Faculty of Science, Technology, Engineering and Mathematics School of Mathematics

JS/SS Maths/TP/TJH
Semester 1, 2021
MAU23101 Introduction to number theory - Mock exam

Dr. Nicolas Mascot

Instructions to candidates:
This is a mock exam, so ignore the instructions! It is also longer than the actual exam.

You may not start this examination until you are instructed to do so by the Invigilator.

Question 1 Two primes

Find distinct prime numbers $p, q \in \mathbb{N}$ both greater than 50 such that p is a square $\bmod q$, but q is not a square $\bmod p$.

Solution 1

Let p and q be such primes. Then they are odd, and

$$
\left(\frac{p}{q}\right)=+1, \quad\left(\frac{q}{p}\right)=-1 .
$$

By quadratic reciprocity,

$$
\left(\frac{p}{q}\right)=(-1)^{p^{\prime} q^{\prime}}\left(\frac{q}{p}\right),
$$

so we need $p^{\prime} q^{\prime}$ to be odd, which means that both p and q must be $\equiv-1 \bmod 4$.
If furthermore it happens that $p=q+4$, which will ensure that $p \equiv q \bmod 4$, then

$$
p=q+4 \equiv 4=2^{2} \bmod q
$$

is a square $\bmod q$, and so q is not a square $\bmod p$ by the above. So we look for a prime $q \geq 50$ such that $q \equiv-1 \bmod 4$ and $q+4$ is also prime.

The smallest such q is $q=67$, which corresponds to $p=71$. Of course, there are many other solutions.

Question 2 Lucky 13

Factor $1+3 i$ into irreducibles in $\mathbb{Z}[i]$.
Make sure to justify that your factorization is complete.

Solution 2

Let $\alpha=1+3 i$. We have $N(\alpha)=1^{2}+3^{2}=10=2 \times 5$. Since the ireducibles of $\mathbb{Z}[i]$ have norm $2, p \equiv+1 \bmod 4$ a prime, or q^{2} where $q \equiv-1 \bmod 4$ and is prime, we conclude form the multiplicativity of the norm that α must be of the form $\pi_{2} \pi_{5}$ where π_{2} (resp. π_{5}) is an irreducible of norm 2 (resp. 5).

Page 2 of 11

As π_{2} must be associate to $1+i$, after taking a unit out of π_{2} and putting it in π_{5}, we can assume that $\pi_{2}=1+i$, so that

$$
\pi_{5}=\alpha /(1+i)=\frac{1+3 i}{1+i}=\frac{(1+3 i)(1-i)}{2}=2+i
$$

Thus $\alpha=(1+i)(2+i)$ is the complete factorization of α.

Question 3 A primality test

Let $p \in \mathbb{N}$ be a prime such that $p \equiv 3(\bmod 4)$, and let $P=2 p+1$. The goal of this exercise is to prove that P is prime if and only if $2^{p} \equiv 1 \bmod P$.

1. In this part of the Question, we suppose that P is prime, and we prove that $2^{p} \equiv$ $1 \bmod P$.
(a) Evaluate the Legendre symbol $\left(\frac{2}{P}\right)$.
(b) Deduce that $2^{p} \equiv 1(\bmod P)$.

Hint: What is $\frac{P-1}{2}$?
2. In this part of the Question, we suppose that $2^{p} \equiv 1 \bmod P$, and we prove that P is prime.
(a) Prove that $2 \in(\mathbb{Z} / P \mathbb{Z})^{\times}$. What is its multiplicative order?
(b) Deduce that $p \mid \phi(P)$.
(c) Prove that p and P are coprime, and deduce that there exists a prime divisor q of P such that $q \equiv 1(\bmod p)$.

Hint: $\phi\left(\prod p_{i}^{a_{i}}\right)=\cdots$.
(d) Deduce that P is prime.

Hint: How large can P / q be?

