Rings, fields, and modules Exercise sheet 3

https://www.maths.tcd.ie/~mascotn/teaching/2021/MAU22102/index.html

Version: March 22, 2021

Email your answers to aylwarde@tcd.ie by Monday March 22, 4PM.

Exercise 1 Associates to irreducibles (20 pts)

Let R be a commutative ring, which is not necessarily a domain.

- 1. (6 pts) Let $x, y \in R$. Prove that if $xy \in R^{\times}$, then $x \in R^{\times}$ and $y \in R^{\times}$.
- 2. (14 pts) Let $p \in R$ be irreducible, and let $x \in R$. Prove that if x is associate to p, then x is also irreducible.

Solution 1

- 1. Suppose that $xy \in R^{\times}$. Then we can find $z \in R$ such that xyz = 1. Therefore x(yz) = 1 so $x \in R^{\times}$, and y(xz) = 1 so $y \in R^{\times}$ as well.
- 2. Suppose that p and x are associates. Then there exist $a, b \in R$ such that p = ax and x = bp. This implies p = abp = (ab)p; as p is irreducible, either $p \in R^{\times}$ or $ab \in R^{\times}$. But $p \notin R^{\times}$, since p is irreducible; therefore $ab \in R^{\times}$, whence $a \in R^{\times}$ and $b \in R^{\times}$ as well. From this, we conclude that $x \neq 0$ (else p = ax = 0, absurd), and that $x \notin R^{\times}$ (else $p = ax \in R^{\times}$, absurd).

Suppose now that we have a factorisation x = yz with $y, z \in R$. Then p = ax = ayz = (ay)z. Since p is irreducible, either $ay \in R^{\times}$ whence $y \in R^{\times}$ by the previous question, or $z \in R^{\times}$.

In conclusion, $x \neq 0$, $x \notin R^{\times}$, and x = yz implies that $y \in R^{\times}$ or $z \in R^{\times}$: this is the textbook definition of x being irreducible.

Exercise 2 Nilpotent elements (80 pts)

Let R be a commutative ring. We say that an element $x \in R$ is *nilpotent* if there exists an integer $n \ge 1$ such that $x^n = 0$. We write $Nil(R) \subset R$ for the subset of R formed of the nilpotent elements of R.

Example: if $R = \mathbb{Z}/8\mathbb{Z}$, then $x = \overline{2} \in \operatorname{Nil}(R)$, since $x^3 = \overline{8} = \overline{0}$ in R; in fact

$$Nil(\mathbb{Z}/8\mathbb{Z}) = \{\bar{0}, \bar{2}, \bar{4}, \bar{6}\}.$$

Note that by definition, the 0 of R lies in Nil(R).

1. (5 pts) Prove that if R is a domain, then Nil(R) is reduced to $\{0\}$.

- 2. (5 pts) Prove that if $x \in Nil(R)$, then $1 x \in R^{\times}$. *Hint: What is* $(1 - x)(1 + x + x^2 + \dots + x^n)$?
- 3. (10 pts) Let x, y ∈ R. Prove that if x and y are both nilpotent, then so is x + y.
 Hint: Use the binomial formula to expand (x + y)ⁿ for some large enough

Hint: Use the binomial formula to expand $(x + y)^n$ for some large enough $n \in \mathbb{N}$.

- 4. (5 pts) Prove that Nil(R) is an ideal of R.
- 5. (15 pts) Prove that the quotient ring $R/\operatorname{Nil}(R)$ has no nonzero nilpotents, i.e. that $\operatorname{Nil}(R/\operatorname{Nil}(R)) = \{\overline{0}\}$ where $\overline{0}$ denotes the 0 of the quotient $R/\operatorname{Nil}(R)$.
- 6. (15 pts) Prove that Nil(R) is contained in the intersection of all prime ideals of R.

Hint: Let $P \subset R$ be a prime ideal. Which property does the quotient ring R/P have? How does this relate to this exercise?

From now on, we admit without proof the fact that actually,

$$\operatorname{Nil}(R) = \bigcap_{P \text{ prime ideal } \triangleleft R} P$$

agrees with the intersection of all prime ideals of R.

7. (25 pts) Let $F(x) \in R[x]$. Prove that if F(x) is invertible in R[x] iff. its constant coefficient is invertible in R and its other coefficients are all nilpotent.

Hint: Use some of the previous questions. What would $R[x]^{\times}$ be if R were a domain?

