
Galois theory — Exercise sheet 1
https://www.maths.tcd.ie/~mascotn/teaching/2023/MAU34101/index.html

Version: September 26, 2023

Submit your answers by Friday October 6, 4PM.

Instructions: Only exercises 3 and 4 are mandatory; you must submit
your answers to them before the deadline. The other exercises are not
mandatory; they are not worth any points, and you do not have to submit
them. However, I highly recommend that you try to solve them for
practice, and you are welcome to email me if you have questions about
them. The solutions will be made available with the solution to the
mandatory exercises. More specifically, Exercises 1 and 2 are revisions
which may help you to solve the mandatory exercises; Exercise 5 is extra
revisions, and Exercise 6 is an actual exercise on the contents of chapter 1.

Exercise 1 Revisions: Irreducible polynomials of low degree

1. Let K be a field, and let F (x) ∈ K[x] have degree 2 or 3. Prove that F (x) is
irreducible over K if and only if F (x) has no root in K.

Note: Irreducible over K is a synonym for irreducible in K[x].

2. Exhibit a counter-example to show that the previous statement is no longer
true if degF ⩾ 4. Does one of the implications remain true, or can both
directions fail?

Solution 1

1. If x0 ∈ K is a root of F , then x − x0 ∈ K[x] is a non-constant factor of
F (x), so we have F (x) = (x − x0)G(x) for some G(x) ∈ K[x] of degree
degG = degF − 1 ⩾ 1. So neither x − x0 nor G(x) are constant, so their
are not invertible in the ring K[x], so F (x) = (x − x0)G(x) is a “genuine”
factorisation which shows that F is reducible over K if it has a root in K.
Note that this implication remains valid even if degF ⩾ 4.

Conversely, suppose F (x) is reducible over K. Then we can write F (x) =
A(x)B(x) with A(x), B(x) ∈ K[x] non-constant (since constant polynomials
are invertible in the ring K[x], and therefore do not count as “true” factors).
If degA = 1, say A(x) = a1x + a0 with a0, a1 ∈ K and a1 ̸= 0, then x =
−a0/a1 ∈ K is a root of A(x), and therefore of F (x). Similarly, if degB = 1,
then B(x) and therefore F (x) have a root in K. Finally, either degA = 1
or degB = 1 (or both), since otherwise degF = degA + degB ⩾ 2 + 2 = 4
whereas we assumed degF ⩽ 3. So if F is reducible, then F has a root in K.
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2. We have already mentioned that any polynomial of degree at least 2 must be
reducible over K if it has a root in K, so this implication survives.

However, the converse is no longer true: a polynomial of degree 4 or more may
be reducible overK even if it does not have a root inK, because it could be the
product of several irreducible factors all of degree 2 or more, in which case it
won’t have roots in K as these factors cannot have roots in K since otherwise
they would be reducible over K. For instance, F (x) = (x2 + 1)(x2 + 2) is
clearly reducible over K = R, even though it has no roots in R.

Exercise 2 Revisions: Quotients and morphisms

Let R and S be rings, let I be an ideal of R, let J be an ideal of S, and let
f : R −→ S be a ring morphism. Give a necessary and sufficient condition for f to
induce a well-defined ring morphism from R/I to S/J .

Solution 2

We are going to prove that f induces f̄ : R/I → S/J if and only if f(I) ⊆ J .
This condition is necessary because if f̄ exists, then f̄(0) = 0; but every i ∈ I

represents 0 ∈ R/I, so we must have f(i) = 0 ∈ S/J , which means f(i) ∈ J .
Conversely, if f(I) ⊆ J , then f̄(r + I) = f̄(r) + f̄(I) is well-defined in S/J for

all r ∈ R since f(I) is always 0 in S/J , so the condition is also sufficient.

Exercise 3 Small non-prime finite fields (50 pts)

1. (10 pts) Make a complete list of all finite fields (up to isomorphism) with at
most 30 elements and which are not isomorphic to Z/pZ for some prime p ∈ N.

2. (30 pts) Give an explicit construction for each of them.

3. (10 pts) Make a list of all pairs (K,L) such that K and L are in your list and
that L contains a copy of K (up to isomorphism).

Solution 3

1. Finite fields are determined up to isomorphism by their cardinal, which can
be any prime power. Since we exclude prime, our list consists in

F4,F8,F9,F16,F25,F27,

which are respectively extensions of

F2,F2,F3,F2,F5,F3

of degree
2, 3, 2, 4, 2, 3.
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2. To construct them explicitly, we need irreducible polynomials of appropriate
degrees over the appropriate Fp.

