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Question 1 Two primes

Find distinct prime numbers p, ¢ € N both greater than 50 such that p is a square mod ¢, but

¢ is not a square mod p.

Solution 1

Let p and ¢ be such primes. Then they are odd, and

B+ ()

By quadratic reciprocity,

so we need p'q’ to be odd, which means that both p and ¢ must be = —1 mod 4.

If furthermore it happens that p = ¢ + 4, which will ensure that p = ¢ mod 4, then
p=qg+4=4=2"mod ¢

is a square mod ¢, and so ¢ is not a square mod p by the above. So we look for a prime
q > 50 such that ¢ = —1 mod 4 and g + 4 is also prime.
The smallest such ¢ is ¢ = 67, which corresponds to p = 71. Of course, there are many

other solutions.

Question 2 Lucky 13

Factor 1 + 3i into irreducibles in Z][i].

Make sure to justify that your factorization is complete.

Solution 2

Let @ = 1+ 3i. We have N(a) = 12+ 3? = 10 = 2 x 5. Since the ireducibles of Z[i] have
norm 2, p = +1 mod 4 a prime, or ¢> where ¢ = —1 mod 4 and is prime, we conclude form
the multiplicativity of the norm that o must be of the form mom; where my (resp. 75) is an

irreducible of norm 2 (resp. 5).
Page 2 of 11
(©) TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2021



MAU23101

As w5, must be associate to 1 + i, after taking a unit out of 7y and putting it in 75, we

can assume that m, = 1 + 4, so that

. 1+ 31 1+30)(1—2 :
T =af(l+1i) = 1+Z,Z:( 2< Z):2—1-2.

Thus a = (1 +4)(2 + i) is the complete factorization of «.

Question 3 A primality test

Let p € N be a prime such that p = 3 (mod 4), and let P = 2p+ 1. The goal of this exercise

is to prove that P is prime if and only if 2 = 1 mod P.

1. In this part of the Question, we suppose that P is prime, and we prove that 27 =

1 mod P.

2
(a) Evaluate the Legendre symbol (F)

(b) Deduce that 2? =1 (mod P).

Hint: What is % 7

2. In this part of the Question, we suppose that 2 = 1 mod P, and we prove that P is
prime.
(a) Prove that 2 € (Z/PZ)*. What is its multiplicative order?

(b) Deduce that p | ¢(P).

(c) Prove that p and P are coprime, and deduce that there exists a prime divisor ¢ of
P such that ¢ =1 (mod p).
Hint: $(TTp") =+

(d) Deduce that P is prime.

Hint: How large can P/q be?
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Solution 3

2

1. (a) Since p =4k + 3, we have P =2p+1=8k+ 7= —1 (mod 8), so <—) = 1.

2.

2

(b) We have 27 = 275 = (—) =1 (mod P).

P

(a) Since 2 =1 (mod P), we see that 2 is invertible mod P, of inverse 2°~1. Also,

the same formula tells us that its multiplicative order mod P is a divisor of p.
Since p it prime, it is thus either 1 or p. But if it were 1, we would have 2! =

(mod P), which is impossible since P =2p + 1 > 5. So it must be p.

Fermat's little theorem tells us that p?(”) = 1 (mod P), so that ¢(P) is a multiple

of the multiplicative order of p mod P. But this order is p by the previous question.

Since P —2p = 1, p and P are coprime (Bézout). Let now P = [[p;" be the
factorization of P. We have ¢(P) = [[(p: — 1)p* "', and p divides this product by
the previous question. Since p is prime, Euclid tells us that it must divide at least
one of the factors. But p cannot divide any of the p; since p and P are coprime,
so p must divide at least one of the (p; — 1). Letting ¢ = p;, we have thus found

a prime ¢ such that ¢ | P and ¢ =1 (mod p).

Since ¢ = 1 (mod p) and g # 1, we have ¢ > p+ 1, so P/q < % < 2. But
since ¢ | P, P/q is an integer, so P/q = 1. Therefore, P = ¢ is prime.

Question 4 A Pell-Fermat equation

1.

Compute the continued fraction of 1/37.

This means you should somehow find a formula for all the coefficients of the continued

fraction expansion, not just finitely many of them.

Use the previous question to find the fundamental solution to the equation 22 —37%% = 1.
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Solution 4

1.

Let x+ = +/37. Since x is a quadratic number, its continued fraction expansion is

ultimately periodic. Let us make this fact explicit.

We set zg =z, ag = |zo| = 6.

Then z; = xoiao = \/%_6 =6+ +37,50a; = |27] = 12.
1 1 1 . - _
Then x5, = ea T i = Vsrg — %1, SO we see by induction that x,.1 = z,

and a,,, = a, forall n > 1.

Thus /37 = [6,12] = [6,12,12,12,---].

The first convergent of the continued fraction computed above is po/qo = 6/1. Trying
x =26,y =1, we find that 62 — 37 x 12 = —1.

