
Galois theory — Exercise sheet 2
https://www.maths.tcd.ie/~mascotn/teaching/2023/MAU34101/index.html

Version: November 6, 2023

Submit1 your answers by Monday November 6th, 4PM.

Exercise 1 From the 2021 exam (100 pts)

Let f(x) = x4 − 5x2 + 1 ∈ Q[x]. We admit without proof that f(x) is irreducible in
Q[x]. Let α ∈ C be a root of f(x), and let K = Q(α).

Note: This is the exercise form the 2021 exam I warned you about in the lectures.
So even if it is possible to find an expression for α in terms of nested square roots,
you are strongly advised to refrain from doing so, and to merely rely on the relation
f(α) = 0 instead.

1. (5 pts) Express the complex roots of f(x) in terms of α.

Hint: Check out 1/α.

2. (20 pts) Prove that K is a Galois extension of Q.

3. (25 pts) Prove that Gal(K/Q) ≃ (Z/2Z) × (Z/2Z), and explain how its ele-
ments act on the conjugates of α.

4. (40 pts) Draw a diagram showing all the intermediate fields Q ⊆ E ⊆ K, and
identifying these intermediate fields explicitly. Justify your answer.

5. (10 pts) Prove that K = Q(
√
3,
√
7).

Solution 1

1. We observe directly that 1/α is also a root of f(x). Since f(x) is even it follows
that ±α and ±1/α are roots of f(x). These are all distinct, because α = −α,
α = 1/α, and α = −1/α would respectively force α = 0, α = ±1, α = ±i,
none of which are roots of f(x). Since f(x) has at most deg f = 4 roots, we
have found all of them.

2. Clearly, the field K = Q(α) agrees with Q(α,−α, 1/α,−1/α), which is the
spitting field of f(x) over Q by the previous question. Besides, f(x) is sepa-
rable since its 4 roots are distinct as explained in the previous question. In
conclusion, K, which is the splitting field over Q of a separable polynomial, is
Galois over Q.

1Preferably in paper form, or by emailing LATEXdocuments to mismet@tcd.ie
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3. Let G = Gal(K/Q). Since f(x) is irreducible and monic, it is the minimal
polynomial of α over Q. It follows that [K : Q] = 4, and that the Q-conjugates
of α are ±α and ±1/α in view of the first question. Since K/Q is Galois, there
exists σ1 (resp. σ2, σ3) in G which takes α to −α (resp. 1/α, −1/α). These
are clearly distinct from each other and from the identity, whence 4 elements
of G. On the other hand, again because K/Q is Galois, #G = [K : Q] = 4,
whence G = {Id, σ1, σ2, σ3}, where

σ1(α) = −α⇝ σ1(−α) = −σ1(α) = α, σ1(1/α) = 1/σ1(α) = −1/α, σ1(−1/α) = −1/σ1(α) = 1/α;

σ2(α) = 1/α⇝ σ2(−α) = −σ2(α) = −1/α, σ2(1/α) = 1/σ2(α) = α, σ2(−1/α) = −1/σ2(α) = −α;

σ3(α) = −1/α⇝ σ3(−α) = −σ3(α) = 1/α, σ3(1/α) = 1/σ3(α) = −α, σ3(−1/α) = −1/σ3(α) = α.

Since K/Q is the splitting field of f(x), we can visualise G as a subgroup of
S4 acting on the 4 conjugates of α; and these identities shows that G consists
precisely of the double transpositions and of the identity. Therefore G ≃ V4 ≃
(Z/2Z)× (Z/2Z).

4. We know from class that the subgroup lattice of G ≃ (Z/2Z)× (Z/2Z) is

{Id}

H1

2

H2

2

H3

2

G.

2 2 2

where Hj = {Id, σj}. Clearly G corresponds to Q, and {Id} corresponds to
K. Let Ej = KHj .

The element β1 = −ασ1(α) = α2 lies in E1, and is a root of x2 − 5x + 1.

Therefore β1 = 5±
√
21

2
∈ E1, so Q(

√
21) ⊆ E1. Since both have degree 2 over

Q (because x2 − 21 is Eisenstein at 3 and [G : H1] = 2), we actually have
E1 = Q(

√
21).