A polynomial of degree 2 either factors as 1+1 or is irreducible; in particular,
if it has no root, then it is irreducible. We thus find

x2+x+1 has no roots in F2 =⇒ irreducible over F2 =⇒ F4 ≃ F2[x]/(x
2+x+1),

x2 + 1 has no roots in F3 =⇒ irreducible over F3 =⇒ F9 ≃ F3[x]/(x
2 + 1),

x2 + 2 has no roots in F5 =⇒ irreducible over F5 =⇒ F25 ≃ F5[x]/(x
2 + 2).

A polynomial of degree 3 either factors as 1+ 1+ 1, 2+ 1, or is irreducible; in
particular, if it has no root, then it is irreducible. We thus find

x3+x+1 has no roots in F2 =⇒ irreducible over F2 =⇒ F8 ≃ F2[x]/(x
3+x+1),

x3−x+1 has no roots in F3 =⇒ irreducible over F3 =⇒ F27 ≃ F3[x]/(x
3−x+1).

Finally, a polynomial of degree 4 either factors as 1 + 1 + 1 + 1, 2 + 1 + 1,
3 + 1, 2 + 2, or is irreducible; in particular, if it has no root, then either it is
irreducible or it factors s 2 + 2. However the only irreducible of degree 2 over
F2 is x

2+x+1, and x4+x+1 ̸= (x2+x+1)2 = x4+x2+1 and has no roots,
so it is irreducible, whence

F16 ≃ F2[x]/(x
4 + x+ 1).

Remark. These are not the only possible choices of irreducible polynomials,
and therefore not the only possible choices of models for these finite fields. See
the next exercise for an example.

3. We know that Fq ⊂ Fq′ iff. q′is a power of q. Therefore, the only inclusions
between fields in our list is F4 ⊂ F16.

Remark. We will see later that F4 has a nontrivial automorphism of order 2,
so that there are actually two distinct embeddings of F4 into F16.

Exercise 4 Two models for F8 (50 pts)

Let K = F2[x]/(x
3 + x+ 1) and L = F2[y]/(y

3 + y2 + 1).

1. (5 pts) Prove that K and L are fields.

2. (15 pts) Determine the number of elements of K, and of L. Why does your
answer imply that K and L are isomorphic?

3. (30 pts) Describe explicitly an isomorphism between K and L.

Hint: Which equation does the class of y + 1 ∈ L satisfy? (Remember that
z = −z in characteristic 2, since 2z = 0.)
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Solution 4

1. The polynomial x3 + x+ 1 is of degree 3, so if it were reducible over F2, then
it would have a root in F2. But it does not vanish at 0 nor at 1, so it is
irreducible; therefore K is a field. Similarly, y3 + y2 + 1 is irreducible, so L is
a field.

2. #K = 2[K:F2] = 23 = 8, and similarly #L = 8. Since K and L are two finite
fields of the same cardinal, they must be isomorphic.

3. Given fields E ⊂ F and an irreducible polynomial P ∈ E[x], the E-morphisms
from E[x]/(P ) to F are in one-to-one correspondence with the roots γ of P in
F , the corresponding morphism being

E[x]/(P ) −→ F
f(x) 7−→ f(γ).

So, to find a morphism from K = F2[x]/(x
3 + x + 1) to L, we need to find a

root of x3 + x+1 in L. Let β be the image of y in L, so that β3 + β2 +1 = 0.
Following the hint, we check that α = β + 1 satisfies

α2 = β2 + 1 (Frobenius in char. 2),

α3 = αα2 = (β + 1)(β2 + 1) = β3 + β2 + β + 1 = β = α− 1

whence 0 = α3 − α + 1 = α3 + α + 1 since we are in characteristic 2. So
α = β + 1 is a root of x3 + x+ 1 in L, whence a morphism

K = F2[x]/(x
3 + x+ 1) −→ L = F2[y]/(y

3 + y + 1)
f(x) 7−→ f(β + 1) = f(y + 1).

This map is a field morphism, so it is injective; it is therefore bijective since the
source and the target have the same finite cardinal (alternatively, its inverse
is clearly g(y) 7→ g(y − 1) = g(y + 1)).

Remark. We will see that L has 3 automorphisms. Therefore, there are actu-
ally 3 isomorphisms from K to L. They are in 1-to-1 correspondence with the
roots of x3+x+1 in L, so there are 3 such roots: β+1, β2+1, and β2+β+1,
whence the 3 isomorphisms f(x) 7→ f(β+1), f(β2+1), f(β2+β+1) from K
to L.

Exercise 5 Revisions: Square roots

1. Let K be a field of characteristic different from 2, and let L be an extension
of K of degree 2. Prove that L = K(

√
a) for some a ∈ K, meaning that

L = K(α) for some α ∈ L such that α2 ∈ K.