So in order to find the fundamental solution, all we have to do is square the number

6+ 1 x v/37. We find that
(6 +/37)% = 36 + 12/37 + 37 = 73 + 12V/37,

so the fundamental solution is x = 73, y = 12.

Question 5 Gaussian congruences

The purpose of this Question is to generalise the concept of congruence to Z[i.

In this Question, we fix a nonzero p € Zl[i], and whenever «, 5 € Z[i], we say that

a = pmod p if a— [ is a multiple of i in Z[i], that is to say if there exists A € Z][i] such

that a — B = A\p.

1.

2.

Example: prove that 2 = 4i mod 2 + 1.

Let a € Z[i]. Prove that there exists p € Z[i] such that @ = pmod p and N(p) <
N(p).

Hint: Euclid.

We say that an element o € Z[i] is invertible mod p if there exists 5 € Z]i] such that

af =1 mod p.
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3. Prove that « is invertible mod 1 if and only if « and y are coprime in Z][i].

4. Example: let « =1 — 27 and = 3 4+ 7. Prove that « is invertible mod p, and find
p € Zli] such that a8 = 1 mod pu.

Solution 5

1. We need to check that 2 — 4i is a multiple of 2 + 4 in Z[i]. And indeed,
2—4i  (2—4i)(2—1i) —10i

v @t 5~

lies in Z[i].
2. Since i # 0 by assumption, we can perform the Euclidean division of v by p. We find
B,p € Z[i] such that N(p) < N(u) and o = S+ p. This last identity shows that
a — p = [ is a multiple of 1, so & = p mod p.
3. We have that « is invertible mod u
iff. there exists § € Z[i] such that af = 1 mod p
iff. there exist 8, A € Z[i] such that af =1 — Au
iff. there exist 3, A € Z[i] such that Sa + Ap = 1.
By Bézout, this last statement is equivalent to o and p being coprime in Z]i].
4. We need to show that o and p are coprime. We apply the Euclidean algorithm: as

N(p) > N(«), we begin by dividing i bya. As
o BH+D1+20) 14T

a (1 —=24)(1+ 29) 5
rounds to ¢, we get quotient ¢ and remainder 1 — it = 1, which shows that i and «

are indeed coprime. Furthermore, the identity

u=rta+1
can be rewritten as
—ia =1+ (1),
which shows that we can take § = —1.
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Question 6 Carmichael numbers

1. State Fermat’s little theorem, and explain why it implies that if p € N is prime, then

a? = a (mod p) for all a € Z.

A Carmichael number is an integer n > 2 which is not prime, but nonetheless satisfies
a" = a (mod n) for all a € Z. Note that this can also be written n | (¢ — a) for all

a € 7.

2. Let n > 2 be a Carmichael number, and let p € N be a prime dividing n. Prove that
p*fn.

Hint: Apply the definition of a Carmichael number to a particular value of a.

3. Let n > 2 be a Carmichael number. According to the previous question, we may write

n=pipz2---Pr

where the p; are distinct primes. Let p be one the the p;.

(a) Recall the definition of a primitive root mod p.
(b) Prove that (p—1) | (n —1).

Hint: Consider an a € 7Z which is a primitive root mod p.
4. Conversely, prove that if an integer m € N is of the form

m =pip2---Pr
where the p; are distinct primes such that (p; —1) | (m —1) forall i = 1,2,--- ,r, then
m is a Carmichael number.
Hint: Prove that p; | (a™ — a) for alli=1,--- ,r and all a € Z.
5. Let n > 2 be a Carmichael number. The goal of this question is to prove that n must

have at least 3 distinct prime factors. Note that according to question 2., n cannot

have only 1 prime factor.
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Suppose that n has exactly 2 prime factors, so that we may write
n=(z+1)(y+1)

where x,y € N are distinct integers such that x + 1 and y + 1 are both prime. Use

question 3.(b) to prove that = | y, and show that this leads to a contradiction.

Solution 6

1.

3.

Fermat's little theorem states that for all n € N and for all a € (Z/nZ)*, we have

a®™ = 1. In other words, for all a € Z coprime to n, we have a®?™ =1 (mod n).

In particular, if n = p is prime, then ¢(n) = p — 1, so that for all a € Z not divisible by

p we have a?”! =1 (mod p).

Multiplying both sides by a, we get that a” = a (mod p) for all a not divisible by p.

This still holds even if p | a since a and a” are both = 0 (mod p) in this case.

Let us take a = p; since n is a Carmichael number, we have n | (p™ — p). Now if p* | n,
we deduce that p? | (p" — p), whence p? | p since p | p" as n > 2, which is obviously a

contradiction.

(a) A primitive root mod p is an element x € (Z/pZ)* of multiplicative order p — 1;

in other words, such that ™ # 1 forall 1 <m <p—1.

