

Faculty of Science, Technology, Engineering and Mathematics School of Mathematics

JS/SS Maths/TP/TJH

Michaelmas 2023–24

MAU34101 Galois theory — Revision paper (NOT REAL EXAM)

Never Nowhere Ever

Dr. Nicolas Mascot

Instructions to candidates:

This is a mock exam paper for revision purposes only.

Question 1 is for warmup. Questions 2-8 are more or less representative of what to expect at the exam. Questions 5 and 9-11 are more difficult and are included here for practice.

You may not start this examination until you are instructed to do so by the Invigilator.

Question 1 Subgroups for appetiser

Sketch a diagram showing all the subgroups of G when:

- 1. $G = (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}),$
- 2. $G = V_4 = { \mathrm{Id}, (12)(34), (13)(24), (14)(23) } < S_4,$
- 3. $G = S_3$,
- 4. $G = \mathbb{Z}/n\mathbb{Z}$, for n up to 12.

Question 2 Bookwork

Let $K \subset L$ be a finite extension, and let $\Omega \supset K$ be algebraically closed. Which inequalities do we always have between [L:K], $\# \operatorname{Aut}_K(L)$, $\# \operatorname{Hom}_K(L,\Omega)$? When are they equalities? State equivalent conditions.

Question 3 Yoga with the Galois correspondence

Let L/K be a finite Galois extension with Galois group G = Gal(L/K). Let $K \subseteq E_1, E_2 \subseteq L$ be intermediate extensions, and let $H_1, H_2 \leq G$ be the corresponding subgroups.

We denote by E_1E_2 the subfield of L generated by E_1 and E_2 , and by H_1H_2 the subgroup of G spanned by H_1 and H_2 .

Find the intermediate extensions corresponding to H_1H_2 and to $H_1\cap H_2$, and the subgroups corresponding to E_1E_2 and to $E_1\cap E_2$.

Question 4 Galois group computations

Determine the Galois group over \mathbb{Q} of the polynomials below, and say if they are solvable by radicals over \mathbb{Q} : $x^3 - x^2 - x - 2$, $x^3 - 3x - 1$, $x^3 - 7$, $x^5 + 21x^2 + 35x + 420$, $x^{10} + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$.

Question 5 From the 2019 exam

Let K be a field, let $F(x) \in K[x]$ be separable and irreducible over K, and let α be a root of F(x) (in some extension of K). Suppose that $\operatorname{Gal}_K(F)$ is Abelian. Prove that $K(\alpha)$ is a splitting field of F(x) over K.

Show that all the hypotheses are necessary (give counter-examples).

Question 6 Correspondence in degree 3

Note: This exercise has a lot of overlap with the next one.

Let K be a field, and $F(x) \in K[x]$ be separable and of degree 3. Denote its 3 roots in its splitting field L by $\alpha_1, \alpha_2, \alpha_3$.

- 1. What are the possibilities for $Gal_K(F)$? How can you tell them apart?
- For each of the cases found in the previous question, sketch the diagram showing all the fields K ⊂ E ⊂ L and identifying these fields. In particular, locate K(α₁), K(α₂), K(α₃), K(α₁, α₂), etc.
- 3. In which of the cases above is the stem field of F isomorphic to its splitting field? (*Warning: there is a catch in this question.*)

Question 7 Cube roots (From the 2021 exam)

Note: This exercise has a lot of overlap with the previous one.

Let K be a subfield of \mathbb{C} . Let $0 \neq a \in K$, and let $\alpha \in \mathbb{C}$ be such that $\alpha^3 = a$. Let

$$f(x) = x^3 - a \in K[x],$$

and let $S \subset \mathbb{C}$ be the splitting field of f(x) over K. Finally, let $\zeta = e^{2\pi i/3} = \frac{-1+i\sqrt{3}}{2} \in \mathbb{C}$.

Note that a may or may not be a cube in K, and that ζ may or may not lie in K.