Hint: The quadratic formula −b±
√
∆

2a
is valid in any characteristic other than

2 (but not in characteristic 2, as it would make us divide by 2 = 0).
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2. Let still K be a field of characteristic different from 2. We say that an element
c ∈ K is a square in K if there exists d ∈ K such that c = d2.

Let a, b ∈ K×, and let
√
a,
√
b denote one of their square roots in some algebraic

closure of K. Prove that K(
√
a) = K(

√
b) if and only if a/b is a square in K.

3. Use the previous questions to find all extensions of degree 2 of R.

4. Let r = n/d ∈ Q× be a nonzero rational number, where n ∈ Z, d ∈ Z⩾1, and
gcd(n, d) = 1. Prove that r is a square in Q iff. n and d are squares in N.
Hint: Recall that each positive integer can be factored uniquely into a product
of primes, and that each rational number can be written uniquely as n/d with
n ∈ Z, d ∈ Z⩾1, and gcd(n, d) = 1.

5. Justify carefully that [Q(
√
2,
√
3) : Q] = 4. Determine [Q(

√
2,
√
3,
√
6) : Q].

Solution 5

1. [L : K] ̸= 1 so L ⊋ K, so let α ∈ L\K. Then K ⊊ K(α) ⊆ L, so by the tower
law, 2 = [L : K] = [L : K(α)][K(α) : K]. As [K(α) : K] > 1 since α ̸∈ K, we
conclude that [L : K(α)] = 1, so L = K(α).

Furthermore, since L/K is finite, α is algebraic over K, of degree [K(α) :
K] = 2. Let m(x) ∈ K[x] be its minimal polynomial; it is monic, irreducible,
and of degree 2, say m(x) = x2 + bx + c (we are actually not going to use

irreducibilty in what follows). Then by the quadratic formula, α = −b±
√
∆

2
,

where ∆ = b2 − 4c ∈ K. This shows that α ∈ K(
√
∆), so K(α) ⊆ K(

√
∆).

But we can also solve for
√
∆ and write

√
∆ = ±(2α+b), whence

√
∆ ∈ K(α)

so K(
√
∆) ⊆ K(α). In conclusion, K(

√
∆) = K(α) = L.

Remark: This is NOT true in higher degrees; for instance, “most” extensions
of Q of degree 3 are NOT of the form Q( 3

√
r) for any r ∈ Q. This is because

the formula to solve equations of degree 3 is much more complicated than the
quadratic formula (not to mention that in degree 5 and higher, there simply
isn’t any formula).

2. Observation: nonzero squares in K form a subgroup of K×.

• Suppose first that a is a square in K. Then
√
a ∈ K, so K(

√
a) = K.

Therefore, if b is also a square in K, then

K(
√
a) = K = K(

√
b);

whereas if b is not a square in K, then

K(
√
a) = K ⊊ K(

√
b).

So the equivalence is satisfied in these cases.

• Suppose now that a is not a square in K. Then x2−a ∈ K[x] is of degree
2 and rootless in K, so it is irreducible over K (see Exercise 1). As it is
monic, it is the minimal polynomial of

√
a over K, so [K(

√
a) : K] = 2

and (
√
a
n
)0⩽n<2 is a K-basis of K(

√
a), so each element of K(

√
a) is of

the form u(
√
a)0 + v(

√
a)1 = u+ v

√
a for some unique u, v ∈ K.
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So if K(
√
a) = K(

√
b), then

√
b ∈ K(

√
a), so

√
b = u + v

√
a for some

u, v ∈ K. Squaring yields b = (u2 + av2) + 2uv
√
a. Both we also have

b = b1+0
√
a, so by uniqueness,u2+av2 = b and 2uv = 0. As charK ̸= 2

by assumption, 2 ̸= 0 in K, so u = 0 or v = 0. If v = 0, then u2 = b;
but then b is a square in K so K(

√
b) = K ⊊ K(

√
a), absurd. Therefore

u = 0, so av2 = b, so v ̸= 0 as b ̸= 0, whence a/b = (1/v)2 is a square in
K.

Conversely, suppose that a/b is a square inK, say a/b = r2 where r ∈ K×.
Then

√
b = ±r

√
a ∈ K(

√
a) so K(

√
b) ⊆ K(

√
a), and

√
a = ±1

r

√
b ∈

K(
√
b) so K(

√
a) ⊆ K(

√
b), whence K(

√
a) = K(

√
b).

Remark: This criterion is only useful if we have a good test for squareness
in K. See next question for K = R, and the question after that for K = Q.

