Faculty of Science, Technology, Engineering and Mathematics School of Mathematics

JS/SS Maths/TP/TJH
Michaelmas 2023-24
MAU34101 Galois theory - Revision paper (NOT REAL EXAM)

Never Nowhere Ever

Dr. Nicolas Mascot

Instructions to candidates:
This is a mock exam paper for revision purposes only.
Question 1 is for warmup. Questions 2-8 are more or less representative of what to expect at the exam. Questions 5 and $9-11$ are more difficult and are included here for practice.

You may not start this examination until you are instructed to do so by the Invigilator.

Question 1 Subgroups for appetiser

Sketch a diagram showing all the subgroups of G when:

1. $G=(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$,
2. $G=V_{4}=\{\operatorname{Id},(12)(34),(13)(24),(14)(23)\}<S_{4}$,
3. $G=S_{3}$,
4. $G=\mathbb{Z} / n \mathbb{Z}$, for n up to 12 .

Question 2 Bookwork

Let $K \subset L$ be a finite extension, and let $\Omega \supset K$ be algebraically closed. Which inequalities do we always have between $[L: K], \# \operatorname{Aut}_{K}(L), \# \operatorname{Hom}_{K}(L, \Omega)$? When are they equalities? State equivalent conditions.

Question 3 Yoga with the Galois correspondence

Let L / K be a finite Galois extension with Galois group $G=\operatorname{Gal}(L / K)$. Let $K \subseteq E_{1}, E_{2} \subseteq L$ be intermediate extensions, and let $H_{1}, H_{2} \leqslant G$ be the corresponding subgroups.

We denote by $E_{1} E_{2}$ the subfield of L generated by E_{1} and E_{2}, and by $H_{1} H_{2}$ the subgroup of G spanned by H_{1} and H_{2}.

Find the intermediate extensions corresponding to $H_{1} H_{2}$ and to $H_{1} \cap H_{2}$, and the subgroups corresponding to $E_{1} E_{2}$ and to $E_{1} \cap E_{2}$.

Question 4 Galois group computations

Determine the Galois group over \mathbb{Q} of the polynomials below, and say if they are solvable by radicals over $\mathbb{Q}: x^{3}-x^{2}-x-2, x^{3}-3 x-1, x^{3}-7, x^{5}+21 x^{2}+35 x+420$, $x^{10}+x^{9}+x^{8}+x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$.

Question 5 From the 2019 exam

Let K be a field, let $F(x) \in K[x]$ be separable and irreducible over K, and let α be a root of $F(x)$ (in some extension of K). Suppose that $\operatorname{Gal}_{K}(F)$ is Abelian. Prove that $K(\alpha)$ is a splitting field of $F(x)$ over K.

Show that all the hypotheses are necessary (give counter-examples).

Question 6 Correspondence in degree 3
Note: This exercise has a lot of overlap with the next one.
Let K be a field, and $F(x) \in K[x]$ be separable and of degree 3. Denote its 3 roots in its splitting field L by $\alpha_{1}, \alpha_{2}, \alpha_{3}$.

1. What are the possibilities for $\operatorname{Gal}_{K}(F)$? How can you tell them apart?
2. For each of the cases found in the previous question, sketch the diagram showing all the fields $K \subset E \subset L$ and identifying these fields. In particular, locate $K\left(\alpha_{1}\right), K\left(\alpha_{2}\right)$, $K\left(\alpha_{3}\right), K\left(\alpha_{1}, \alpha_{2}\right)$, etc.
3. In which of the cases above is the stem field of F isomorphic to its splitting field? (Warning: there is a catch in this question.)

Question 7 Cube roots (From the 2021 exam)
Note: This exercise has a lot of overlap with the previous one.
Let K be a subfield of \mathbb{C}. Let $0 \neq a \in K$, and let $\alpha \in \mathbb{C}$ be such that $\alpha^{3}=a$. Let

$$
f(x)=x^{3}-a \in K[x],
$$

and let $S \subset \mathbb{C}$ be the splitting field of $f(x)$ over K.
Finally, let $\zeta=e^{2 \pi i / 3}=\frac{-1+i \sqrt{3}}{2} \in \mathbb{C}$.

Note that a may or may not be a cube in K, and that ζ may or may not lie in K.

1. (a) Prove that if a is not a cube in K, then $f(x)$ is irreducible over K.
(b) Prove that $[K(\zeta): K] \leqslant 2$.
(c) Express the complex roots of $f(x)$ in terms of α and ζ.

In what follows, we denote these roots by $\alpha_{0}=\alpha, \alpha_{1}$, and α_{2}.
(d) Prove that $S \ni \zeta$.
(e) Prove that S is a Galois extension of K.

