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Instructions to candidates:

This is a mock exam, so ignore the instructions! It is also longer than the actual
exam.

You may not start this examination until you are instructed to do so by the Invigi-
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Page 1 of 11



MAU23101

Question 1 Two primes

Find distinct prime numbers p, q ∈ N both greater than 50 such that p is a square mod q, but

q is not a square mod p.

Solution 1

Let p and q be such primes. Then they are odd, and(
p

q

)
= +1,

(
q

p

)
= −1.

By quadratic reciprocity, (
p

q

)
= (−1)p′q′

(
q

p

)
,

so we need p′q′ to be odd, which means that both p and q must be ≡ −1 mod 4.

If furthermore it happens that p = q + 4, which will ensure that p ≡ q mod 4, then

p = q + 4 ≡ 4 = 22 mod q

is a square mod q, and so q is not a square mod p by the above. So we look for a prime

q ≥ 50 such that q ≡ −1 mod 4 and q + 4 is also prime.

The smallest such q is q = 67, which corresponds to p = 71. Of course, there are many

other solutions.

Question 2 Lucky 13

Factor 1 + 3i into irreducibles in Z[i].

Make sure to justify that your factorization is complete.

Solution 2

Let α = 1 + 3i. We have N(α) = 12 + 32 = 10 = 2 × 5. Since the ireducibles of Z[i] have

norm 2, p ≡ +1 mod 4 a prime, or q2 where q ≡ −1 mod 4 and is prime, we conclude form

the multiplicativity of the norm that α must be of the form π2π5 where π2 (resp. π5) is an

irreducible of norm 2 (resp. 5).
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As π2 must be associate to 1 + i, after taking a unit out of π2 and putting it in π5, we

can assume that π2 = 1 + i, so that

π5 = α/(1 + i) =
1 + 3i

1 + i
=

(1 + 3i)(1− i)
2

= 2 + i.

Thus α = (1 + i)(2 + i) is the complete factorization of α.

Question 3 A primality test

Let p ∈ N be a prime such that p ≡ 3 (mod 4), and let P = 2p+1. The goal of this exercise

is to prove that P is prime if and only if 2p ≡ 1 mod P .

1. In this part of the Question, we suppose that P is prime, and we prove that 2p ≡

1 mod P .

(a) Evaluate the Legendre symbol

(
2

P

)
.

(b) Deduce that 2p ≡ 1 (mod P ).

Hint: What is P−1
2

?

2. In this part of the Question, we suppose that 2p ≡ 1 mod P , and we prove that P is

prime.

(a) Prove that 2 ∈ (Z/PZ)×. What is its multiplicative order?

(b) Deduce that p | φ(P ).

(c) Prove that p and P are coprime, and deduce that there exists a prime divisor q of

P such that q ≡ 1 (mod p).

Hint: φ(
∏
paii ) = · · · .

(d) Deduce that P is prime.

Hint: How large can P/q be?
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Solution 3

1. (a) Since p = 4k + 3, we have P = 2p+ 1 = 8k + 7 ≡ −1 (mod 8), so

(
2

P

)
= 1.

(b) We have 2p = 2
P−1
2 ≡

(
2

P

)
= 1 (mod P ).

2. (a) Since 2p ≡ 1 (mod P ), we see that 2 is invertible mod P , of inverse 2p−1. Also,

the same formula tells us that its multiplicative order mod P is a divisor of p.

Since p it prime, it is thus either 1 or p. But if it were 1, we would have 21 ≡ 1

(mod P ), which is impossible since P = 2p+ 1 > 5. So it must be p.

(b) Fermat’s little theorem tells us that pφ(P ) ≡ 1 (mod P ), so that φ(P ) is a multiple

of the multiplicative order of p mod P . But this order is p by the previous question.

(c) Since P − 2p = 1, p and P are coprime (Bézout). Let now P =
∏
paii be the

factorization of P . We have φ(P ) =
∏
(pi−1)pai−1i , and p divides this product by

the previous question. Since p is prime, Euclid tells us that it must divide at least

one of the factors. But p cannot divide any of the pi since p and P are coprime,

so p must divide at least one of the (pi − 1). Letting q = pi, we have thus found

a prime q such that q | P and q ≡ 1 (mod p).

