
Galois theory — Exercise sheet 3
https://www.maths.tcd.ie/~mascotn/teaching/2023/MAU34101/index.html

Version: November 23, 2023

Submit1 your answers by Monday November 20th, 5PM.

Exercise 1 Galois groups over Q (100 pts)

Prove that the following polynomials have no repeated root in C, and determine
their Galois group over Q. Warning: Some polynomials may be reducible!

1. (10 pts) F1(x) = x3 − 4x+ 6,

2. (10 pts) F2(x) = x3 − 7x+ 6,

3. (10 pts) F3(x) = x3 − 21x− 28,

4. (10 pts) F4(x) = x3 − x2 + x− 1,

5. (60 pts) F5(x) = x5 − 6x+ 3, using without proof the fact that this polynomial
has exactly 3 real roots.

Solution 1

1. Since disc(F1) = −4 · (−4)3− 27 · 62 = −716 is nonzero, F1(x) has no repeated
root, and since −716 < 0 is clearly not a square in Q, GalQ(F1) ̸⊂ A3. Besides
F1(x) is Eisenstein at p = 2, so it is irreducible over Q, so its Galois group is
either S3 or A3. Conclusion:

GalQ(F1) = S3.

2. The possible rational roots of F2(x) are ±1,±2,±3,±6. Checking these, we
find that 1, 2, and −3 are roots of F2(x). Since F2(x) = (x− 1)(x− 2)(x+ 3)
splits completely over Q,

GalQ(F2) = {Id}.

3. Since disc(F3) = −4 · (−21)3 − 27 · (−28)2 = 15876 = 1262 is a nonzero square
in Q, F3(x) has no repeated root, and its Galois group is contained in A3.
Besides F3(x) is Eisenstein at p = 7, so it is irreducible over Q, so its Galois
group is either S3 or A3. Conclusion:

GalQ(F3) = A3 ≃ Z/3Z.
1Preferably in paper form, or by emailing LATEXdocuments to mismet@tcd.ie
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4. The possible roots of F4(x) are ±1. Of these, we check that only +1 is a root.
Dividing F4(x) by (x− 1) reveals that F4(x) = (x− 1)(x2 + 1); in particular,
F4(x) has no repeated root. Since the factor x2 + 1 is clearly irreducible over
Q, we get

GalQ(F4) = Z/2Z
(generated by complex conjugation swapping i and −i).

5. Thanks to the formula

disc(xn + bx+ c) = (−1)n(n−1)/2
(
(1− n)n−1bn + nncn−1

)
,

we compute that

disc(F5) = (−1)5·4/2
(
(−4)4 · (−6)5 + 55 · 34

)
= −1737531.

Since disc(F5) ̸= 0, F5 has no repeated root, so it has 3 real roots and 2
complex-conjugate nonreal roots. We may also say that since disc(F5) < 0, F5

has an odd number of complex conjugate pairs of roots, which forces it to have
2 complex roots and 3 real roots, but this was not required by the question.
Finally, since disc(F5) < 0 is not a square in Q, GalQ(F5) ̸⊂ A5, but this does
not help us identify GalQ(F5).

Mod 2, we have F5(x) ≡ x5 − 1, which has x = 1 s a root. Dividing by x− 1
shows that F5(x) ≡ (x − 1)G(x), where G(x) = x4 + x3 + x2 + x + 1. We
check that G(x) has no root in F2, so it has no linear factor. Besides, we
compute that gcd(G, x4 − x) = 1 (we could see this directly: gcd(G, x4 − x) =
gcd(G − (x4 − x), x4 − x) = gcd(x3 + x2 + 1, x4 − x) = 1 since x3 + x2 + 1,
having degree 3 and no root in F2, is irreducible, and thus has no factor of
degree 1 or 2), so G has no factor of degree 2 either (alternatively we know
that the only irreducible polynomial of degree 2 over F2 is x2 + x + 1, and
G ̸= (x2 + x + 1)2 = x4 + x2 + 1). As a conclusion, G is irreducible, so the
complete factorisation of F5 mod 2 is

(x− 1)(x4 + x3 + x2 + x+ 1),

which shows that GalQ(F5) contains a 4-cycle (which confirms that GalQ(F5) ̸⊂
A5).

Besides, complex conjugation is an element of GalQ(F5) which fixes the 3 real
roots and swaps the 2 complex roots, so it is a 2-cycle.

Finally, F5 is irreducible over Q as it is Eisenstein at p = 3, so GalQ(F5) is a
transitive subgroup of S5.

Since any transitive subgroup of Sn containing an (n− 1)-cycle and a 2-cycle
must be the whole of Sn, we conclude that

GalQ(F5) = S5.

This was the only mandatory exercise, that you must submit before the
deadline. The following exercise is not mandatory; it are not worth any
points, and you do not have to submit it. However, I highly recommend
that you try to solve them for practice, and you are welcome to email me
if you have questions about it. The solutions will be made available with
the solution to the mandatory exercise.
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Exercise 2 The sign of the discriminant

Let F (x) ∈ R[x] be a separable polynomial. Suppose F (x) has r roots in R, and s
complex-conjugate pairs of roots in C \ R (so that degF = r + 2s).

1. Let G = GalR(F ). Describe G: how many elements does it have, and how do
these elements act on the roots of F?

Hint: Distinguish the cases s = 0 and s ̸= 0.

2. Prove that the sign of discF is (−1)s.

Hint: What are the squares in R?