Solution 2

- 1. Let $x \in Nil(R)$. Then $0 = x^n = x \cdots x$ for some $n \ge 1$. Since R is assumed to be a domain, this forces one of the factors to be 0, whence x = 0.
- 2. Since $x \in \operatorname{Nil}(R)$, there exists $n \ge 1$ such that $x^n = 0$. Expanding $(1-x)(1 + x + x^2 + \cdots + x^{n-1})$, we get $1 x + x x^2 + x^2 + \cdots x^{n-1} + x^{n-1} x^n = 1 x^n = 1$. This shows that 1 - x is invertible, with inverse $1 + x + \cdots + x^{n-1}$.
- 3. Since $x \in \text{Nil}(R)$, there exists $n \ge 1$ such that $x^n = 0$. Similarly, there exists $m \ge 1$ such that $y^m = 0$. Then, by the binomial formula (valid since R is commutative), we have

$$(x+y)^{m+n} = \sum_{k=0}^{n+m} {n+m \choose k} x^k y^{n+m-k}.$$

The terms for $k \leq n$ are divisible by y^m , so they vanish, whereas those with $k \geq n$ are divisible by x^n , so they also vanish. Thus all terms are 0, so $(x+y)^{n+m} = 0$, which shows that $x+y \in \operatorname{Nil}(R)$.

4. We already know (by definition) that $0 \in \operatorname{Nil}(R)$, and we have just proved that $\operatorname{Nil}(R)$ is closed by sum. It remains to show that is is also closed by multiplication by R. Let $x \in \operatorname{Nil}(R)$, so there exists $n \ge 1$ such that $x^n = 0$, and let $y \in \mathbb{R}$. (Since R is commutative) we have $(xy)^n = x^n y^n = 0y^n = 0$ so $xy \in \operatorname{Nil}(R)$, as wanted. This shows that $\operatorname{Nil}(R)$ is an ideal of R.

Remark: The commutativity assumption is crucial here. For instance, in the ring of $n \times n$ matrices over \mathbb{R} , a matrix is a product of nilpotents iff. it is not invertible, so in particular the (two-sided) ideal generated by the nilpotents is the whole ring.

- 5. Let $\bar{x} \in \operatorname{Nil}(R/\operatorname{Nil}(R))$, so there exists $n \ge 1$ such that $\bar{x}^n = \bar{0}$. This means that if $x \in R$ is any representative of R, then $x^n \in \operatorname{Nil}(R)$. Therefore, there exists $m \ge 1$ such that $(x^n)^m = 0$. Thus $x^{nm} = (x^n)^m = 0$, so $x \in \operatorname{Nil}(R)$. But this means that $\bar{x} = \bar{0}$ in $R/\operatorname{Nil}(R)$.
- 6. Let $P \subset R$ be a prime ideal, and let $x \in \operatorname{Nil}(R)$; we want to show that $x \in P$. Since $x \in \operatorname{Nil}(R)$, there exists $n \ge 1$ such that $x^n = 0$; thus $\bar{x}^n = \bar{0}$ in the quotient R/P as well, whence $\bar{x} \in \operatorname{Nil}(R/P)$. But since P is prime, R/P is a domain, so by the first question we have $\operatorname{Nil}(R/P) = \{\bar{0}\}$, whence $\bar{x} = 0$. This means that $x \in P$.
- 7. Write $F(x) = f_d x^d + \cdots + f_1 x + f_0$. If f_0 is invertible, then we can write $F(x) = f_0(1 F_1(x))$ where $F_1(x) = -f_0^{-1}(f_d x^d + \cdots + f_1 x)$. So if f_i is nilpotent for all i > 0, then as the set of nilpotents of R[x] forms an ideal by Question 4, the polynomial $F_1(x)$ is also nilpotent, so $1 F_1(x)$ is invertible; therefore so is $f_0(1 F_1(x))$, with inverse $f_0^{-1}(1 + F_1(x) + F_1(x)^2 + \cdots)$.

Conversely, suppose that F(x) is invertible, with inverse $G(x) \in R[x]$. Evaluating F(x)G(x) = 1 at x = 0, we see that the constant coefficient of F is invertible, with inverse the constant coefficient of G. Besides, let $P \triangleleft R$ be a prime ideal; we still have $\overline{F(x)G(x)} = \overline{1}$ in (R/P)[x], but since P is prime R/P is a domain, so there we must have deg $\overline{F} + \deg \overline{G} = \deg \overline{F} \overline{G} = \deg \overline{1} = 0$, whence deg $\overline{F} = 0$, which means that all the non-constant coefficients of F lie in P. Since this holds for all P, we conclude that these coefficients lie in $\bigcap_P P = \operatorname{Nil}(R)$.