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Exercise 1 A non-free module over a non-commutative ring (50 pts)

Let M2 = M2(R) be the ring of 2× 2 matrices with real entries, and let V = R2 be
the space of column vectors of size 2 with real entries.

1. (20 pts) Prove that the natural multiplication M2 × V −→ V gives V the
structure of an M2-module (so that the elements of V are the “vectors” and
the elements of M2 are the “scalars”).

2. (15 pts) Find a generating set for the M2-module V containing as few elements
as possible.

3. (15 pts) Prove that V is not a free M2-module.

Hint: Consider the dimensions of the underlying R-vector spaces.

Solution 1

1. V is an R-vector space, so in particular it already has an addition law

V × V −→ V

giving it an Abelian group structure. Define an external multiplication on V
by

M2 × V −→ V
(A, v) 7−→ Av,

which makes sense since we are viewing the elements of V as column vectors.
Then V has the two operations required to be an M2-module. It remains to
check that the appropriate axioms hold:

• We do have (AB)v = A(Bv) for all A,B ∈M2 and v ∈ V ,

• The 1 of the ring M2 is the identity matrix 12, and we do have 12v = v
for all v ∈ V ,

• We do have A(v + w) = Av + Aw for all A ∈M2 and v, w ∈ V ,

• And finally, we do have (A+B)v = Av+Bv for all A,B ∈M2 and v ∈ V .
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2. Let v1 =

(
1
0

)
∈ V . Then {v1} ⊂ V generates V as an M2 module. Indeed,

any v =

(
x
y

)
∈ V is of the form v = Av1 for some A ∈ M2, namely any

A having v as a first column (i.e. of the form A =

(
x ∗
y ∗

)
, where ∗ can

be anything). Besides, this generating set is clearly minimal (i.e. has as few
elements as possible) since the empty set generates the submodule {0} ( V .

3. CAUTION THERE! One can check that {v1} is not linearly independent (be-
cause we have the nontrivial linear dependency relation Av1 = 0 for A =(

0 1
0 0

)
6= 0 for instance), BUT this does not constitute a proof since we do

not have any statement saying that if V were free then we could extract a
basis out of the generating set {v1} — this does not hold for modules! So we
must take another approach.

Suppose by contradiction that V is a free M2-module of rank n, so that we
have an isomorphism f : V 'Mn

2 of M2-modules. Let us prove that f is also
an isomorphism of R-vector spaces. We have f(v + w) = f(v) + f(w) for all
v, w ∈ V since f is a module morphism, and if we set Aλ = λ12 for λ ∈ R,
then we have

f(λv) = f(Aλv) = Aλf(v) = λf(v)

for all λ ∈ R and v ∈ V , where we have used the M2-linearity of f at the
second step. So f is R-linear. Since f is also bijective, it is an isomorphism
of R-vector spaces. Therefore, V ' Mn

2 as R-vector spaces. But the LHS has
dimension 2 over R, whereas the RHS has dimension 4n. Since 2 is not of the
form 4n, we have a contradiction.

Exercise 2 Finitely generated Abelian groups (50 pts)

1. (20 pts) Let G be the Abelian group with generators g, h and relations 8g +
12h = 6g + 8h = 0. Perform an SNF computation to determine what G is
isomorphic to.

2. (15 pts) Determine #G. Is G cyclic?

3. (15 pts) Find all Abelian groups of order 2020, up to isomorphism.

Solution 2

1. We must determine the SNF of

A =

(
8 6
12 8

)
over Z. The smallest entry is 6, so C2 ↔ C1:(

6 8
8 12

)
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Then we use 6 as a pivot, so R2 ← R2 − R1 then C2 ← C2 − C1 (the other
way round is also OK): (

6 2
2 2

)
We do not yet have zeros at the top-right and bottom-left, so we move one of
the smallest entries (a 2) to the top-left, e.g. R2 ↔ R1:(

2 2
6 2

)
and we use that 2 as a pivot: R2 ← R2 − 3R1 then C2 ← C2 − C1 (the other
way round is also OK): (

2 0
0 −4

)
This is a diagonal matrix ad 2 | −4, so this is our SNF. Thus

G ' (Z/2Z)× (Z/− 4Z) ' (Z/2Z)× (Z/4Z)

as −4Z = 4Z (namely, −4 and 4 are associates in Z).

2. Since G ' (Z/2Z) × (Z/4Z), we have #G = 2 × 4 = 8. If G were cyclic, we
would have G ' Z/8Z; however the invariant factors

2 | 4

and
8

are NOT the same up to associates, so

(Z/2Z)× (Z/4Z) 6' (Z/8Z);

thus G is not NOT cyclic. (Alternative proof: Z/8Z has elements of order 8,
but the order of an element of (Z/2Z)× (Z/4Z) is at most 4.)

3. Let H be an Abelian group of order #H = 2020. Then H is finite, so finitely-
generated (since it is clearly generated by all its elements!), so there are non-
negative integers d1 | d2 | · · · such that

H ' (Z/d1Z)× (Z/d2Z)× · · · ;

in particular d1×d2× = 2020. Since these invariant factors are unique, finding
all such H up to isomorphism amounts fining all the d1 | d2 | · · · such that
d1 × d2× = 2020. As 2020 factors as

2020 = 22 × 5× 101

and 101 is prime, we only have two possibilities:

d1 = 2, d2 = 1010

and
d1 = 2020
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(since d2 | d1 implies d22 | d1d2 · · · = 2020). So up to isomorphism, the only
such groups are

(Z/2Z)× (Z/1010Z)

(which is not cyclic), and
(Z/2020Z)

(which is cyclic).