Solution 2

1. By definition G = Gal(S/R) where S = R(roots of F ) is the splitting field of
F (x) over R.
If s = 0, then all the roots of F are real, so S = R, so G = Gal(R/R) = {Id}.
If s > 0, then at least some of the roots of F are not real, so R ⊊ S ⊆ C. As
[C : R] = 2, the only possibility is that S = C. Therefore G = Gal(C/R) =
{Id, c} where c is the complex conjugation, which fixes all real roots and swaps
all non-real roots with their complex conjugates.

2. First of all, discF ̸= 0 since we assume that F is separable. Next, a nonzero
real number is positive iff. it is a square in R, so the hint points to the criterion
for G being contained in the alternating group.

If s = 0 then G = {Id} is obviously contained in the alternating group, so
discF is a square and is therefore positive, so the formula is satisfied in this
case.

Suppose now that s > 0. Then G = {Id, c} where c acts on the roots of F
as the product of s disjoint 2-cycles. Since 2-cycles are odd, we therefore have
ε(c) = (−1)s. As a result, discF is positive iff. discF is a square in R iff. G
is contained in the alternating group iff. ε(c) = +1 iff. s is even, so the result
follows.

Exercise 3 The Trinks polynomial

Reminder: disc(xn + ax+ b) = (−1)n(n−1)/2
(
(1− n)n−1bn + nncn−1

)
.

Let F (x) = x7 − 7x+ 3 ∈ Q[x].

1. Prove that F (x) is separable over Q.

From now on, we denote by G the Galois group of F (x) over Q, and we see it
as a subgroup of S7.
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2. For which prime number(s) p is F (x) not separable mod p?

3. Prove that G is contained in A7.

We admit without proof2 that there are exactly 664,579 prime numbers up
to 107, and that when F (x) is factored mod these primes, we obtain the fol-
lowing factorisations:

Factorisation #Occurrences
Tot. split 3, 906

1 + 1 + 1 + 2 + 2 83, 126
1 + 3 + 3 221, 776
1 + 2 + 4 165, 851
Irreducible 189, 918

Other 2.

4. Give a coarse estimate of #G.

5. Prove that #G is divisible by 3, by 4, and by 7. Use this to refine your estimate
of #G.

Solution 3

Let F (x) = x7 − 7x+ 3 ∈ Q[x].
Reminder: disc(xn + ax+ b) = (−1)n(n−1)/2

(
(1− n)n−1an + nnbn−1

)
.

1. We have F ′(x) = 7x− 7 = 7(x− 1); as F (1) ̸= 0, F and F ′ are coprime, so F
is separable.

2. We know that these are exactly the prime factors of discF , which by the
formula given at the beginning of the exercises evaluates to

(−1)7·6/2
(
(−6)6 ·(−7)7+77 ·36

)
= 77(66−36) = 36 ·77(26−1) = 36 ·77 ·63 = 3878.

(Incidentally, the fact that this is nonzero is another proof of the separability
of F .)

Therefore, these primes are precisely 3 and 7.

3. This follows from the fact that discF = (34 · 74)2 is a square in Q.

4. The two “other” prime numbers are of course 3 and 7, for which we cannot
extract any information since F (x) is not separable mod these primes.

By the Cebotarev density theorem, the probability3 that F mod p splits com-
pletely is 1/#G. Therefore

#G ≈ 664, 579

3, 906
≈ 170.

2With a good computer program, it is actually not very difficult to determine this.
3To make this rigorous, we should give a proper definition of this probability; see https:

//en.wikipedia.org/wiki/Dirichlet_density
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5. Since there exists a prime p (in fact, plenty of them) such that F mod p factors
as 1 + 2 + 4, there exists an element of G of the form (∗)(∗∗)(∗ ∗ ∗∗). Such
an element has order 4, so 4 | #G by Lagrange. Similarly, the fact that a
factorisation of the form 1+ 3+ 3 shows up implies that G ∋ (∗)(∗ ∗ ∗)(∗ ∗ ∗),
so 3 | #G; and finally, the presence of p such that F mod p is irreducible shows
that G contains 7-cycles so that 7 | #G.

Since 3, 4, 7 are pairwise coprime, this means that #G is a multiple of 3 · 4 ·
7 = 84. We estimated #G ≈ 170, and 170/84 ≈ 2, so a better estimate is
#G = 2 · 84 = 168.

Remark: In the symmetric group Sn, conjugation can be calculated as

g(a, b, c, · · · )(x, y, z, · · · ) · · · g−1 = (g(a), g(b), g(c), · · · )(g(x), g(y), g(z), · · · ) · · · ,

so two permutations have the same cycle decomposition type iff. they are
conjugate in Sn. In particular, if two elements of G are conjugate in G, then
they have the same cycle decomposition type (but the converse may not hold,
since they could be conjugates in S7 but not in G). It follows that the set of
elements of G of given cycle decomposition type is a union of conjugacy classes
of G. Since conjugacy classes are disjoint and since the size of a conjugacy
class divides #G, the proportion of such elements is a sum of reciprocals of
divisors of #G. And indeed,

83, 126

664, 579
≈ 1

8
,
221, 776

664, 579
≈ 1

3
,
165, 851

664, 579
≈ 1

4
,
189, 918

664, 579
≈ 2
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.

Note: it can be proved that G is actually isomorphic to PGL3(F2) of auto-
morphisms of the projective plane over F2, which is a simple group of order
168; see for instance https://www.sciencedirect.com/science/article/

pii/0022314X79900209. In fact, trinomials with exotic Galois groups are ex-
tremely rare (see https://people.math.harvard.edu/~elkies/trinomial.
html); this particular polynomial F (x) was discovered by Trinks in 1968.
Nowadays, efficient algorithms are known to determine the Galois group overQ
of any polynomial of any degree; see https://doi.org/10.1112/S1461157013000302.
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