/20Z)×.

You may use without proof the fact that any group of order 4 is isomorphic either to

Z/4Z or to Z/2Z× Z/2Z. You should find 8 subgroups in total.

3. Deduce the diagram of intermediate fields between Q and L.

You may want to use a calculator / computer.

4. Find a radical expression for c.
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Solution 10

Let L = Q(z) where z = eiπ/10 which is a primitive 20-th root of unity, and let c = z+ z−1 =

2 cos(π/10). We admit without proof that (Z/20Z)× ≃ Z/2Z×Z/4Z, the first factor being

generated by −9 mod 20, and the second factor being generated by −3 mod 20.

1. As z is a primitive 20-th root of unity, its minpoly over Q is the cyclotomic polynomial

Φ20(x). We know that its degree is ϕ(20) = #(Z/20Z)× which is 4× 2 = 8 from the

information we are given.

In order to actually calculate Φ20(x), we rely on the formula

xn − 1 =
∏
d|n

Φd(x)

(filtration of the n-th roots of unity by their order in the group µn). We could use this

formula iteratively, but here we can save some work:

Φ20(x) =
x20 − 1

Φ1(x)Φ2(x)Φ4(x)Φ5(x)Φ10(x)
=

x20 − 1

Φ1(x)Φ2(x)Φ4(x)Φ5(x)
x10−1

Φ1(x)Φ2(x)Φ5(x)

=
x10 + 1

Φ4(x)

but Φ4(x) = (x + i)(x − i) = x2 + 1, so by the formula for the sum of a geometric

progression,

Φ20(x) =
x10 + 1

x2 + 1
= x8 − x6 + x4 − x2 + 1.

2. Note: the isomorphism (Z/20Z)× ≃ Z/2Z× Z/4Z comes from the Chinese remainder

theorem, which informs us that (Z/20Z)× ≃ (Z/4Z)× × (Z/5Z)×. As 5 is prime,

(Z/5Z)× is cyclic of order ϕ(5) = 5− 1 = 4; the fact that (Z/4Z)× is cyclic is a happy

accident. The chosen generators satisfy −9 ≡ −1 generates (Z/4Z)× but is trivial in

(Z/5Z)×, and vice-versa for −3.

Subgroups of order 2 correspond bijectively to elements of order 2. In Z/2Z × Z/4Z,

these are (1, 0), (1, 2), (0, 2), which correspond in (Z/20Z)× to (−9)1(−3)0 = −9,

(−9)1(−3)2 = −1, and (−9)0(−3)2 = 9, where the subgroups {1,−9}, {1,−1}, and

{1, 9}.
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A subgroup of order 4 isomorphic to Z/2Z×Z/2Z must consist of 1 and of 3 elements

of order 2. By the above, the only choice is {1, 9,−1,−9}.

Finally, a subgroup {1, x, x2, x3 = x−1} of order 4 isomorphic to Z/4Z must contain an

element x ∈ (Z/20Z)× of order 4, but beware that this is no longer a bijection since

the same group is also generated by x−1. As (Z/20Z)× ≃ Z/2Z× Z/4Z, its elements

have order either 1 or 2 or 4, so we can find all the elements of order 4 by taking all the

non-identity elements of (Z/20Z)× and discarding the elements of order 2, which we

conveniently have already listed. We thus find two subgroups, namely {1, 3, 9, 7} and

{1,−3, 9,−7}.

It remains to spot which subgroups of order 2 are contained in which subgroups of

order 4. Final answer:

{1}
2

2
2

{1,−9}
2

{1,−1}
2

{1, 9}
2

{1,−9,−1, 9}
2

{1, 3, 9, 7}
2

{1,−3, 9,−7}
2

(Z/20Z)×

3. We know that (Z/20Z)× ≃ Gal(L/Q), where x ∈ (Z/20Z)× corresponds to σx : z 7→

zx.

Thus L{1,−3,9,−7} ∋ z + z−3 + z9 + z−7, which according to a calculator evaluates to

−i (a more rigorous but more painful check would involve checking that the relation

z8 − z6 + z4 − z2 + 1 = 0 implies that (z + z−3 + z9 + z−7)2 = −1). As this field is an

extension of Q of degree 2, it must be Q(i).

Similarly, we observe that (z + z3 + z9 + z7)2 = −5, so L{1,3,9,7} = Q(i
√
5).

Let us move on to H = {1,−1, 9,−9}. Unfortunately, z + z−1 + z−9 + z9 = 0 and

zz−1z−9z9 = 1, so this does not help us determine E = LH . But E also contains

α = (1+ z)(1+ z−1)(1+ z9)(1+ z−9) whose value is apparently more complicated and

therefore more promising. In order to identify α, we observe that H is a subgroup of
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index 2, so that Gal(L/Q)/H = {1, x} ≃ Z/2Z for any x ̸∈ H, for example x = 3.

