Rings, fields, and modules Exercise sheet 3

https://www.maths.tcd.ie/~mascotn/teaching/2021/MAU22102/index.html
Version: March 22, 2021
Email your answers to aylwarde@tcd.ie by Monday March 22, 4PM.

Exercise 1 Associates to irreducibles (20 pts)
Let R be a commutative ring, which is not necessarily a domain.

1. (6 pts) Let $x, y \in R$. Prove that if $x y \in R^{\times}$, then $x \in R^{\times}$and $y \in R^{\times}$.
2. (14 pts) Let $p \in R$ be irreducible, and let $x \in R$. Prove that if x is associate to p, then x is also irreducible.

Solution 1

1. Suppose that $x y \in R^{\times}$. Then we can find $z \in R$ such that $x y z=1$. Therefore $x(y z)=1$ so $x \in R^{\times}$, and $y(x z)=1$ so $y \in R^{\times}$as well.
2. Suppose that p and x are associates. Then there exist $a, b \in R$ such that $p=a x$ and $x=b p$. This implies $p=a b p=(a b) p$; as p is irreducible, either $p \in R^{\times}$or $a b \in R^{\times}$. But $p \notin R^{\times}$, since p is irreducible; therefore $a b \in R^{\times}$, whence $a \in R^{\times}$and $b \in R^{\times}$as well. From this, we conclude that $x \neq 0$ (else $p=a x=0$, absurd), and that $x \notin R^{\times}$(else $p=a x \in R^{\times}$, absurd).
Suppose now that we have a factorisation $x=y z$ with $y, z \in R$. Then $p=$ $a x=a y z=(a y) z$. Since p is irreducible, either $a y \in R^{\times}$whence $y \in R^{\times}$by the previous question, or $z \in R^{\times}$.
In conclusion, $x \neq 0, x \notin R^{\times}$, and $x=y z$ implies that $y \in R^{\times}$or $z \in R^{\times}$: this is the textbook definition of x being irreducible.

Exercise 2 Nilpotent elements (80 pts)

Let R be a commutative ring. We say that an element $x \in R$ is nilpotent if there exists an integer $n \geqslant 1$ such that $x^{n}=0$. We write $\operatorname{Nil}(R) \subset R$ for the subset of R formed of the nilpotent elements of R.
Example: if $R=\mathbb{Z} / 8 \mathbb{Z}$, then $x=\overline{2} \in \operatorname{Nil}(R)$, since $x^{3}=\overline{8}=\overline{0}$ in R; in fact

$$
\operatorname{Nil}(\mathbb{Z} / 8 \mathbb{Z})=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}
$$

Note that by definition, the 0 of R lies in $\operatorname{Nil}(R)$.

1. (5 pts) Prove that if R is a domain, then $\operatorname{Nil}(R)$ is reduced to $\{0\}$.
2. (5 pts) Prove that if $x \in \operatorname{Nil}(R)$, then $1-x \in R^{\times}$.

Hint: What is $(1-x)\left(1+x+x^{2}+\cdots+x^{n}\right)$?
3. (10 pts) Let $x, y \in R$. Prove that if x and y are both nilpotent, then so is $x+y$.
Hint: Use the binomial formula to expand $(x+y)^{n}$ for some large enough $n \in \mathbb{N}$.
4. (5 pts) Prove that $\mathrm{Nil}(R)$ is an ideal of R.
5. (15 pts) Prove that the quotient $\operatorname{ring} R / \operatorname{Nil}(R)$ has no nonzero nilpotents, i.e. that $\operatorname{Nil}(R / \operatorname{Nil}(R))=\{\overline{0}\}$ where $\overline{0}$ denotes the 0 of the quotient $R / \operatorname{Nil}(R)$.
6. (15 pts) Prove that $\operatorname{Nil}(R)$ is contained in the intersection of all prime ideals of R.
Hint: Let $P \subset R$ be a prime ideal. Which property does the quotient ring R / P have? How does this relate to this exercise?

From now on, we admit without proof the fact that actually,

$$
\operatorname{Nil}(R)=\bigcap_{P \text { prime ideal } \triangleleft R} P
$$

agrees with the intersection of all prime ideals of R.
7. (25 pts) Let $F(x) \in R[x]$. Prove that if $F(x)$ is invertible in $R[x]$ iff. its constant coefficient is invertible in R and its other coefficients are all nilpotent.
Hint: Use some of the previous questions. What would $R[x]^{\times}$be if R were a domain?