Solution 3

1. (a) Since $p=4 k+3$, we have $P=2 p+1=8 k+7 \equiv-1(\bmod 8)$, so $\left(\frac{2}{P}\right)=1$.
(b) We have $2^{p}=2^{\frac{P-1}{2}} \equiv\left(\frac{2}{P}\right)=1(\bmod P)$.
2. (a) Since $2^{p} \equiv 1(\bmod P)$, we see that 2 is invertible mod P, of inverse 2^{p-1}. Also, the same formula tells us that its multiplicative order $\bmod P$ is a divisor of p. Since p it prime, it is thus either 1 or p. But if it were 1 , we would have $2^{1} \equiv 1$ $(\bmod P)$, which is impossible since $P=2 p+1 \geqslant 5$. So it must be p.
(b) Fermat's little theorem tells us that $p^{\phi(P)} \equiv 1(\bmod P)$, so that $\phi(P)$ is a multiple of the multiplicative order of $p \bmod P$. But this order is p by the previous question.
(c) Since $P-2 p=1, p$ and P are coprime (Bézout). Let now $P=\prod p_{i}^{a_{i}}$ be the factorization of P. We have $\phi(P)=\prod\left(p_{i}-1\right) p_{i}^{a_{i}-1}$, and p divides this product by the previous question. Since p is prime, Euclid tells us that it must divide at least one of the factors. But p cannot divide any of the p_{i} since p and P are coprime, so p must divide at least one of the $\left(p_{i}-1\right)$. Letting $q=p_{i}$, we have thus found a prime q such that $q \mid P$ and $q \equiv 1(\bmod p)$.
(d) Since $q \equiv 1(\bmod p)$ and $q \neq 1$, we have $q \geqslant p+1$, so $P / q \leqslant \frac{2 p+1}{p+1}<2$. But since $q \mid P, P / q$ is an integer, so $P / q=1$. Therefore, $P=q$ is prime.

Question 4 A Pell-Fermat equation

1. Compute the continued fraction of $\sqrt{37}$.

This means you should somehow find a formula for all the coefficients of the continued fraction expansion, not just finitely many of them.
2. Use the previous question to find the fundamental solution to the equation $x^{2}-37 y^{2}=1$.

Solution 4

1. Let $x=\sqrt{37}$. Since x is a quadratic number, its continued fraction expansion is ultimately periodic. Let us make this fact explicit.

We set $x_{0}=x, a_{0}=\left\lfloor x_{0}\right\rfloor=6$.
Then $x_{1}=\frac{1}{x_{0}-a_{0}}=\frac{1}{\sqrt{37}-6}=6+\sqrt{37}$, so $a_{1}=\left\lfloor x_{1}\right\rfloor=12$.
Then $x_{2}=\frac{1}{x_{1}-a_{1}}=\frac{1}{6+\sqrt{37}-12}=\frac{1}{\sqrt{37}-6}=x_{1}$, so we see by induction that $x_{n+1}=x_{n}$ and $a_{n+1}=a_{n}$ for all $n \geqslant 1$.

Thus $\sqrt{37}=[6, \overline{12}]=[6,12,12,12, \cdots]$.
2. The first convergent of the continued fraction computed above is $p_{0} / q_{0}=6 / 1$. Trying $x=6, y=1$, we find that $6^{2}-37 \times 1^{2}=-1$.

So in order to find the fundamental solution, all we have to do is square the number $6+1 \times \sqrt{37}$. We find that

$$
(6+\sqrt{37})^{2}=36+12 \sqrt{37}+37=73+12 \sqrt{37}
$$

so the fundamental solution is $x=73, y=12$.

Question 5 Gaussian congruences

The purpose of this Question is to generalise the concept of congruence to $\mathbb{Z}[i]$.
In this Question, we fix a nonzero $\mu \in \mathbb{Z}[i]$, and whenever $\alpha, \beta \in \mathbb{Z}[i]$, we say that $\alpha \equiv \beta \bmod \mu$ if $\alpha-\beta$ is a multiple of μ in $\mathbb{Z}[i]$, that is to say if there exists $\lambda \in \mathbb{Z}[i]$ such that $\alpha-\beta=\lambda \mu$.

1. Example: prove that $2 \equiv 4 i \bmod 2+i$.
2. Let $\alpha \in \mathbb{Z}[i]$. Prove that there exists $\rho \in \mathbb{Z}[i]$ such that $\alpha \equiv \rho \bmod \mu$ and $N(\rho)<$ $N(\mu)$.

Hint: Euclid.
We say that an element $\alpha \in \mathbb{Z}[i]$ is invertible $\bmod \mu$ if there exists $\beta \in \mathbb{Z}[i]$ such that

$$
\alpha \beta \equiv 1 \bmod \mu .
$$

Page 5 of 11
3. Prove that α is invertible $\bmod \mu$ if and only if α and μ are coprime in $\mathbb{Z}[i]$.
4. Example: let $\alpha=1-2 i$ and $\mu=3+i$. Prove that α is invertible $\bmod \mu$, and find $\beta \in \mathbb{Z}[i]$ such that $\alpha \beta \equiv 1 \bmod \mu$.