The element β2 = α + σ2(α) = α + 1/α lies in E2, and satisfies

β2
2 =

α4 + 2α2 + 1

α2
=

5α2 − 1 + 2α2 + 1

α2
= 7.

Therefore Q(
√
7) ⊆ E2, and that’s actually an equality by degrees.

The element β3 = α + σ3(α) = α− 1/α lies in E3, and satisfies

β2
3 =

α4 − 2α2 + 1

α2
=

5α2 − 1− 2α2 + 1

α2
= 3.

Therefore Q(
√
3) ⊆ E3, and that’s actually an equality by degrees.

Conclusion:
K

Q(
√
21)

2

Q(
√
7)

2

Q(
√
3)

2

Q.

2 2 2
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5. Since Q(
√
3) and Q(

√
7) are subfields of K, we have

√
3,
√
7 ∈ K (as demon-

strated in the previous question), so Q(
√
3,
√
7) ⊆ K. If this inclusion were

strict, then Q(
√
3,
√
7) would be an intermediate field containing both Q(

√
3)

and Q(
√
7); but the above diagram shows that no such intermediate field

exists.

This was the only mandatory exercise, that you must submit before
the deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them. However, I
highly recommend that you try to solve them for practice, and you are
welcome to email me if you have questions about them. The solutions
will be made available with the solution to the mandatory exercise.

Exercise 2 Yes or no?

Let f(x) = x3 + x + 1 ∈ Q[x] (you may assume without proof that f is irreducible
over Q), and let L = Q[x]/(f).

1. Is L a separable extension of Q? Explain.

2. Is L a normal extension of Q? Explain.

Hint: What does the fact that f : R −→ R is strictly increasing tell you about
the complex roots of f?

3. Is L a Galois extension of Q? Explain.

Solution 2

1. Yes, since all fields of characteristic 0 are perfect.

2. Since f : R −→ R is strictly increasing, f has exactly one real root α (interme-
diate value theorem) and thus one complex-conjugate pair of roots β, β̄. The
images of L by its [L : Q] = 3 Q-embeddings into C are Q(α) ⊂ R, Q(β) ̸⊂ R,
and Q(β) ̸⊂ R. Since some are ⊂ R but others are not, they do not all agree,
so L is not normal over Q.

3. No, since it is not normal over Q.
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Exercise 3 A cyclic biquadratic extension

Let α =
√
13, K = Q(α), β = i

√
65 + 18

√
13 (where i2 = −1), β′ = i

√
65− 18

√
13

(note that 65 > 18
√
13), and L = Q(β).

1. Prove that the minimal polynomial of β over Q is

M(x) = (x2 + 65)2 − 182 · 13 = x4 + 130x2 + 13.

2. What are the Galois conjugates of β over Q?

3. Prove that L is a Galois extension of Q.

Hint: Check that ββ′ = −α.

4. Explain why there exists an element σ ∈ Gal(L/Q) such that σ(β) = β′.

5. Let σ ∈ Gal(L/Q) be such that σ(β) = β′ as above. Explain why σ(α) makes
sense, and determine σ(α).

6. Let again σ ∈ Gal(L/Q) be such that σ(β) = β′ as above. Determine the
action of σ on the conjugates of β.

Hint: Again, ββ′ = −α.

7. Deduce that Gal(L/Q) ≃ Z/4Z.

8. Sketch a diagram showing all the fields Q ⊆ E ⊆ L, ordered by inclusion.

9. Does i
√
13 ∈ L?

Solution 3

1. First of all, we have β2 = −(65 + 18
√
13) so (β2 + 65)2 = (18

√
13)2, so β is

indeed a root of M(x). Besides, the expanded form of M(x) reveals that it
is Eisenstein at 13, so it is irreducible over Q; since it is also monic, it is the
minimal polynomial of β over Q.

2. The Galois conjugates of β over Q are by definition the roots of its minimal
polynomial over Q, namely M(x). Since it is of degree 4, there are at most 4
of them (in fact exactly 4, because we are in characteristic 0 so this irreducible
polynomial must be separable). But one checks as above that ±β and ±β′

are roots of M(x); since these 4 numbers are distinct, they are the Galois
conjugates of β.

