
Introduction to number theory
Exercise sheet 3

https://www.maths.tcd.ie/~mascotn/teaching/2021/MAU22301/index.html

Version: November 2, 2021

Email your answers to makindeo@tcd.ie by Friday November 5th, 2PM.
The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Pépin’s test (100 pts)
Recall (cf Exercise 12 of Sheet 1) that the n-th Fermat number is Fn = 22

n
+ 1,

where n ∈ N.
In this definition, as usual, ab

c means a(b
c) rather than (ab)c (since the latter

simplifies into a(b×c)).

1. (10 pts) Prove that Fn ≡ −1 (mod 3).

2. (50 pts) Prove that if Fn is prime, then 3(Fn−1)/2 ≡ −1 (mod Fn).
Hint: What is this question doing in the middle of an assignment on the
Legendre symbol?

3. (40 pts) Conversely, prove that if 3(Fn−1)/2 ≡ −1 (mod Fn), then Fn is prime.
Hint: What can you say about the multiplicative order of 3 mod Fn?

Remark: This primality test, named after the 19th century French mathematician
Théophile Pépin, only applies to Fermat numbers, but is much faster than the general-
purpose tests that can deal with any integer. It was used in 1999 to prove that F24

is composite, which is quite an impressive feat since F24 has 5050446 digits!

Solution 1
1. Since 2 ≡ −1 (mod 3), we have

Fn = 22
n

+ 1 ≡ (−1)2n + 1 = 1 + 1 = 2 ≡ −1 (mod 3)

as n ⩾ 1.

2. If Fn = p is prime, then we have 3(Fn−1)/2 = 3p
′ ≡

(
3
p

)
(mod p), and

(
3
p

)
=(

p
3

)
by quadratic reciprocity since clearly p = Fn ≡ 1 (mod 4). Finally, by

the previous question
(
p
3

)
=

(−1
3

)
= −1, whence the result.

3. If 3(Fn−1)/2 ≡ −1 (mod Fn), then 3Fn−1 ≡ (−1)2 = 1 (mod Fn), so the multi-
plicative order of 3 mod Fn divides Fn − 1 = 22

n , which is a power of 2. Since
3(Fn−1)/2 ≡ −1 6≡ 1 (mod Fn), and since 2 is the only prime dividing Fn − 1,
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this order is in fact exactly Fn− 1. So the powers of 3 give us Fn− 1 elements
in (Z/FnZ)×. But the number of elements in (Z/FnZ)× is at most Fn − 1
since 0 is not invertible, so the powers of 3 give us all of (Z/FnZ)× (i.e. 3 is
a primitive root mod Fn) and all nonzero elements in Z/FnZ are invertible.
This means that Z/FnZ is a field, which implies that Fn is prime.

This was the only mandatory exercise, that you must submit before
the deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them. However, I
highly recommend that you try to solve them for practice, and you are
welcome to email me if you have questions about them. The solutions
will be made available with the solution to the mandatory exercise.

Exercise 2 Legendre symbols
Evaluate the following Legendre symbols:

1.
(

10

1009

)
,

2.
(

261

2017

)
,

3.
(
−77
9907

)
,

4.
(
−6

10007

)
,

5.
(

261

2903

)
,

6.
(
8000

29

)
.

Note: 1009, 2017, 9907, 10007, 2903, and 29 are prime.

Solution 2

1.
(

10

1009

)
=

(
2

1009

)(
5

1009

)
= +1×+

(
1009

5

)
since 1009 ≡ 1 (mod 8) and 1009 (or 5) ≡ +1 (mod 4)

=

(
9

5

)
= +1

since 1009 ≡ 9 (mod 5) and 9 = 32 is obviously a square mod 5.

2

mailto:mascotn@tcd.ie


2.
(

261

2017

)
=

(
32

2017

)(
29

2017

)
= +1×+

(
2017

29

)
since 32 is obviously a square and since 2017 (or 29) ≡ +1 (mod 4)

=

(
16

29

)
= +1

since 2017 ≡ 16 = 42 (mod 29).