Solution 5

1. We need to check that $2-4 i$ is a multiple of $2+i$ in $\mathbb{Z}[i]$. And indeed,

$$
\frac{2-4 i}{2+i}=\frac{(2-4 i)(2-i)}{(2+i)(2-i)}=\frac{-10 i}{5}=-2 i
$$

lies in $\mathbb{Z}[i]$.
2. Since $\mu \neq 0$ by assumption, we can perform the Euclidean division of α by μ. We find $\beta, \rho \in \mathbb{Z}[i]$ such that $N(\rho)<N(\mu)$ and $\alpha=\beta \mu+\rho$. This last identity shows that $\alpha-\rho=\beta \mu$ is a multiple of μ, so $\alpha \equiv \rho \bmod \mu$.
3. We have that α is invertible $\bmod \mu$
iff. there exists $\beta \in \mathbb{Z}[i]$ such that $\alpha \beta \equiv 1 \bmod \mu$
iff. there exist $\beta, \lambda \in \mathbb{Z}[i]$ such that $\alpha \beta=1-\lambda \mu$
iff. there exist $\beta, \lambda \in \mathbb{Z}[i]$ such that $\beta \alpha+\lambda \mu=1$.
By Bézout, this last statement is equivalent to α and μ being coprime in $\mathbb{Z}[i]$.
4. We need to show that α and μ are coprime. We apply the Euclidean algorithm: as $N(\mu)>N(\alpha)$, we begin by dividing μ by α. As

$$
\frac{\mu}{\alpha}=\frac{(3+i)(1+2 i)}{(1-2 i)(1+2 i)}=\frac{1+7 i}{5}
$$

rounds to i, we get quotient i and remainder $\mu-i \alpha=1$, which shows that μ and α are indeed coprime. Furthermore, the identity

$$
\mu=i \alpha+1
$$

can be rewritten as

$$
-i \alpha=1+(-1) \mu,
$$

which shows that we can take $\beta=-i$.

Question 6 Carmichael numbers

1. State Fermat's little theorem, and explain why it implies that if $p \in \mathbb{N}$ is prime, then $a^{p} \equiv a(\bmod p)$ for all $a \in \mathbb{Z}$.

A Carmichael number is an integer $n \geqslant 2$ which is not prime, but nonetheless satisfies $a^{n} \equiv a(\bmod n)$ for all $a \in \mathbb{Z}$. Note that this can also be written $n \mid\left(a^{n}-a\right)$ for all $a \in \mathbb{Z}$.
2. Let $n \geqslant 2$ be a Carmichael number, and let $p \in \mathbb{N}$ be a prime dividing n. Prove that $p^{2} \nmid n$.

Hint: Apply the definition of a Carmichael number to a particular value of a.
3. Let $n \geqslant 2$ be a Carmichael number. According to the previous question, we may write

$$
n=p_{1} p_{2} \cdots p_{r}
$$

where the p_{i} are distinct primes. Let p be one the the p_{i}.
(a) Recall the definition of a primitive root $\bmod p$.
(b) Prove that $(p-1) \mid(n-1)$.

Hint: Consider an $a \in \mathbb{Z}$ which is a primitive root $\bmod p$.
4. Conversely, prove that if an integer $m \in \mathbb{N}$ is of the form

$$
m=p_{1} p_{2} \cdots p_{r}
$$

where the p_{i} are distinct primes such that $\left(p_{i}-1\right) \mid(m-1)$ for all $i=1,2, \cdots, r$, then m is a Carmichael number.

Hint: Prove that $p_{i} \mid\left(a^{m}-a\right)$ for all $i=1, \cdots, r$ and all $a \in \mathbb{Z}$.
5. Let $n \geqslant 2$ be a Carmichael number. The goal of this question is to prove that n must have at least 3 distinct prime factors. Note that according to question 2., n cannot have only 1 prime factor.

Suppose that n has exactly 2 prime factors, so that we may write

$$
n=(x+1)(y+1)
$$

where $x, y \in \mathbb{N}$ are distinct integers such that $x+1$ and $y+1$ are both prime. Use question 3.(b) to prove that $x \mid y$, and show that this leads to a contradiction.