3. We find indeed that

ββ′ = −
√

(65 + 18
√
13)(65− 18

√
13) =

√
652 − 182 · 13 = −

√
13.

Besides, L ∋ β2 = −(65+18
√
13), so

√
13 ∈ L since 65, 18 ∈ L ⊃ Q. Therefore

β′ = −
√
13/β ∈ L. It follows that the conjugates of β lie in L, so L = Q(β) is

the splitting field of M(x) over Q, and is therefore a normal extension of Q.
It must also be separable, since the characteristic of Q is 0.
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4. Since L/Q is Galois, given any conjugate γ of β, there exists at least one
σ ∈ Gal(L/Q) such that σ(β) = γ.

5. σ is a function from L to L, so σ(α) makes sense since we have shown that
α ∈ L. More specifically, we have that

α = −β2 + 65

18
,

so

σ(α) = σ

(
−β2 + 65

18

)
= −σ(β2) + 65

18
= −β′2 + 65

18
= −α

since σ ∈ Gal(L/Q) is a field automorphism which fixes the rationals.

6. These conjugates are ±β and ±β′, and we already know that σ(β) = β′, which
immediately implies that σ(−β) = −β′. Besides, since β′ = −α/β, we have

σ(β′) = −σ(α)/σ(β) = α/β′ = −β,

which immediately implies that σ(−β′) = β.

7. We know that #Gal(L/Q) = [L : Q] = [Q(β) : Q] = degM(x) = 4. Lagrange
therefore implies that the order of σ is 1 or 2 or 4. But the above question
shows that neither σ nor σ2 is the identity, so σ has order 4. As result,
Gal(L/Q), which is a group of order 4 which contains an element of order 4,
must be cyclic (and generated by this element σ; more specifically, we see that
σ acts on the conjugates of β by the 4-cycle β 7→ β′ 7→ −β 7→ −β′ 7→ β).

8. Since Gal(L/Q) = ⟨σ⟩ is cyclic, its only nontrivial subgroup is H = ⟨σ2⟩,
which has cardinal 2 and therefore index 2. The Galois correspondence thus
shows that

Q ⊂ LH ⊂ L

is the complete list of intermediate fields, where both inclusions are of degree 2.
On the other hand, we know that α ∈ L, so K = Q(α) is a subfield of L. The
minimal polynomial of α over Q is x2 − 13 (Eisenstein at 13), so [K : Q] = 2;
therefore K = LH . Final answer:

Q ⊂ K ⊂ L.

9. If i
√
13 ∈ L, then E = Q(i

√
13) is a subfield of L, of degree 2 over Q (same

argument: the minimal polynomial of i
√
13 is x2+13), so by the above question

we must have E = K. But this is absurd, for instance because K ⊂ R whereas
E ̸⊂ R. So i

√
13 ̸∈ L.

Exercise 4 More square roots

You may want to use the results established in Exercise 5 of the previous assignment
to solve this exercise.

Let L = Q(
√
10,

√
42).
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1. Prove that L is a Galois extension of Q.

2. Prove that [L : Q] = 4.

3. Describe all the elements of Gal(L/Q). What is Gal(L/Q) isomorphic to?

4. Sketch the diagram showing all intermediate extensions Q ⊆ E ⊆ L, ordered
by inclusion. Explain clearly which field corresponds to which subgroup.

5. Does
√
15 ∈ L? Use the previous question to answer.

Solution 4

1. L is the splitting field over Q of (x2 − 10)(x2 − 42) ∈ Q[x] which is separable
(not multiple root), so it is Galois over Q.

2. Since 10 is not a square, Q(
√
10) ̸= Q, so [Q(

√
10) : Q] = 2. In order to

conclude that [L : Q] = 4, we need to prove that [L : Q(
√
10)] is 2 and not 1,

i.e. that
√
42 ̸∈ Q(

√
10). This follows from the previous exercise, since 42

10
= 21

5

is not a square in Q as 21 is not a square in N.