3.
(
−253
9923

)
=

(
−1
9923

)(
11

9923

)(
23

9923

)
= −1×−

(
9923

11

)
×−

(
9923

23

)
since 253 = 11× 23 and 9923, 11 and 23 are all ≡ −1 (mod 4)

= −
(

1

11

)(
11× 302

23

)
since 9923 ≡ 1 (mod 11) and 9923 ≡ 9900 = 11× 302 (mod 23)

= −
(
11

23

)
= −−

(
23

11

)
since 11 and 23 are both ≡ −1 (mod 4)

=

(
1

11

)
= +1.

4.
(
−6

10007

)
=

(
−1

10007

)(
2

10007

)(
3

10007

)
= −1×+1×−

(
10007

3

)
since 10007 ≡ −1 (mod 4), 10007 ≡ −1 (mod 8) and 3′ and 10007′ are both
odd (because 3 and 10007 ≡ −1 (mod 4))

= +

(
−1
3

)
= −1

since 10007 ≡ 8 ≡ −1 (mod 3) (sum of digits) and 3 ≡ −1 (mod 4).

5.
(

261

2903

)
=

(
32

2903

)(
29

2903

)
= +1×+

(
2903

29

)
since 32 is obviously a square (mod 2903 and even in Z) and since 29′ is even
as 29 ≡ +1 (mod 4)

=

(
3

29

)
= +

(
29

3

)
as 2903 ≡ 3 (mod 29) and again because 29′ is even

=

(
−1
3

)
= −1

as above.

6. We could start by reducing 8000 mod 29 and proceed as usual, but there is a
much easier way:(
8000

29

)
=

(
2653

29

)
=

(
2652

29

)(
5

29

)
=

(
5

29

)
since 2652 = (235)2 is obviously a square mod 29

3



= +

(
29

5

)
=

(
−1
5

)
= +1

since 5′ (and also 29′) is even and since 29 ≡ −1 (mod 5) and since 5 ≡ +1
(mod 4).

Exercise 3 Applications of (−3p )
1. Let p > 3 be a prime. Prove that −3 is a square mod p if and only if p ≡ 1

(mod 6).

2. An element x ∈ Z/pZ is called a cube root of unity if it satisfies x3 = 1. Use
the previous question and the identity x3−1 = (x−1)(x2−x+1) to compute
the number of cube roots of unity in Z/pZ in terms of p mod 6.

3. Find another way to compute the number of cube roots of unity in Z/pZ in
terms of p mod 6 by considering the map

(Z/pZ)× −→ (Z/pZ)×
x 7−→ x3.

4. Use question 1. of this exercise to prove that there are infinitely many primes
p such that p ≡ 1 (mod 6).
Hint: Suppose on the contrary that there are finitely many, say p1, · · · , pk, and
consider N = 12(p1 · · · pk)2 + 1.

Solution 3
1. We compute that(

−3
p

)
=

(
−1
p

)(
3

p

)
= (−1)p′(−1)

3−1
2

p′
(p
3

)
=

(p
3

)
.

Besides, as p > 3, we know that p ≡ ±1 (mod 6). So if p ≡ +1 (mod 6), then
p ≡ +1 (mod 3), so

(
p
3

)
=

(
1
3

)
= +1, but if p ≡ −1 (mod 6), then p ≡ −1

(mod 3), so
(
p
3

)
=

(−1
3

)
= −1 since 3 ≡ −1 (mod 4).

2. Cubic roots of unity are by definition the same as the roots of the polynomial
x3 − 1 = (x − 1)(x2 − x + 1). The factor x − 1 gives the obvious root x = 1.
Also, the discriminant of x2−x+1 is ∆ = −3, so by the previous question this
factor has 2 distinct roots when p ≡ +1 (mod 6), and 0 roots when p ≡ −1
(mod 6). Besides, these roots can never be x = 1, since x2 − x + 1 assumes
the value 1 at x = 1, and 1 6= 0 in Z/pZ for all p.
Thus the number of cubic roots of unity in Z/pZ is 1 + 2 = 3 when p ≡ +1
(mod 6), and 1 + 0 = 1 when p ≡ −1 (mod 6).