3. Observation: An element of R is a square in R if and only if it is nonnegative.

Let L be an extension of R of degree 2. As charR = 0 ̸= 2, the first question
applies and shows that L = R(

√
a) for some a ∈ R. If a ⩾ 0, then

√
a ∈ R,

so L = R, absurd. Therefore a < 0. But then a = (−1)(−a) where −a > 0 is
a square in R, so R(

√
a) = R(

√
−1) by the previous question. Therefore the

only possibility is L = R(
√
−1) = C.

4. Clearly, if n = m2 and d = e2 are squares in N, then r = (m/e)2 is a square
in Q. Conversely, suppose r is a square in Q, say r = s2 with s = m/e ∈ Q
where gcd(m, e) = 1. Then gcd(m2, e2) = 1 (any nontrivial common factor of
m2 and e2 would have a prime factor, which would show up in the factorisation
of m2 and thus of m, and also in that of e2 and thus of e, absurd), so r = m2/e2

is of the desired form.

5. We have Q ⊂ Q(
√
2) ⊂ Q(

√
2)(

√
3) = Q(

√
2,
√
3).

First of all, 2 = 2/1 is not square in Q by the previous question, so [Q(
√
2) :

Q] = 2 (we could also have applied (Exercise 1) or (Eisenstein’s criterion) to
x2 − 2 ∈ Q[x]).

Next,
√
3 is a root of x2 − 3. If this is irreducible over Q(

√
2), then we have

[Q(
√
2)(

√
3) : Q(

√
2)] = 2, so we conclude by the tower law. However, we

canNOT use Eisenstein for this, as Eisenstein only applies over Q! Instead,
we proceed by contradiction: If x2 − 3 were reducible over Q(

√
2), then by

Exercise 1 it would have a root in Q(
√
2). But the roots are ±

√
3, so either

way we would have
√
3 ∈ Q(

√
2). By the same logic as in question 2, we

conclude that 3/2 would be a square in Q, which is absurd in view of the
previous question.

Finally, we observe that
√
6 =

√
2
√
3 ∈ Q(

√
2,
√
3), so that Q

√
2,
√
3,
√
6) =

Q(
√
2,
√
3), and therefore

[Q(
√
2,
√
3,
√
6) : Q] = 4

and not 8. In contrast to the first part of the question, what happened here
is that x2 − 6 is actually reducible over Q(

√
2,
√
3), since its roots ±

√
6 are in

there.
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Exercise 6 Splitting fields

The two questions of this exercise are independent from each other.
Let K be a field, let F (x) ∈ K[x] have degree n ⩾ 1, and let α1, · · · , αn be the

roots of F (x) in an algebraic closure K of K, ordered in some arbitrary way.

1. Prove that K(α1, · · · , αn−1) is a splitting field of F (x) over K.

Hint: What is α1 + · · ·+ αn?

2. Let L be a splitting field of F (x) over K. Prove that [L : K] ⩽ n!.

Solution 6

1. Let S = α1 + · · · + αn ∈ K. Then S is a symmetric polynomial in the αk

(more specifically, it agrees with σ1), so actually S ∈ K. It follows that
αn = S − α1 − · · · − αn−1 lies in K(α1, · · · , αn−1), so that

K(α1, · · · , αn) = K(α1, · · · , αn−1)(αn) = K(α1, · · · , αn−1),

which proves that K(α1, · · · , αn−1) is a splitting field of F (x) over K.

2. Induction on n = degF .

For n = 1, F has degree 1, so its unique root α1 lies in K, so L = K(α1) = K;
and indeed

[L : K] = [K : K] = 1 ⩽ 1!.

In the general case, let E = K(α1). Then F (x) = (x − α1)G(x), where
G(x) ∈ E[x] has degree n−1 and roots α2, · · · , αn. Therefore, a splitting field
of G(x) over E is

E(α2, · · · , αn) = K(α1)(α2, · · · , αn) = K(α1, · · · , αn) = L,

so by induction hypothesis, [L : E] ⩽ (degG − 1)! = (n − 1)!. Furthermore,
[E : K] = [K(α1) : K] = degm(x), where m(x) is the minimal polynomial of
α1 over K. But F (α1) = 0, so m(x) | F (x), so degm ⩽ degF = n. By the
tower law, we conclude that

[L : K] = [L : E][E : K] ⩽ (n− 1)!n = n!,

so the induction is complete.

Remark: We have equality iff. F (x) is irreducible over K (so degm = n) and
G(x) = F (x)/(x−α1) is irreducible over E = K(α1) and F (x)/(x−α1)(x−α2)
is irreducible over K(α1, α2) and... etc., that is to say if F (x)/(x−α1) · · · (x−
αj) is irreducible over K(α1, · · · , αj) for all 0 ⩽ j < n. We will see that this
can actually happen, so the bound [L : K] ⩽ n! can be sharp.
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