These were the only mandatory exercises, that you must submit before
the deadline. The following exercise is not mandatory; it is not worth
any points, and you do not have to submit them. However, you can try
to solve them for practice, and you are welcome to email me if you have
questions about them. The solutions will be made available with the
solution to the mandatory exercises.

Exercise 3 A very algebraic viewpoint on modules

In this exercise, whenever G is an Abelian group, we write End(G) for the set of
group morphisms from G to itself, and we equip this set with the addition defined
by

∀f, g ∈ End(G), ∀x ∈ G, (f + g)(x)
def
= f(x) + g(x)

and with the multiplication defined by

∀f, g ∈ End(G), ∀x ∈ G, (f × g)(x)
def
= f(g(x)).

In other words, addition in End(G) means pointwise addition, and multiplication in
End(G) means composition.

1. Let G be an Abelian group. Prove that the addition and the multiplication in
End(G) defined above define a (not necessarily commutative) ring structure
on End(G). What are its 0, and its 1?

2. Let R be a ring, and let M be an R-module. Then M is in particular an
Abelian group, so we can define End(M) and put a ring structure on it as in
the previous question. In other words, End(M) is the ring of Abelian group
morphisms (as opposed to module morphisms) form M to itself.

(a) Fix λ ∈ R, and denote by µλ (standing for “multiplication by λ”) the
map

µλ : M −→ M
m 7−→ λm.

Prove that µλ ∈ End(M).

(b) Prove that the map

µ : R −→ End(M)
λ 7−→ µλ

is a ring morphism.

3. Conversely, given an Abelian group G and a ring R, prove that assigning a
ring morphism µ : R −→ End(G) equips G with an R-module structure.
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Solution 3

1. First of all, one checks easily that if f, g ∈ End(G), then f + g and fg ∈
End(G). Next, since (G,+) is an Abelian group, (End(G),+) is also an
Abelian group; its identity is the 0 map, which does lie in End(G), and the
inverse of any f ∈ End(G) is −f : x 7→ −f(x), which does lie in End(G).

Besides, it is clear that multiplication is associative in End(G), and that the
identity map Id : x 7→ x, which does lie in End(G), is a neutral element for
multiplication.

It remains to check distributivity. Let f, g, h ∈ End(G), and let x ∈ G; then(
f(g + h)

)
(x) = f((g + h)(x)) = f(g(x) + h(x))

= f(g(x)) + f(h(x)) = (fg)(x) + (fh)(x) = (fg + fh)(x)

and(
(f+g)h

)
(x) = (f+g)(h(x)) = f(h(x))+g(h(x)) = (fh)(x)+(gh)(x) = (fh+gh)(x).

Since this holds for all x ∈ G, we deduce that f(g + h) = fg + fh and that
(f + g)h = fh+ gh, that is to say distributivity holds.

This completes the proof that End(G) equipped with these laws is a ring, and
we hve also proved that its 0 is the 0 map whereas its 1 is the identity map.

2. (a) Since M is an R-module, for all m,n ∈M we have

λ(m+ n) = λm+ λn,

which means precisely that

µλ(m+ n) = µλ(m) + µλ(n).

Since this holds for all m,n ∈M , this proves that µλ ∈ End(M).

(b) Let λ, λ′ ∈ R. Then for all m ∈M , we have

µλ+λ′(m) = (λ+ λ′)m = λm+ λ′m = µλ(m) + µλ′(m) = (µλ + µλ′)(m),

so that µλ+λ′ = µλ + µλ′ ,

µλλ′(m) = (λλ′)m = λ(λ′m) = µλ(µλ′(m)) = (µλµλ′)(m),

so that µλλ′ = µλµλ′ , and finally

µ1(m) = 1m = m = Id(m) = 1End(M)(m)

so µ1 = 1End(M). Thus λ 7→ µλ is a ring morphism.

3. Let us define a multiplication of R on G by the rule

rg = µ(r)(g) (r ∈ R, g ∈ G),

and prove that this makes G an R-module.
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We already have that M is an Abelian group. Besides, since µ assumes values
in End(G), we have that for all r ∈ R and g, h ∈ G,

r(g + h) = µ(r)(g + h) = µ(r)(g) + µ(r)(h) = rg + rh.

Finally, since µ is a ring morphism, we have µ(r + s) = µ(r) + µ(s), µ(rs) =
µ(r)µ(s) for all r, s ∈ R, and µ(1) = 1End(G) = Id, so

(r + s)(g) = µ(r + s)(g) = µ(r)(g) + µ(s)(g) = rg + sg,

(rs)(g) = µ(rs)(g) = µ(r)(g)(µ(s)(g)) = r(sg),

and
1g = µ(1)(g) = Id(g) = g

for all g ∈ G. This completes the proof that µ gives G an R-module structure.

Note: The upshot of this exercise is that endowing G with an R-module struc-
ture amounts to specifying a ring morphism from R to End(G).
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