3. If p ≡ +1 (mod 6), then 6 | (p − 1), so gcd(3, p − 1) = 3, which means that
the map

(Z/pZ)× −→ (Z/pZ)×
x 7−→ x3
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is 3-to-1. Since 1 is clearly in its image (it is reached by x = 1), it is reached
by exactly 3 values of x; in other words, there are 3 cubic roots of unity.
On the other hand, if p ≡ −1 (mod 6), then gcd(3, p− 1) = 1, so the map

(Z/pZ)× −→ (Z/pZ)×
x 7−→ x3

is 1-to-1, so it assumes the value 1 exactly once, so there is 1 cubic root of
unity.

4. Let us suppose that p1, · · · , pk are all the primes ≡ +1 (mod 6), let N =
12(p1 · · · pk)2+1, and let p be a prime dividing N (which exists since obviously
N > 1). Then p cannot be 2, nor 3, nor any of the p1, · · · , pk, for else it would
divide 1. So we must have p ≡ −1 (mod 6). But since p | N , we have
−1 ≡ 12(p1 · · · pk)2 (mod p), so −3 ≡ 36(p1 · · · pk)2 = (6p1 · · · pk)2 is a square
mod p, which contradicts question 1.

Exercise 4 A quadratic equation mod 2021 (100pts)
Determine the number of solutions to the equation

x2 − 3x+ 7 = 0,

and then to
x2 − 3x+ 9 = 0,

1. (30pts) in Z/43Z,

2. (30pts) in Z/47Z,

3. (40 pts) in Z/2021Z (Hint: 與上次作業相同的提示).

You may freely use the fact that 2021 = 43× 47 and that 43 and 47 are prime.

Solution 4
1. The discriminant of the first equation is

∆1 = (−3)2 − 4× 7 = −19.

We compute that(
∆1

43

)
=

(
−1
43

)(
19

43

)
= (−1)43′(−1)19′43′

(
43

19

)
= −−

(
43

19

)
since 43′ = 21 and 19′ = 9 are both odd

=

(
5

19

)
= (−1)5′19′

(
19

5

)
=

(
4

5

)
= +1

since 43 ≡ 5 mod 19, 5′ = 2 is even, and 19 ≡ 4 = 22 mod 5. Therefore, the
first equation has two solutions in Z/43Z.
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For the second equation, we have

∆2 = (−3)2 − 4× 6 = −27,

and similarly we find(
−27
43

)
=

(
−1
43

)(
3

43

)
�
�

��
(
32

43

)
= (−1)43′(−1)3′43′

(
43

3

)
=

(
43

3

)
=

(
1

3

)
= +1

since 43′ and 3′ = 1 are both odd, so the second equation also has two solutions
in Z/43Z.

2. The discriminants are still the same of course, but this time we must compute
their Legendre symbol with p = 47.
We find that(
∆1

47

)
=

(
−1
47

)(
19

47

)
= (−1)47′(−1)19′47′

(
47

19

)
= −−

(
47

19

)
=

(
9

19

)
= +1

since 47′ = 23 and 19′ = 9 are both odd and 47 ≡ 9 = 33 mod 19, so the first
equation has two solutions in Z/47Z; and(

−27
47

)
=

(
−1
47

)(
3

47

)
�

�
��

(
32

47

)
= (−1)47′(−1)3′47′

(
47

3

)
=

(
47

3

)

=

(
−1
3

)
= (−1)3′ = −1

(at the last stage, we could also have said that 47 ≡ 2 mod 3, and conclude as(
2
3

)
= −1 as 3 ≡ 3 mod 8), so this time the second equation has no solutions

in Z/47Z.

3. We cannot compute Legendre symbols mod 2021 since 2021 is not prime.
Instead, we note that since 43 and 47 are distinct primes, they are coprime,
so by Chinese remainders we have a 1-to-1 correspondence

Z/2021Z←→ Z/43Z× Z/47Z,

and we claim that for each equation, this restricts to a correspondence

{Solutions in Z/2021Z} ←→ {Solutions in Z/43Z} × {Solutions in Z/47Z}.