Solution 2

1. Let $x \in \operatorname{Nil}(R)$. Then $0=x^{n}=x \cdots x$ for some $n \geqslant 1$. Since R is assumed to be a domain, this forces one of the factors to be 0 , whence $x=0$.
2. Since $x \in \operatorname{Nil}(R)$, there exists $n \geqslant 1$ such that $x^{n}=0$. Expanding $(1-x)(1+$ $x+x^{2}+\cdots+x^{n-1}$, we get $1-x+x-x^{2}+x^{2}+\cdots-x^{n-1}+x^{n-1}-x^{n}=1-x^{n}=1$. This shows that $1-x$ is invertible, with inverse $1+x+\cdots+x^{n-1}$.
3. Since $x \in \operatorname{Nil}(R)$, there exists $n \geqslant 1$ such that $x^{n}=0$. Similarly, there exists $m \geqslant 1$ such that $y^{m}=0$. Then, by the binomial formula (valid since R is commutative), we have

$$
(x+y)^{m+n}=\sum_{k=0}^{n+m}\binom{n+m}{k} x^{k} y^{n+m-k}
$$

The terms for $k \leqslant n$ are divisible by y^{m}, so they vanish, whereas those with $k \geqslant n$ are divisible by x^{n}, so they also vanish. Thus all terms are 0 , so $(x+y)^{n+m}=0$, which shows that $x+y \in \operatorname{Nil}(R)$.
4. We already know (by definition) that $0 \in \operatorname{Nil}(R)$, and we have just proved that $\operatorname{Nil}(R)$ is closed by sum. It remains to show that is is also closed by multiplication by R. Let $x \in \operatorname{Nil}(R)$, so there exists $n \geqslant 1$ such that $x^{n}=0$, and let $y \in \mathbb{R}$. (Since R is commutative) we have $(x y)^{n}=x^{n} y^{n}=0 y^{n}=0$ so $x y \in \operatorname{Nil}(R)$, as wanted. This shows that $\operatorname{Nil}(R)$ is an ideal of R.
Remark: The commutativity assumption is crucial here. For instance, in the ring of $n \times n$ matrices over \mathbb{R}, a matrix is a product of nilpotents iff. it is not invertible, so in particular the (two-sided) ideal generated by the nilpotents is the whole ring.
5. Let $\bar{x} \in \operatorname{Nil}(R / \operatorname{Nil}(R))$, so there exists $n \geqslant 1$ such that $\bar{x}^{n}=\overline{0}$. This means that if $x \in R$ is any representative of R, then $x^{n} \in \operatorname{Nil}(R)$. Therefore, there exists $m \geqslant 1$ such that $\left(x^{n}\right)^{m}=0$. Thus $x^{n m}=\left(x^{n}\right)^{m}=0$, so $x \in \operatorname{Nil}(R)$. But this means that $\bar{x}=\overline{0}$ in $R / \operatorname{Nil}(R)$.
6. Let $P \subset R$ be a prime ideal, and let $x \in \operatorname{Nil}(R)$; we want to show that $x \in P$. Since $x \in \operatorname{Nil}(R)$, there exists $n \geqslant 1$ such that $x^{n}=0$; thus $\bar{x}^{n}=\overline{0}$ in the quotient R / P as well, whence $\bar{x} \in \operatorname{Nil}(R / P)$. But since P is prime, R / P is a domain, so by the first question we have $\operatorname{Nil}(R / P)=\{\overline{0}\}$, whence $\bar{x}=0$. This means that $x \in P$.
7. Write $F(x)=f_{d} x^{d}+\cdots+f_{1} x+f_{0}$. If f_{0} is invertible, then we can write $F(x)=f_{0}\left(1-F_{1}(x)\right)$ where $F_{1}(x)=-f_{0}^{-1}\left(f_{d} x^{d}+\cdots+f_{1} x\right)$. So if f_{i} is nilpotent for all $i>0$, then as the set of nilpotents of $R[x]$ forms an ideal by Question 4, the polynomial $F_{1}(x)$ is also nilpotent, so $1-F_{1}(x)$ is invertible; therefore so is $f_{0}\left(1-F_{1}(x)\right)$, with inverse $f_{0}^{-1}\left(1+F_{1}(x)+F_{1}(x)^{2}+\cdots\right)$.

Conversely, suppose that $F(x)$ is invertible, with inverse $G(x) \in R[x]$. Evaluating $F(x) G(x)=1$ at $x=0$, we see that the constant coefficient of F is invertible, with inverse the constant coefficient of G. Besides, let $P \triangleleft R$ be a prime ideal; we still have $\overline{F(x) G(x)}=\overline{1}$ in $(R / P)[x]$, but since P is prime R / P is a domain, so there we must have $\operatorname{deg} \bar{F}+\operatorname{deg} \bar{G}=\operatorname{deg} \bar{F} \bar{G}=\operatorname{deg} \overline{1}=0$, whence $\operatorname{deg} \bar{F}=0$, which means that all the non-constant coefficients of F lie in P. Since this holds for all P, we conclude that these coefficients lie in $\bigcap_{P} P=\operatorname{Nil}(R)$.