3. We already know that #Gal(L/Q) = [L : Q] = 4 since L is Galois over Q.
Besides, an element σ ∈ Gal(L/Q) must take

√
10 ∈ L to a root of x2 − 10 ∈

Q[x], i.e. to ±
√
10; and similarly σ(

√
42) = ±

√
42. Since σ is completely

determined by what it does to
√
10 and to

√
42, this leaves us with only 4

possibilities for σ. But since #Gal(L/Q) = 4, all these possibilities must
occur. Therefore, Gal(L/Q) is made up of

• Id,

• σ :
√
10 7→ −

√
10,

√
42 7→

√
42,

• τ :
√
10 7→

√
10,

√
42 7→ −

√
42,

• στ :
√
10 7→ −

√
10,

√
42 7→ −

√
42.

We see that στ = τσ, and that σ2 = τ 2 = (στ)2 = Id. Therefore

(Z/2Z)× (Z/2Z) −→ Gal(L/Q)
(a, b) 7−→ σaτ b

is a group isomorphism.

4. We know from class that since Gal(L/Q) ≃ (Z/2Z) × (Z/2Z), its subgroup
diagram is

{Id}

{Id, σ} {Id, στ} {Id, τ}

Gal(L/Q).

Let us now find the corresponding fields.
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• Clearly, L{Id} = L.

• We also have LGal(L/Q) = Q since L is Galois over Q.

• We know that L{Id,σ} is an extension ofQ of degree [Gal(L/Q) : {Id, σ}] =
2. It is the subfield of L formed of the elements fixed by σ, so it contains√
42 and thus Q(

√
42). Since the latter is already an extension of Q of

degree 2, it must agree with L{Id,σ}.

• Similarly, L{Id,τ} is an extension of degree 2 of Q, which contains
√
10 as

it is fixed by τ , so L{Id,τ} = Q(
√
10).

• Finally, L{Id,στ} is an extension of degree 2 of Q, but it contains neither√
10 nor

√
42 since they are not fixed by στ . However,

√
10
√
42 =

√
420

is fixed by στ since

στ(
√
10
√
42) = (−

√
10)(−

√
42),

so L{Id,στ} = Q(
√
420) = Q(

√
105).

The field diagram is thus

L

Q(
√
42) Q(

√
105) Q(

√
10)

Q.

5. No. Indeed, if
√
15 ∈ L, then Q(

√
15) is an intermediate field, but that con-

tradicts the previous question: in view of Exercise 5 of assignment 1, Q(
√
15)

is neither of Q(
√
10), Q(

√
42), Q(

√
105) as neither 15

10
= 3

2
, 15

42
= 5

14
, 15

105
= 1

7

are squares in Q.

Exercise 5 The fifth cyclotomic field

In this exercise, we consider the primitive 5th root ζ = e2πi/5, and we set L = Q(ζ).
We know that L is Galois over Q, so we define G = Gal(L/Q). We also let

c =
ζ + ζ−1

2
= cos(2π/5) = 0.309 · · · ,

C = Q(c),

and finally

c′ =
ζ2 + ζ−2

2
= cos(4π/5) = −0.809 · · · .

1. Write down explicitly the minimal polynomial of ζ over Q, and express its
complex roots in terms of ζ.

2. Deduce that ζ + ζ2 + ζ3 + ζ4 = −1.
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3. Prove that G is a cyclic group. What is its order? Find an explicit generator
of G.

4. Deduce that c ̸∈ Q.

5. Make the list of all subgroups of G.

6. Draw a diagram showing all the fields E such that Q ⊂ E ⊂ L, ordered by
inclusion.

7. What are the conjugates of c overQ? Determine explicitly the minimal polyno-
mial of c over Q (exact computations only, computations with the approximate
value of c are forbidden).

8. Deduce that

c =
−1 +

√
5

4
.

9. What are the conjugates of ζ over C (as opposed to over Q)?

10. Deduce that

ζ =
−1 +

√
5 + i

√
10 + 2

√
5

4
.

Solution 5

1. The minimal polynomial of ζ over Q is the 5th cyclotomic polynomial

Φ5(x) =
x5 − 1

Φ1(x)
=

x5 − 1

x− 1
= x4 + x3 + x2 + x+ 1.

Its complex roots are the primitive 5-th roots of 1, namely

µ×
5 = {ζk | k ∈ (Z/5Z)×} = {ζ, ζ2, ζ3, ζ4}.

2. By Vieta and the previous question,

ζ + ζ2 + ζ3 + ζ4 =
∑

Roots of Φ5(x) = −Coeff. of x3 = −1.