Solution 6

1. Fermat's little theorem states that for all $n \in \mathbb{N}$ and for all $a \in(\mathbb{Z} / n \mathbb{Z})^{\times}$, we have $a^{\phi(n)}=1$. In other words, for all $a \in \mathbb{Z}$ coprime to n, we have $a^{\phi(n)} \equiv 1(\bmod n)$.

In particular, if $n=p$ is prime, then $\phi(n)=p-1$, so that for all $a \in \mathbb{Z}$ not divisible by p we have $a^{p-1} \equiv 1(\bmod p)$.

Multiplying both sides by a, we get that $a^{p} \equiv a(\bmod p)$ for all a not divisible by p. This still holds even if $p \mid a$ since a and a^{p} are both $\equiv 0(\bmod p)$ in this case.
2. Let us take $a=p$; since n is a Carmichael number, we have $n \mid\left(p^{n}-p\right)$. Now if $p^{2} \mid n$, we deduce that $p^{2} \mid\left(p^{n}-p\right)$, whence $p^{2} \mid p$ since $p \mid p^{n}$ as $n \geqslant 2$, which is obviously a contradiction.
3. (a) A primitive root $\bmod p$ is an element $x \in(\mathbb{Z} / p \mathbb{Z})^{\times}$of multiplicative order $p-1$; in other words, such that $x^{m} \neq 1$ for all $1 \leqslant m<p-1$.
(b) Let $a \in \mathbb{N}$ be such that $(a \bmod p)$ is a primitive root $\bmod p$. Since n is a Carmichael number, we have $n \mid\left(a^{n}-a\right)$, whence $p \mid\left(a^{n}-a\right)$ as $p \mid a$. Thus $a^{n} \equiv a(\bmod p)$. But $a \not \equiv 0(\bmod p)$ since a is a primitive root $\bmod p$, so since p is prime, a is invertible $\bmod p$, so we can simplify by a and get

$$
a^{n-1} \equiv 1 \quad(\bmod p)
$$

This says that $n-1$ is a multiple of the multiplicative order of $(a \bmod p)$, which is $p-1$ since $(a \bmod p)$ is a primitive root. Thus $(p-1) \mid(n-1)$.
4. Let p be one of p_{1}, \cdots, p_{r}. By assumption, we have $m-1=(p-1) q$ for some $q \in \mathbb{N}$.

Let now $a \in \mathbb{Z}$. We have

$$
a^{m}-a=a\left(a^{m-1}-1\right)=a\left(\left(a^{p-1}\right)^{q}-1\right),
$$

so if $a \equiv 0(\bmod p)$ then $a^{m}-a \equiv 0(\bmod p)$, whereas if $a \not \equiv 0(\bmod p)$, then $a \in$ $(\mathbb{Z} / p \mathbb{Z})^{\times}$, so by Fermat's little theorem we have $a^{p-1} \equiv 1(\bmod p)$ whence $\left(a^{p-1}\right)^{q}-1 \equiv$ $1^{q}-1=0(\bmod p)$; so either way $a^{m} \equiv a(\bmod p)$, i.e. $p \mid\left(a^{m}-a\right)$.

This holds for any $p \in\left\{p_{1}, \cdots, p_{r}\right\}$, and the p_{i} are coprime since they are distinct primes, so

$$
m=p_{1} \cdots p_{r} \mid\left(a^{m}-a\right)
$$

Since this holds for all a, this means that m is a Carmichael number.
5. By question 3.(b), $x=(x+1)-1$ divides $n-1=(x+1)(y+1)=x y+x+y$, so x divides $x y+x+y-x(y+1)=y$. Similarly, we see that $y \mid x$, so that $x=y$, which contradicts the assumption that x and y are distinct.

Note: The smallest Carmichael number is $561=3 \times 11 \times 17$. There are infinitely many Carmichael numbers; more precisely, it was proved in 1992 that for large enough X, there are at least $X^{2 / 7}$ Carmichael numbers between 1 and X. The existence of Carmichael numbers means that a simple-minded primality test based on Fermat's little theorem would not be rigorous.

Question 7 Sophie Germain and the automatic primitive root

In this exercise, we fix an odd prime $p \in \mathbb{N}$ such that $q=\frac{p-1}{2}$ is also prime and $q \geqslant 5$.