(d) Since q ≡ 1 (mod p) and q 6= 1, we have q > p + 1, so P/q 6 2p+1
p+1

< 2. But

since q | P , P/q is an integer, so P/q = 1. Therefore, P = q is prime.

Question 4 A Pell-Fermat equation

1. Compute the continued fraction of
√
37.

This means you should somehow find a formula for all the coefficients of the continued

fraction expansion, not just finitely many of them.

2. Use the previous question to find the fundamental solution to the equation x2−37y2 = 1.
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Solution 4

1. Let x =
√
37. Since x is a quadratic number, its continued fraction expansion is

ultimately periodic. Let us make this fact explicit.

We set x0 = x, a0 = bx0c = 6.

Then x1 =
1

x0−a0 = 1√
37−6 = 6 +

√
37, so a1 = bx1c = 12.

Then x2 = 1
x1−a1 = 1

6+
√
37−12 = 1√

37−6 = x1, so we see by induction that xn+1 = xn

and an+1 = an for all n > 1.

Thus
√
37 = [6, 12] = [6, 12, 12, 12, · · · ].

2. The first convergent of the continued fraction computed above is p0/q0 = 6/1. Trying

x = 6, y = 1, we find that 62 − 37× 12 = −1.

So in order to find the fundamental solution, all we have to do is square the number

6 + 1×
√
37. We find that

(6 +
√
37)2 = 36 + 12

√
37 + 37 = 73 + 12

√
37,

so the fundamental solution is x = 73, y = 12.

Question 5 Gaussian congruences

The purpose of this Question is to generalise the concept of congruence to Z[i].

In this Question, we fix a nonzero µ ∈ Z[i], and whenever α, β ∈ Z[i], we say that

α ≡ β mod µ if α − β is a multiple of µ in Z[i], that is to say if there exists λ ∈ Z[i] such

that α− β = λµ.

1. Example: prove that 2 ≡ 4i mod 2 + i.

2. Let α ∈ Z[i]. Prove that there exists ρ ∈ Z[i] such that α ≡ ρ mod µ and N(ρ) <

N(µ).

Hint: Euclid.

We say that an element α ∈ Z[i] is invertible mod µ if there exists β ∈ Z[i] such that

αβ ≡ 1 mod µ.
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3. Prove that α is invertible mod µ if and only if α and µ are coprime in Z[i].

4. Example: let α = 1 − 2i and µ = 3 + i. Prove that α is invertible mod µ, and find

β ∈ Z[i] such that αβ ≡ 1 mod µ.

Solution 5

1. We need to check that 2− 4i is a multiple of 2 + i in Z[i]. And indeed,

2− 4i

2 + i
=

(2− 4i)(2− i)
(2 + i)(2− i)

=
−10i
5

= −2i

lies in Z[i].

2. Since µ 6= 0 by assumption, we can perform the Euclidean division of α by µ. We find

β, ρ ∈ Z[i] such that N(ρ) < N(µ) and α = βµ + ρ. This last identity shows that

α− ρ = βµ is a multiple of µ, so α ≡ ρ mod µ.

3. We have that α is invertible mod µ

iff. there exists β ∈ Z[i] such that αβ ≡ 1 mod µ

iff. there exist β, λ ∈ Z[i] such that αβ = 1− λµ

iff. there exist β, λ ∈ Z[i] such that βα + λµ = 1.

By Bézout, this last statement is equivalent to α and µ being coprime in Z[i].

4. We need to show that α and µ are coprime. We apply the Euclidean algorithm: as

N(µ) > N(α), we begin by dividing µ byα. As

µ

α
=

(3 + i)(1 + 2i)

(1− 2i)(1 + 2i)
=

1 + 7i

5

rounds to i, we get quotient i and remainder µ − iα = 1, which shows that µ and α

are indeed coprime. Furthermore, the identity

µ = iα + 1

can be rewritten as

−iα = 1 + (−1)µ,

which shows that we can take β = −i.
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Question 6 Carmichael numbers

1. State Fermat’s little theorem, and explain why it implies that if p ∈ N is prime, then

ap ≡ a (mod p) for all a ∈ Z.