Indeed, it is clear that any solution mod 2021 reduces to a solution mod 43
and to a solution mod 47; and conversely if for example x ∈ Z reduces to a
solution both mod 43 and mod 47, so that x2 − 3x + 7 = 0 mod 43 and mod
47, then 43 and 47 both divide x2 − 3x + 7, so their product also does since
they are coprime.
This shows that solutions mod 2021 are obtained by combining by Chinese re-
mainders a solution mod 43 with a solution mod 47; in particular, the number
of solutions mod 2021 is the number of solutions mod 43 times the number of
solutions mod 47.
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Therefore, the first equation has 2× 2 = 4 solutions in Z/2021Z (even though
it has degree only 2! This reflects the fact that Z/nZ has nasty properties
when n is not prime), whereas the second one has 2× 0 = 0 solutions.
For the second equation, we could also have argued that any solution mod 2021
would reduce to a solution mod 47, and we have seen that no such solution
exists.

Exercise 5 Square roots mod p: the easy case
1. Let p be a prime such that p ≡ −1 (mod 4), and let x ∈ Z/pZ be such that(

x
p

)
= +1. Prove that y = x

p+1
4 is a square root of x, that is to say that

y2 = x.

2. What happens if
(

x
p

)
= −1? What if p 6≡ −1 (mod 4)?

3. (Application) Use question 1. to find explicitly the solutions to the equations
of the previous Exercise in Z/43Z and Z/47Z.

Solution 5
1. We have y2 = x

p+1
2 = x

p−1
2 x = x since x

p−1
2 =

(
x
p

)
= +1 in Z/pZ.

2. If
(

x
p

)
= −1, the same computation shows that y2 = −x instead of x.

Remark:
(

−x
p

)
=

(
−1
p

)(
x
p

)
= −

(
x
p

)
when p ≡ −1 (mod 4), so exactly one

of x and −x is a square, and y is then a square root of that one.
If p ≡ +1 (mod 4), then p+1

4
6∈ Z so the formula y = x

p+1
4 is meaningless (and

therefore useless).

3. We see that 43 and 47 are both −1 mod 4, so we may apply the formula found
in question 1.
Mod 43, we get

(−19)
43+1

4 = (−19)11 = −1911 = −19819219 = −1922
2
19219 = 14 mod 43,

so the solutions to x2 − 3x + 7 = 0 are x = (3± 14)2−1. As 2× 22 = 43 + 1,
we have 2−1 = 22 mod 43, so these solutions are x = −13 = 30 and x = 16.
Similarly, we find (−27)11 = 4 mod 43 (cleverer: write

√
−27 =

√
−33 =

3
√
−3, and work with −3 instead of −27), so the solutions to the second

equation are x = (3± 4)× 22 mod 43, namely 21 and 25 = −18.
Finally, mod 47 we have

(−19)
47+1

4 = (−19)12 = 193
22

= 34 = −13,

so the solutions to the first equation in Z/47Z are x = (−3 ± 13)/2 = −5
and 8; and we have established that the second equation has no solutions.
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Note that if we wanted, we could play Chinese remainders with the solutions
16, 30 mod 43 and −5, 8 mod 47 of the first equation, and find that its four
solutions in Z/2021Z are 747, −99, 102, and −744.

Exercise 6 Legendre vs. primitive roots
Let p ∈ N be an odd prime, and let g ∈ (Z/pZ)× be a primitive root. Prove that(
g

p

)
= −1.

Solution 6

We know that
(
g

p

)
≡ gp

′
(mod p), so the element gp′ of (Z/pZ)× is either 1 or 0 or

−1. However, it cannot be 0 since g 6= 0 and Z/pZ is a domain, and it cannot be 1
either since else g would not be a primitive root as p′ < p − 1. So it must be −1.
Sincep > 2, 0, 1 and −1 are pairwise distinct in Z/pZ, so it follows that

(
g

p

)
= −1.

Exercise 7 Sums of Legendre symbols
Let p ∈ N be an odd prime.

1. Compute
∑

x∈Z/pZ

(
x

p

)
.

2. Compute
∑

x∈Z/pZ

(
x

p

)(
x+ 1

p

)
.

Hint: write x(x+ 1) = x2(1 + 1
x
) wherever legitimate.

Solution 7
1. In Z/pZ, we have one zero, p′ nonzero squares, and p′ nonzero non-squares, so

this sum is
0 + p′ − p′ = 0.