Therefore, α′ = σ3(α) = (1 + z3)(1 + z−3)(1 + z7)(1 + z−7) is the only other Galois

conjugate of α overQ; in particular, the polynomial (x−α)(x−α′) = x2−(α+α′)x+αα′

has coefficients in Q. Indeed, we find α + α′ = 3 and αα′ = 1, whence α = 3±
√
5

2
and

finally E = Q(α) = Q(
√
5) by degree.

By Exercise 3 (or by looking at the subfield diagram), we immediately deduce that

L{1,9} = Q(
√
5, i, i

√
5) = Q(i,

√
5).

Furthermore, L1,−9 ∋ zz−9 = z−8 which is a root of unity of order 20/ gcd(20,−8) = 5,

so L1,−9 = Q(µ5) = Q(z4) by degree as ϕ(5) = 4.

Finally, we observe that c ∈ E ′ = L1,−1. By hitting c with the elements of (Z/20Z)× )or

even better, by its quotient by {1,−1}), we find that the Galois conjugates of c over Q

are c1 = c, c3, c7, c9, where cm = zm+z−m = 2 cos mπ
10
. That is 4 conjugates (on checks

with a calculator that they are really pairwise distinct) so the minpoly of c over Q has

degree 4, so E ′ = Q(c) by degree (and this also agrees with Q(c3) = Q(c7) = Q(c9)).

Conclusion:

Q(µ20)
2

2
2

Q(µ5)

2

Q(c)

2

Q(i,
√
5)

2

Q(
√
5)

2

Q(i
√
5)

2

Q(i)

2
Q.

4. On the previous diagram, we spot that Q(c)/Q(
√
5) is Galois (all is Abelian, so all sub-

groups are normal) of degree 2 with Galois group {1,−9,−1, 9}/{1,−1} = {±1,±9} ≃

Z/2Z, so the only other conjugate of c over Q(
√
5) is c9. Therefore P (x) = (x −

c)(x − c9) = x2 − ax + b ∈ Q(
√
5)[x], and we can use this to find c if we can

determine its coefficients a = c + c9 and b = cc9 explicitly. For this, we use that

Gal(Q(
√
5)/Q) ≃ Z/frm−eZ is generated by any x ̸∈ {1, 9,−1,−9}, e.g. x = 3.

So the only other conjugate of a (resp. b) is a′ = c3 + c7 (resp. b′ = c3c7). Therefore
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(x−a)(x−a′) ∈ Q[x] so we can solve for a, and similarly for b (see how we are climbing

down the subfield diagram?). We thus find that (x−a)(x−a′) = x2 whence a = a′ = 0

and (x− b)(x− b′) = x2 − 5x+5 so b = 5+
√
5

2
, b′ = 5−

√
5

2
(in this order, as one checks

with approximated values), whence finally

cos
π

10
=

1

2

√
5 +

√
5

2
.

Question 11 Extensions of finite fields are Galois

Let p ∈ N be prime, n ∈ N, and q = pn.

1. Give two proofs of the fact that the extension Fp ⊂ Fq is Galois: one by viewing Fq as

a splitting field, and the other by considering the order of Frob ∈ Aut(Fq).

2. What does the Galois correspondence tell us for Fp ⊂ Fq?

3. Generalise to an arbitrary extension of finite fields Fq ⊂ Fq′ .

Solution 11

1. Recall that

Fq = {x ∈ Fp | xq = x}.

In particular, Fq is the splitting field over Fp of F (x) = xq − x, so it is normal over Fp;

besides, F ′ = −1 has no common factor with F , so F is separable, so Fq is separable

over Fp (we may also argue that Fp, being finite, is perfect).

Second proof: Frob : x 7→ xp ∈ AutFp(Fq). Its iterates are Frob
k : x 7→ xpk , so if Frob

has order o, then every element of Fq is a root of xpo −x, whence po ⩾ q by considering

the degree, i.e. o ⩾ n. SO Frob has at least n distinct iterates in AutFp(Fq), so the

inequality

#AutFp(Fq) ≤ [Fq : Fp] = n

is an equality, so the extension is Galois (cf. question 1). Besides, this proof also show

that the Galois group is cyclic and generated by Frob.
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2. The subgroups of

Gal(Fq/Fp) = ⟨Frob⟩ ≃ Z/nZ

are the

⟨Frobd⟩ ≃ dZ/nZ

for d | n since the former is cyclic by the above. For each d, the corresponding subfield

is

F⟨Frobd⟩
q = {x ∈ Fq | xpd = x} = Fpd

as predicted by the classification of finite fields.

3. By the same arguments as the above, this extension is Galois, with cyclic Galois group

generated by Frobq : x 7→ xq (since it must induce the identity on Fq). The Galois

correspondence then shows that the intermediate fields are the Fqd for d | m, where

q′ = qm, as predicted by the classification of finite fields.

Page 25 of 25

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2023