Alternatively,

1 + ζ + ζ2 + ζ3 + ζ4 =
∑

Roots of x5 − 1 = −Coeff. of x4 = 0.

3. We know that G can be identified to (Z/5Z)× by matching x ∈ (Z/5Z)× to
σx : z 7→ zx ∈ G for all z ∈ µ5. In particular, G ≃ (Z/5Z)× is an Abelian group
of order ϕ(5) = 4. To prove that it is cyclic, we can notice that 2 ∈ (Z/5Z)×
is a generator since

2 ̸= 1, 22 = 4 ̸= 1, 23 = 3 ̸= 1, 24 = 1,

so that σ2 ∈ G is a generator. We can also argue that since 5 is prime, Z/5Z
is a finite field, so its multiplicative group is cyclic; but then we still need to
find an explicit generator.
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4. The element σ2 ∈ G acts on L by ζ 7→ ζ2, and thus takes c = ζ+ζ−1

2
to

ζ2+ζ−2

2
= c′. Since c′ ̸= c (clear from their numerical values), we have c ̸∈ LG;

but LG = Q since L is Galois over Q.

5. Since G ≃ Z/4Z is cyclic of order 4, its only nontrivial subgroup is 2Z/4Z ≃
Z/2Z, and is generated by σ2

2 = σ4 = σ−1. Our list is thus

{1}

H = {σ±1}

G.

6. We already know that under the Galois correspondence, {σ1} corresponds to
L, and G to Q. It remains to identify LH .

We know that [LH : Q] = [G : H] = 2; besides σ−1 ∈ H acts by ζ 7→ ζ−1 (i.e.
is the complex conjugation) and therefore fixes c, so that c ∈ LH , whence

C = Q(c) ⊆ LH .

Since c ̸∈ Q, we have C ⊋ Q and so [C : Q] ⩾ 2, so finally

LH = C.

Our diagram is thus
L

C

Q.

7. The conjugates of c over Q are the σ(c) for σ ∈ Gal(L/Q) (and also for
σ ∈ Gal(C/Q)), i.e.

• c itself for σ = 1,

• ζ2+ζ−2

2
= c′ for σ = 2,

• ζ−2+ζ2

2
= c′ for σ = 3 = −2,

• and ζ−1+ζ
2

= c for σ = 4 = −1,

so finally, just c itself and c′. (We can get the same conclusion faster by taking
σ in the smaller quotient Gal(C/Q) = G/H = {σ±1, σ±2} ≃ (Z/5Z)×/ ± 1
of Gal(L/Q), if we are not afraid to work with this quotient). The minimal
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polynomial of c over Q is thus∏
β conjugate to c

(x− β) = (x− c)(x− c′)

= x2 − (c+ c′)x+ cc′

= x2 − ζ + ζ−1 + ζ2 + ζ−2

2
x+

(ζ + ζ−1)(ζ2 + ζ−2)

4

= x2 − ζ + ζ4 + ζ2 + ζ3

2
x+

ζ3 + ζ4 + ζ + ζ2

4

= x2 +
1

2
x− 1

4
.

8. By solving x2 + 1
2
x− 1

4
= 0, we find that ∆ = 5/4, whence

c, c′ =
−1±

√
5

4
.

Since c > c′, we deduce that c = −1+
√
5

4
(and also that c′ = −1−

√
5

4
).

9. The conjugates of ζ over C are the elements of the orbit of ζ under H =
Gal(L/C), that is to say the σ(ζ) for σ ∈ Gal(L/C) = H = {σ±1}. So they
are ζ and ζ−1.

10. Similarly to the previous questions, the minimal polynomial of ζ over C is∏
β conjugate
of ζ over C

(x−β) = (x−ζ)(x−ζ−1) = x2−(ζ+ζ−1)x+ζζ−1 = x2−2cx+1 ∈ C[x],

whose roots are

2c±
√
4c2 − 4

2
= c±

√
c2 − 1 =

−1 +
√
5± i

√
10 + 2

√
5

4

using c = −1+
√
5

4
. Since ζ (as opposed to ζ−1) is the root with positive imag-

inary part (draw a regular pentagon; alternatively Im ζ = sin(2π/5) > 0 as
2π/5 < π), we conclude that

ζ =
−1 +

√
5 + i

√
10 + 2

√
5

4
.