2. We compute∑
x∈Z/pZ

(
x

p

)(
x+ 1

p

)
=

∑
x∈Z/pZ

(
x(x+ 1)

p

)
=

∑
x∈(Z/pZ)×

(
x(x+ 1)

p

)

since the term for x = 0 is 0

=
∑

x∈(Z/pZ)×

(
x2(1 + 1/x)

p

)
=

∑
x∈(Z/pZ)×

(
1 + 1/x

p

)
=

∑
x∈(Z/pZ)×

(
1 + x

p

)
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since the map x 7→ 1/x induces a permutation of (Z/pZ)×

=
∑

x∈Z/pZ
x ̸=1

(
x

p

)
=

∑
x∈Z/pZ

(
x

p

)
−
(
1

p

)
= 0− 1 = −1

by the previous question.

Remark: If we fix p and take x ∈ Z/pZ uniformly at random, the first formula
tells us that the expected value of

(
x
p

)
is 0, and the second one that the covariance

of
(

x+1
p

)
and of

(
x
p

)
is −1

p
. This means that for large p, the value of

(
x+1
p

)
is

approximately independent of that of
(

x
p

)
.

Exercise 8 67
√
2 mod 101

How many elements x ∈ Z/101Z satisfy x67 = 2? Compute them.
Note: 101 is prime.

Solution 8
Since 67 is coprime to 101− 1 = 100, the map

(Z/101Z)× −→ (Z/101Z)×
x 7−→ x67

is 1-to-1. In particular, there is a unique x such that x67 = 2, and it is given by the
formula x = 267

−1 , where 67−1 denotes the inverse of 67 mod 100. We compute that
100 = 67 + 33, and 67 = 2 × 33 + 1, whence 67 × 3 − 2 × 100 = 1 so 67−1 = 3, so
the value of this x is

x = 23 = 8 mod 101.

Exercise 9 A test for higher powers
Let p ∈ N be a prime, k ∈ N be an integer, g = gcd(p−1, k), and p1 = (p−1)/g ∈ N.
Finally, let x ∈ (Z/pZ)×.

1. Prove that x is a k-th power if and only if xp1 = 1 mod p.

2. (Application) Is 2 a cube in Z/13Z? What about 5?

3. For general x, what kind of number is xp1 , i.e. which equation does it satisfy?

4. Use the above to define a generalization of the Legendre symbol, and state a
couple of its properties.
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Solution 9
1. Suppose that x = yk is a k-th power. Then we have xp1 = ykp1 = y

k
g
(p−1) = 1

by Fermat’s little theorem.
So every k-th power is a root of the polynomial xp1 − 1. This polynomial has
degree p1, so it has at most p1 roots; on the other hand, we know that one in g
elements of (Z/pZ)× is a k-th power, so there are (p− 1)/g = p1 k-th powers,
all of which are roots of xp1 − 1 by the above. Thus the roots of xp1 − 1 are
exactly the k-th powers, whence the result.

2. We take p = 13, k = 3, so p1 = 4.
We have 2p1 = 16 ≡ 3 6≡ 1 (mod 13), so 2 is not a cube mod 13, but 5p1 ≡ 1
(mod 13), so 5 is a cube mod 13 (and it has g = 3 cubic roots in Z/13Z).

3. By Fermat’s little theorem, we have

1 = xp−1 = xp1g = (xp1)g.

So the number y = xp1 always satisfies yg = 1; in more pedant terms, it is a
g-th root of unity.

4. We are thus led to defining
(

x
p

)
k
= xp1 .

We have(
x

p

)
k

=


0, if x = 0,
1, if x is a nonzero k-th power,
another g-th root of unity, else.

Besides, it follows immediately from the definition that
(

xy
p

)
k
=

(
x
p

)
k

(
y
p

)
k

for all x, y ∈ Z/pZ, and that
(

−1
p

)
k
= (−1)p1 .

Remark: In order to make this generalization of the Legendre symbol really
practical, we need a generalization of the quadratic reciprocity law. Such a
generalization exists, and is a consequence of the more general Artin reci-
procity law, which stands at the pinnacle of 20th century number theory, but
is unfortunately far beyond the scope of this course.
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