In what follows, we write G for $\operatorname{Gal}(S / K)$, and we view G as a subgroup of S_{3} acting on $\alpha_{0}, \alpha_{1}, \alpha_{2}$.
2. In each of the following situations:
(a) a is not a cube in K and $\zeta \notin K$,
(b) a is not a cube in K but $\zeta \in K$,
(c) a is a cube in K but $\zeta \notin K$,
(d) a is a cube in K and $\zeta \in K$,
determine $[S: K]$, explain how G acts on $\alpha_{0}, \alpha_{1}, \alpha_{2}$, explain how G acts on ζ, draw a diagram showing all the intermediate fields $K \subseteq E \subseteq S$, and say which of these E are Galois over K. Justify your answers.

Question 8 The fundamental theorem of algebra

The goal of this Question is to use Galois theory to prove by contradiction that \mathbb{C} is algebraically closed.

You may use without proof the following facts:

- If $F(x) \in \mathbb{R}[x]$ is a polynomial of odd degree, then $F(x)$ has at least one root in \mathbb{R}.
- If $G(x) \in \mathbb{C}[x]$ is a polynomial of degree 2 , then $G(x)$ has at least one root in \mathbb{C}.
- If G is a finite group of cardinal $\# G=2^{a} b$ with b odd, then G has at least one subgroup of cardinal 2^{a}.
- If H is a finite group whose cardinal $\# H=2^{a}$ is a power of 2 , then for each integer $0 \leqslant n \leqslant a, H$ has at least one subgroup of cardinal 2^{n}.

1. Prove that if \mathbb{C} were not algebraically closed, then there would exist a finite nontrivial extension K of \mathbb{C} (that is to say $K \supsetneq \mathbb{C}$ and $1<[K: \mathbb{C}]<\infty$).
2. Deduce that there would exist a finite nontrivial extension $\mathbb{C} \subsetneq L$ such that the extension $\mathbb{R} \subsetneq L$ is Galois.
3. Prove that $[L: \mathbb{R}]$ would necessarily be a power of 2 .
4. Prove that there would exist an intermediate field $\mathbb{C} \subsetneq F \subseteq L$ such that $[F: \mathbb{C}]=2$.
5. Derive a contradiction.

Note: the admitted facts at the top of the Question follow respectively from elementary calculus (limits at $\pm \infty$ and then intermediate value theorem), the formula to solve quadratic equations and the fact that every element of \mathbb{C} admits a square root in \mathbb{C}, Sylow's theorem, and Sylow's theorem again.

Question 9 A cosine formula

1. Prove that the group $(\mathbb{Z} / 17 \mathbb{Z})^{\times}$is cyclic, and find a generator for it.
2. Let $c=\cos (2 \pi / 17)$. Prove that c is algebraic over \mathbb{Q}.
3. Determine the conjugates of c over \mathbb{Q}, and its degree as an algebraic number over \mathbb{Q}.
4. Explain how one could in principle use Galois theory (and a calculator / computer) to find an explicit formula for c.

Question 10 Another cosine formula

Let $L=\mathbb{Q}(z)$ where $z=e^{i \pi / 10}$ which is a primitive 20 -th root of unity, and let $c=z+z^{-1}=$ $2 \cos (\pi / 10)$. We admit without proof that $(\mathbb{Z} / 20 \mathbb{Z})^{\times} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$, the first factor being generated by $-9 \bmod 20$, and the second factor being generated by $-3 \bmod 20$.

1. What is the minimal polynomial of z over \mathbb{Q} ?
2. Figure out the diagram of subgroups of $(\mathbb{Z} / 20 \mathbb{Z})^{\times}$.

You may use without proof the fact that any group of order 4 is isomorphic either to $\mathbb{Z} / 4 \mathbb{Z}$ or to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. You should find 8 subgroups in total.
3. Deduce the diagram of intermediate fields between \mathbb{Q} and L.

You may want to use a calculator / computer.
4. Find a radical expression for c.

Question 11 Extensions of finite fields are Galois

Let $p \in \mathbb{N}$ be prime, $n \in \mathbb{N}$, and $q=p^{n}$.

1. Give two proofs of the fact that the extension $\mathbb{F}_{p} \subset \mathbb{F}_{q}$ is Galois: one by viewing \mathbb{F}_{q} as a splitting field, and the other by considering the order of Frob $\in \operatorname{Aut}\left(\mathbb{F}_{q}\right)$.
2. What does the Galois correspondence tell us for $\mathbb{F}_{p} \subset \mathbb{F}_{q}$?
3. Generalise to an arbitrary extension of finite fields $\mathbb{F}_{q} \subset \mathbb{F}_{q^{\prime}}$.

Page 6 of 6
(c) TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2023