Exercise 6 Bioche vs. Galois

This exercise has an unusual flavour, and is not representative of what you should
expect for the final exam. The goal of this exercise is to give a Galois-theoretic in-
terpretation of Bioche’s rules (cf. https: // en. wikipedia. org/ wiki/ Bioche%

27s_ rules ), which are rules suggesting appropriate substitutions to turn integrals
involving trigonometric functions into integrals of rational fractions. Knowledge of
Bioche’s rules is not required to solve this exercise.
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In this exercise, we use the shorthands s for the sine function and c for the cosine
function, and we denote by C(s, c) the set of rational fractions in sin x and cos x
with complex coefficients, meaning of expressions such as

2sc3 − i

c− 7s+ 3
=

2 sinx cos3 x− i

cosx− 7 sinx+ 3
.

Observe that C(s, c) is a field with respect to point-wise addition and multiplication.
We write C(c) for the subfield of C(s, c) consisting of rational fractions which

can be expressed in terms of c only, and similarly C(s) for rational fractions in s
only. For example, c3−2c2+2i

ic−1
∈ C(c), but s ̸∈ C(c) since all the elements of C(c) are

even functions whereas s is not; observe however that s2 ∈ C(c) since s2 = 1− c2.
We also define K = C(s) ∩ C(c) ⊂ C(s, c), so that for instance the function

c2 = cos(2x) lies in K since c2 = 2c2 − 1 = 1− 2s2.
Finally, we define

µ : C(s, c) → C(s, c)
f(x) 7→ f(−x),

τ : C(s, c) → C(s, c)
f(x) 7→ f(x+ π),

σ : C(s, c) → C(s, c)
f(x) 7→ f(π − x);

observe that these are field automorphisms of C(s, c) which are involutive and com-
mute with each other, so they generate the subgroup

G = {Id, µ = στ, τ = µσ, σ = µτ} ≃ (Z/2Z)× (Z/2Z)

of Aut
(
C(s, c)

)
.

1. Prove that the four inclusions K ⊂ C(s) ⊂ C(s, c) and K ⊂ C(s) ⊂ C(s, c)
are all strict.

2. Prove that [C(s) : K] = [C(s, c) : C(s)] = [C(c), K] = [C(s, c) : C(c)] = 2.

3. Prove that K = C(c2), where C(c2) is the field of rational fractions expressible
in terms of c2 only.

4. Prove that the extension C(s, c)/K is Galois, and describe its Galois group.

5. Let f ∈ C(s, c). Prove that if f is invariant by any two of µ, τ, σ, then it is
also invariant by the third one, and that in this case f ∈ C(c2).

6. Determine the minimal polynomials over K of the elements t = tan x = s/c
and s2 = sin(2x) = 2sc of C(s, c).

7. Draw a diagram showing all the subgroups of Gal(C(s, c)/K).

8. Draw a diagram showing all the intermediate fields E between K and C(s, c).
Where are the fields C(t), C(s2, c2), and C(s2) on this diagram?

Make sure find an explanation for all the surprising conclusions you may be led to!
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Solution 6

1. Every element of C(c) is even since c is; therefore s ̸∈ C(c), so C(s, c) =
C(c)(s) ⊋ C(s). The same argument shows that s ̸∈ K ⊂ C(c), so C(s) ⊋ K.
Besides, s is invariant by σ whereas c is not, so c ̸∈ C(s) so C(s, c) ⊋ C(s),
and similarly c ̸∈ K so C(c) ⊋ K.

2. Since s2+c2 = 1, s is a root of the polynomial x2−(1−c2) ∈ C(c)[x]; therefore,
s is algebraic over C(c) over degree at most 2; since C(s, c) = C(c)(s), this
shows that [C(s, c) : C(c)] ≤ 2. Since this degree cannot be 1 by the previous
question, it must be 2. Similarly, [C(s, c) : C(s)] = 2.