1. Prove that $p \equiv-1(\bmod 3)$.

Hint: Express p in terms of q. What happens if $p \equiv+1(\bmod 3)$?
2. Express the number of primitive roots in $(\mathbb{Z} / p \mathbb{Z})^{\times}$in terms of q.

Hint: What are the prime divisors of $p-1$?
3. Let $x \in(\mathbb{Z} / p \mathbb{Z})^{\times}$. Prove that x is a primitive root if and only if $x \neq \pm 1$ and $\left(\frac{x}{p}\right)=-1$. Hint: What are the prime divisors of $p-1$? (bis)
4. Deduce that $x=-3 \in(\mathbb{Z} / p \mathbb{Z})^{\times}$is a primitive root.
5. (More difficult) Prove that $x=6 \in(\mathbb{Z} / p \mathbb{Z})^{\times}$is a primitive root if and only if q is a sum of two squares.

Solution 7

1. Since $q \geqslant 5, p=2 q+1 \geqslant 11$. As p is prime, is is this coprime to 3 , so $p \equiv 1$ or 2 $(\bmod 3)$. If $p=2 q+1 \equiv 1(\bmod 3)$, e would have $2 q \equiv 0(\bmod 3)$, whence $q \equiv 0$ $(\bmod 3)$ since 2 is invertible $\bmod 3$; in other words $3 \mid q$. Since $q \geqslant 5$ is prime, this is impossible.
2. This number is $\phi(\phi(p))$. As p is prime $\phi(p)=p-1$, which factors as $2 q$. Since 2 and q are distinct primes, we get

$$
\phi(p-1)=\phi(2 q)=2 q\left(1-\frac{1}{2}\right)\left(1-\frac{1}{q}\right)=q-1
$$

3. Let m be the multiplicative order of x. Fermat's little theorem tells us that $m \mid p-1=$ $2 q$. Thus $m<2 q$ if and only if $m \mid 2$ or $m \mid q$. But

$$
m \mid 2 \Longleftrightarrow x^{2}=1 \Longleftrightarrow(x-1)(x+1)=0 \Longleftrightarrow x= \pm 1
$$

since $\mathbb{Z} / p \mathbb{Z}$ is a domain, and

$$
m \left\lvert\, q \Longleftrightarrow x^{q}=1 \Longleftrightarrow\left(\frac{x}{p}\right)=1\right.
$$

since $\left(\frac{x}{p}\right)=x^{p^{\prime}}=x^{q}$. Besides, in any case $\left(\frac{x}{p}\right)= \pm 1$ since $x \neq 0$, so it is -1 if it is not +1 .

The conclusion follows.
Remark: If $\left(\frac{x}{p}\right)=-1$, then x cannot be 1 , so we could replace the first condition by $x \neq-1$.

Page 10 of 11

4. We cannot have $-3=+1$ in $\mathbb{Z} / p \mathbb{Z}$ since this would force $p \mid 4$; similarly we cannot have $-3=-1$ either. It thus only remains to check that $\left(\frac{-3}{p}\right)=-1$. This is indeed true, since

$$
\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=(-1)^{q}(-1)^{q}\left(\frac{p}{3}\right)=\left(\frac{-1}{3}\right)=-1
$$

by quadratic reciprocity and because $p \equiv-1(\bmod 3)$ by the first question.
5. It is again easy to prove that $6 \not \equiv \pm 1(\bmod p)$ since this would force $p=5$ or 7 . Besides,

$$
\left(\frac{6}{p}\right)=\left(\frac{2}{p}\right)\left(\frac{3}{p}\right)=\left(\frac{2}{p}\right)(-1)^{q}\left(\frac{p}{3}\right)=\left(\frac{2}{p}\right)
$$

since q is odd and $p \equiv-1(\bmod 3)$, so 6 is a primitive root if and only if $\left(\frac{2}{p}\right)=-1$. To conclude, we now distinguish two cases.

On the one hand, if q is not a sum of two squares, then $q=4 k+3$ for some $k \in \mathbb{N}$, so $p=2 q+1=8 k+7$, whence $\left(\frac{2}{p}\right)=+1$ so 6 is not a primitive root.
On the other hand, if q is a sum of two squares, then $q=4 k+1$ for some $k \in \mathbb{N}$ (we cannot have $q=2$ since $q \geqslant 5$), so $p=2 q+1=8 k+3$, whence $\left(\frac{2}{p}\right)=-1$ so 6 is a primitive root.

END