A Carmichael number is an integer n > 2 which is not prime, but nonetheless satisfies

an ≡ a (mod n) for all a ∈ Z. Note that this can also be written n | (an − a) for all

a ∈ Z.

2. Let n > 2 be a Carmichael number, and let p ∈ N be a prime dividing n. Prove that

p2 - n.

Hint: Apply the definition of a Carmichael number to a particular value of a.

3. Let n > 2 be a Carmichael number. According to the previous question, we may write

n = p1p2 · · · pr

where the pi are distinct primes. Let p be one the the pi.

(a) Recall the definition of a primitive root mod p.

(b) Prove that (p− 1) | (n− 1).

Hint: Consider an a ∈ Z which is a primitive root mod p.

4. Conversely, prove that if an integer m ∈ N is of the form

m = p1p2 · · · pr

where the pi are distinct primes such that (pi− 1) | (m− 1) for all i = 1, 2, · · · , r, then

m is a Carmichael number.

Hint: Prove that pi | (am − a) for all i = 1, · · · , r and all a ∈ Z.

5. Let n > 2 be a Carmichael number. The goal of this question is to prove that n must

have at least 3 distinct prime factors. Note that according to question 2., n cannot

have only 1 prime factor.
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Suppose that n has exactly 2 prime factors, so that we may write

n = (x+ 1)(y + 1)

where x, y ∈ N are distinct integers such that x + 1 and y + 1 are both prime. Use

question 3.(b) to prove that x | y, and show that this leads to a contradiction.

Solution 6

1. Fermat’s little theorem states that for all n ∈ N and for all a ∈ (Z/nZ)×, we have

aφ(n) = 1. In other words, for all a ∈ Z coprime to n, we have aφ(n) ≡ 1 (mod n).

In particular, if n = p is prime, then φ(n) = p− 1, so that for all a ∈ Z not divisible by

p we have ap−1 ≡ 1 (mod p).

Multiplying both sides by a, we get that ap ≡ a (mod p) for all a not divisible by p.

This still holds even if p | a since a and ap are both ≡ 0 (mod p) in this case.

2. Let us take a = p; since n is a Carmichael number, we have n | (pn− p). Now if p2 | n,

we deduce that p2 | (pn − p), whence p2 | p since p | pn as n > 2, which is obviously a

contradiction.

3. (a) A primitive root mod p is an element x ∈ (Z/pZ)× of multiplicative order p− 1;

in other words, such that xm 6= 1 for all 1 6 m < p− 1.

(b) Let a ∈ N be such that (a mod p) is a primitive root mod p. Since n is a

Carmichael number, we have n | (an − a), whence p | (an − a) as p | a. Thus

an ≡ a (mod p). But a 6≡ 0 (mod p) since a is a primitive root mod p, so since

p is prime, a is invertible mod p, so we can simplify by a and get

an−1 ≡ 1 (mod p).

This says that n− 1 is a multiple of the multiplicative order of (a mod p), which

is p− 1 since (a mod p) is a primitive root. Thus (p− 1) | (n− 1).

4. Let p be one of p1, · · · , pr. By assumption, we have m− 1 = (p− 1)q for some q ∈ N.
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Let now a ∈ Z. We have

am − a = a(am−1 − 1) = a((ap−1)q − 1),

so if a ≡ 0 (mod p) then am − a ≡ 0 (mod p), whereas if a 6≡ 0 (mod p), then a ∈

(Z/pZ)×, so by Fermat’s little theorem we have ap−1 ≡ 1 (mod p) whence (ap−1)q−1 ≡

1q − 1 = 0 (mod p); so either way am ≡ a (mod p), i.e. p | (am − a).

This holds for any p ∈ {p1, · · · , pr}, and the pi are coprime since they are distinct

primes, so

m = p1 · · · pr | (am − a).

Since this holds for all a, this means that m is a Carmichael number.