The identity c2 = 2c2 − 1 proves that c is a root of 2x2 − 1− c2 ∈ K[x], so c is
algebraic of degree at most 2 over K. We have C(c) ⊆ K(c) since C ⊂ K, and
K(c) ⊆ C(c) since K ⊂ C(c), so C(c) = K(c) is an extension of K of degree
at most 2, hence exactly 2 by the previous question. Similarly, C(s) = K(s)
is an extension of K of degree at most 2, and hence 2, since s is a root of
2x2 + c2 − 1 ∈ K[x].

3. We know that C(c2) ⊆ K ⊊ C(c); besides, since C(c) = C(c, c2) = C(c2)(c) as
c2 = 2c2−1 ∈ C(c), the fact that the polynomial 2x2−1−c2 used in the previous
question actually lies in C(c2)[x] shows that we have [C(c) : C(c2)] ≤ 2. The
tower law allows us to conclude that [K : C(c2)] ≤ 1.

4. The tower law shows that [C(s, c) : C(c2)] = [C(s, c) : C(c)][C(c) : K] =
2 × 2 = 4, so #AutK

(
C(s, c)

)
≤ 4, with equality iff. C(s, c) is Galois over

K. But since c2 is fixed by Id, µ, τ , and σ, these 4 automorphisms induce
the identity on C(c2) = K; therefore #AutK

(
C(s, c)

)
≥ 4. In conclusion,

#AutK
(
C(s, c)

)
= 4 = [C(s, c) : K], so C(s, c) is Galois over K with Galois

group Gal(C(s, c)/K) = {Id, µ, σ, τ} = G.

5. Since any two of µ, τ, σ generate G, any element of C(s, c) fixed by two of
those is actually fixed by the whole of G = Gal(C(s, c)/K), and therefore lies
in C(s, c)Gal(C(s,c)/K) = K = C(c2).

6. Since C(s, c) is Galois over K, the minimal polynomial of any α ∈ C(s, c) is
the polynomial whose roots are the orbit of α under Gal(C(s, c)) = G.

In the case α = t, this orbit is {Id t = t, µt = −t, τ t = t, σt = −t} = {t,−t},
so the minimal polynomial of t over K is (x − t)(x + t) = x2 − t2. It must
lie in K[x], so we necessarily have t2 ∈ K = C(c2); indeed, we find that
t2 = s2

c2
= 1−c2

1+c2
∈ C(c2).

Similarly, since the orbit of s2 under G is {s2,−s2}, the minimal polynomial
of s2 over K is (x − s2)(x + s2) = x2 − s22, so we must have s22 ∈ K = C(c2);
and indeed s22 = (2sc)2 = (2s2)(2c2) = (1 + c2)(1 − c2) = 1 − c2 ∈ C(c2) —
that is simply s22 + c22 = 1.
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7. Since Gal(C(s, c)/K) = G ≃ (Z/2Z)× (Z/2Z), its subgroup lattice is

{Id}

{Id, µ} {Id, τ} {Id, σ}

G.

8. We apply the Galois correspondence. The subfields corresponding to {Id} and
G are of course C(s, c) and K = C(c2), respectively. The subfield correspond-
ing to {Id, µ} contains c since µ fixes c, and is an extension of K of degree
[G : {Id, µ}] = 4/2 = 2, so it is C(c) by the second question. Similarly, the
subfield corresponding to {Id, σ} is C(s). Finally, the subfield corresponding
to {Id, τ} is also an extension of K of degree 2; besides, it contains t since
t is invariant by τ . By the previous question, C(t) is an extension of K of
degree at most 2; but t ̸∈ K since t is not fixed by µ, so this extension has
degree exactly 2, so it is the subfield corresponding to {Id, τ}. The same
thing can be said about K(s2), so we are led to the curious conclusion that
C(t) = K(s2) = C(s2, c2); and indeed t = s

c
= 2sc

2c2
= s2

1+c2
∈ C(s2, c2) whereas

s2 = 2sc = 2tc2 = 2tc2

s2+c2
= 2t

t2+1
∈ C(t).

C(s, c)

C(c) C(t) = C(s2, c2) C(s)

C(c2).

As for C(s2), it does not appear on this diagram, simply because C(c2) ̸⊂
C(s2)! (so yes, that was a trap.) Indeed, every element of C(s2) is invariant
by x 7→ π/2− x since s2 is; but c2 is not.
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