- 1. (a) Prove that if a is not a cube in K, then f(x) is irreducible over K.
 - (b) Prove that $[K(\zeta) : K] \leq 2$.
 - (c) Express the complex roots of f(x) in terms of α and ζ . In what follows, we denote these roots by $\alpha_0 = \alpha$, α_1 , and α_2 .
 - (d) Prove that $S \ni \zeta$.
 - (e) Prove that S is a Galois extension of K.
 In what follows, we write G for Gal(S/K), and we view G as a subgroup of S₃ acting on α₀, α₁, α₂.
- 2. In each of the following situations:
 - (a) a is not a cube in K and $\zeta \notin K$,
 - (b) a is not a cube in K but $\zeta \in K$,
 - (c) a is a cube in K but $\zeta \notin K$,
 - (d) a is a cube in K and $\zeta \in K$,

determine [S : K], explain how G acts on $\alpha_0, \alpha_1, \alpha_2$, explain how G acts on ζ , draw a diagram showing all the intermediate fields $K \subseteq E \subseteq S$, and say which of these E are Galois over K. Justify your answers.

Page 4 of 6

Question 8 The fundamental theorem of algebra

The goal of this Question is to use Galois theory to prove by contradiction that \mathbb{C} is algebraically closed.

You may use without proof the following facts:

- If $F(x) \in \mathbb{R}[x]$ is a polynomial of odd degree, then F(x) has at least one root in \mathbb{R} .
- If $G(x) \in \mathbb{C}[x]$ is a polynomial of degree 2, then G(x) has at least one root in \mathbb{C} .
- If G is a finite group of cardinal #G = 2^ab with b odd, then G has at least one subgroup of cardinal 2^a.
- If H is a finite group whose cardinal #H = 2^a is a power of 2, then for each integer
 0 ≤ n ≤ a, H has at least one subgroup of cardinal 2ⁿ.
- Prove that if C were not algebraically closed, then there would exist a finite nontrivial extension K of C (that is to say K ⊋ C and 1 < [K : C] < ∞).
- Deduce that there would exist a finite nontrivial extension C ⊊ L such that the extension R ⊊ L is Galois.
- 3. Prove that $[L : \mathbb{R}]$ would necessarily be a power of 2.
- 4. Prove that there would exist an intermediate field $\mathbb{C} \subsetneq F \subseteq L$ such that $[F : \mathbb{C}] = 2$.
- 5. Derive a contradiction.

Note: the admitted facts at the top of the Question follow respectively from elementary calculus (limits at $\pm\infty$ and then intermediate value theorem), the formula to solve quadratic equations and the fact that every element of \mathbb{C} admits a square root in \mathbb{C} , Sylow's theorem, and Sylow's theorem again.

Question 9 A cosine formula

- 1. Prove that the group $(\mathbb{Z}/17\mathbb{Z})^{\times}$ is cyclic, and find a generator for it.
- 2. Let $c = \cos(2\pi/17)$. Prove that c is algebraic over \mathbb{Q} .
- 3. Determine the conjugates of c over \mathbb{Q} , and its degree as an algebraic number over \mathbb{Q} .
- 4. Explain how one could in principle use Galois theory (and a calculator / computer) to find an explicit formula for *c*.

Question 10 Another cosine formula

Let $L = \mathbb{Q}(z)$ where $z = e^{i\pi/10}$ which is a primitive 20-th root of unity, and let $c = z + z^{-1} = 2\cos(\pi/10)$. We admit without proof that $(\mathbb{Z}/20\mathbb{Z})^{\times} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$, the first factor being generated by $-9 \mod 20$, and the second factor being generated by $-3 \mod 20$.

- 1. What is the minimal polynomial of z over \mathbb{Q} ?
- 2. Figure out the diagram of subgroups of $(\mathbb{Z}/20\mathbb{Z})^{\times}$.

You may use without proof the fact that any group of order 4 is isomorphic either to $\mathbb{Z}/4\mathbb{Z}$ or to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. You should find 8 subgroups in total.

- Deduce the diagram of intermediate fields between Q and L.
 You may want to use a calculator / computer.
- 4. Find a radical expression for c.

Question 11 Extensions of finite fields are Galois

Let $p \in \mathbb{N}$ be prime, $n \in \mathbb{N}$, and $q = p^n$.

- Give two proofs of the fact that the extension 𝔽_p ⊂ 𝔽_q is Galois: one by viewing 𝔽_q as
 a splitting field, and the other by considering the order of Frob ∈ Aut(𝔽_q).
- 2. What does the Galois correspondence tell us for $\mathbb{F}_p \subset \mathbb{F}_q$?
- 3. Generalise to an arbitrary extension of finite fields $\mathbb{F}_q \subset \mathbb{F}_{q'}$.

Page 6 of 6