5. By question 3.(b), x = (x+ 1)− 1 divides n− 1 = (x+ 1)(y + 1) = xy + x+ y, so x

divides xy + x + y − x(y + 1) = y. Similarly, we see that y | x, so that x = y, which

contradicts the assumption that x and y are distinct.

Note: The smallest Carmichael number is 561 = 3 × 11 × 17. There are infinitely many

Carmichael numbers; more precisely, it was proved in 1992 that for large enough X, there are

at least X2/7 Carmichael numbers between 1 and X. The existence of Carmichael numbers

means that a simple-minded primality test based on Fermat’s little theorem would not be

rigorous.

Question 7 Sophie Germain and the automatic primitive root

In this exercise, we fix an odd prime p ∈ N such that q = p−1
2

is also prime and q > 5.

1. Prove that p ≡ −1 (mod 3).

Hint: Express p in terms of q. What happens if p ≡ +1 (mod 3)?

2. Express the number of primitive roots in (Z/pZ)× in terms of q.

Hint: What are the prime divisors of p− 1?

Page 9 of 11

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2021



MAU23101

3. Let x ∈ (Z/pZ)×. Prove that x is a primitive root if and only if x 6= ±1 and
(
x
p

)
= −1.

Hint: What are the prime divisors of p− 1? (bis)

4. Deduce that x = −3 ∈ (Z/pZ)× is a primitive root.

5. (More difficult) Prove that x = 6 ∈ (Z/pZ)× is a primitive root if and only if q is a

sum of two squares.

Solution 7

1. Since q > 5, p = 2q + 1 > 11. As p is prime, is is this coprime to 3, so p ≡ 1 or 2

(mod 3). If p = 2q + 1 ≡ 1 (mod 3), e would have 2q ≡ 0 (mod 3), whence q ≡ 0

(mod 3) since 2 is invertible mod 3; in other words 3 | q. Since q > 5 is prime, this is

impossible.

2. This number is φ(φ(p)). As p is prime φ(p) = p− 1, which factors as 2q. Since 2 and

q are distinct primes, we get

φ(p− 1) = φ(2q) = 2q

(
1− 1

2

)(
1− 1

q

)
= q − 1.

3. Let m be the multiplicative order of x. Fermat’s little theorem tells us that m | p− 1 =

2q. Thus m < 2q if and only if m | 2 or m | q. But

m | 2⇐⇒ x2 = 1⇐⇒ (x− 1)(x+ 1) = 0⇐⇒ x = ±1

since Z/pZ is a domain, and

m | q ⇐⇒ xq = 1⇐⇒
(
x

p

)
= 1

since
(
x
p

)
= xp

′
= xq. Besides, in any case

(
x
p

)
= ±1 since x 6= 0, so it is −1 if it is

not +1.

The conclusion follows.

Remark: If
(
x
p

)
= −1, then x cannot be 1, so we could replace the first condition by

x 6= −1.
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4. We cannot have −3 = +1 in Z/pZ since this would force p | 4; similarly we cannot

have −3 = −1 either. It thus only remains to check that
(
−3
p

)
= −1. This is indeed

true, since (
−3
p

)
=

(
−1
p

)(
3

p

)
= (−1)q(−1)q

(p
3

)
=

(
−1
3

)
= −1

by quadratic reciprocity and because p ≡ −1 (mod 3) by the first question.

5. It is again easy to prove that 6 6≡ ±1 (mod p) since this would force p = 5 or 7.

Besides, (
6

p

)
=

(
2

p

)(
3

p

)
=

(
2

p

)
(−1)q

(p
3

)
=

(
2

p

)
since q is odd and p ≡ −1 (mod 3), so 6 is a primitive root if and only if

(
2
p

)
= −1.

To conclude, we now distinguish two cases.

On the one hand, if q is not a sum of two squares, then q = 4k+ 3 for some k ∈ N, so

p = 2q + 1 = 8k + 7, whence
(

2
p

)
= +1 so 6 is not a primitive root.

On the other hand, if q is a sum of two squares, then q = 4k + 1 for some k ∈ N (we

cannot have q = 2 since q > 5), so p = 2q + 1 = 8k + 3, whence
(

2
p

)
= −1 so 6 is a

primitive root.

END
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