(b) Let a € N be such that (a mod p) is a primitive root mod p. Since n is a
Carmichael number, we have n | (a™ — a), whence p | (a™ — a) as p | a. Thus
a" = a (mod p). But a # 0 (mod p) since a is a primitive root mod p, so since

p is prime, a is invertible mod p, so we can simplify by a and get

n—1

a7 =1 (mod p).

This says that n — 1 is a multiple of the multiplicative order of (a mod p), which

is p — 1 since (a mod p) is a primitive root. Thus (p —1) | (n —1).

4. Let p be one of py,--- ,p.. By assumption, we have m — 1 = (p — 1)q for some g € N.
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Let now a € Z. We have
a™ —a=a(a™ —1)=a((a® )1 - 1),

so if a =0 (mod p) then a™ — a = 0 (mod p), whereas if a Z 0 (mod p), then a €
(Z/pZ)*, so by Fermat's little theorem we have a?~! =1 (mod p) whence (a?71)7—1 =

19—1 =0 (mod p); so either way a™ = a (mod p), i.e. p| (a™ — a).

This holds for any p € {p1,--- ,p.}, and the p; are coprime since they are distinct
primes, so

mzpr“pr\(a _a)_

Since this holds for all a, this means that m is a Carmichael number.
5. By question 3.(b), z = (z+1) — 1 dividesn—1=(z+1)(y+1)=azy+x+y,sox

divides zy +x +y — xz(y + 1) = y. Similarly, we see that y | z, so that = = y, which

contradicts the assumption that = and y are distinct.

Note: The smallest Carmichael number is 561 = 3 x 11 x 17. There are infinitely many
Carmichael numbers; more precisely, it was proved in 1992 that for large enough X, there are
at least X*/T Carmichael numbers between 1 and X. The existence of Carmichael numbers
means that a simple-minded primality test based on Fermat'’s little theorem would not be

rigorous.

Question 7 Sophie Germain and the automatic primitive root

In this exercise, we fix an odd prime p € N such that ¢ = ;%1 is also prime and ¢ > 5.
1. Prove that p = —1 (mod 3).

Hint: Express p in terms of q. What happens if p = +1 (mod 3)?

2. Express the number of primitive roots in (Z/pZ)* in terms of q.

Hint: What are the prime divisors of p — 17
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3. Letx € (Z/pZ)*. Prove that x is a primitive root if and only if z # £1 and <%) = —1.

Hint: What are the prime divisors of p — 17 (bis)
4. Deduce that x = —3 € (Z/pZ)* is a primitive root.

5. (More difficult) Prove that © = 6 € (Z/pZ)* is a primitive root if and only if ¢ is a

sum of two squares.

Solution 7

1. Since ¢ > 5, p=2q+1 > 11. As p is prime, is is this coprime to 3, so p = 1 or 2
(mod 3). If p=2¢+1=1 (mod 3), e would have 2¢ = 0 (mod 3), whence ¢ = 0
(mod 3) since 2 is invertible mod 3; in other words 3 | ¢. Since ¢ > 5 is prime, this is

impossible.

2. This number is ¢(¢(p)). As p is prime ¢(p) = p — 1, which factors as 2¢. Since 2 and

q are distinct primes, we get

or-1 =0z =2(1-3) (1-7) =a-1

3. Let m be the multiplicative order of x. Fermat's little theorem tells us that m | p—1 =

2q. Thus m < 2q if and only if m | 2 or m | ¢. But
m|2<=rt=1l<=(z-1)(z+1)=0<=2=41
since Z/pZ is a domain, and

m|q<:>xq:1<:>(§>:1
p

/

since (%) = P = 29, Besides, in any case (%) = +1since x #0, soitis —1 if it is

not +1.
The conclusion follows.

Remark: If (%) = —1, then x cannot be 1, so we could replace the first condition by
x # —1.
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4. We cannot have —3 = +1 in Z/pZ since this would force p | 4; similarly we cannot

have —3 = —1 either. It thus only remains to check that (’73) = —1. This is indeed

2)-G))-rere)-()--

by quadratic reciprocity and because p = —1 (mod 3) by the first question.

true, since

5. It is again easy to prove that 6 % +1 (mod p) since this would force p = 5 or 7.

()= GG -G @)

since ¢ is odd and p = —1 (mod 3), so 6 is a primitive root if and only if (%) = —1.

Besides,

To conclude, we now distinguish two cases.

On the one hand, if ¢ is not a sum of two squares, then ¢ = 4k 4 3 for some k£ € N, so

p=2q+1=38k+ 7, whence (%) = +1 so 6 is not a primitive root.

On the other hand, if ¢ is a sum of two squares, then ¢ = 4k + 1 for some k € N (we
cannot have ¢ = 2 since ¢ > 5), so p = 2q + 1 = 8k + 3, whence (%) =—1so6isa

primitive root.

END
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