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Exercise 1 Arithmetic on ideals (100 pts)

In this exercise, we fix a commutative ring R, and given elements r1, · · · , rm of R, we
write (r1, · · · , rm) for the ideal generated by r1, · · · , rm; this generalises the notation
(r) for principal ideals.

Reminder: In order to prove an if and only if, it is often convenient to prove
both implications separately. In order to prove that two subsets A and B are equal,
it is often convenient to prove separately that A ⊆ B and that B ⊆ A.

1. (10 pts) Let I ⊆ R be an ideal, and let r ∈ R. Prove that r ∈ I if and only if
(r) ⊆ I.

2. (a) (10 pts) Let r1, · · · , rm ∈ R. Prove that

(r1, · · · , rm) = {x1r1 + · · ·+ xmrm | x1, · · · , xm ∈ R}.

(b) (5 pts) Let r1, · · · , rm ∈ R. Prove that

(r1, · · · , rm) = (r1) + · · ·+ (rm).

(c) (10 pts) Let r, s ∈ R. Prove that (r)(s) = (rs).

(d) (10 pts) More generally, prove that if r1, · · · , rm, s1, · · · , sn ∈ R, then

(r1, · · · , rm)(s1, · · · , sn) = (r1s1, · · · , r1sn, r2s1, · · · , r2sn, · · · , rms1, · · · , rmsn).

3. (15 pts) In this question, we take R = Z[x], and we consider the ideal I =
{P (x) ∈ Z[x] | P (0) is even} ⊂ R. Prove that I = (2, x).

4. (15 pts) In this question, we take R = Z, and we admit without proof the
following facts:

• For all n,m ∈ Z, gcd(m,n) divides m and n and is of the form mu+ nv
with u, v ∈ Z.

• For all n,m ∈ Z, every common multiple of m and n is a multiple of the
lowest common multiple lcm(m,n).

• Every ideal of Z is principal.
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Let m,n ∈ Z. Since every ideal of Z is principal, there must exist a, b, c ∈ Z
such that (m) + (n) = (a), (m) ∩ (n) = (b), and (m)(n) = (c). Express a, b, c
in terms of m and n, and prove that your answer is correct.

5. In this question, R is a general commutative ring, and I and J are ideals of R.

(a) (15 pts) Prove that
IJ ⊆ I ∩ J ⊆ I ⊆ I + J.

(b) (10 pts) Find an example where all these inclusions are strict.

Hint: Take R = Z, and use the previous question.

Solution 1

1. We prove one implication and its converse separately.

If r ∈ I, then since I is an ideal, we have rx ∈ I for all x ∈ R. Since (r) is
precisely the set of the rx for x ∈ R, this proves that (r) ⊆ I.

Conversely, if (r) ⊆ I, then as r = r1 ∈ (r), we have that r ∈ I as well.

2. (a) Let us write I = (r1, · · · , rm) and I ′ = {x1r1 + · · ·+ xmrm | x1, · · · , xm ∈
R}. We are going to prove that I and I ′ contain each other.

By definition, I, which is the ideal generated by the ri, contains all the
ri. Therefore, since it is an ideal, it contains xiri for all i ≤ m and for all
xi ∈ R, so again because it is an ideal, it contains all the elements of the
form x1r1 + · · ·+ xmrm. This shows that I ′ ⊆ I.

In order to show the converse inclusion, we are going to prove that I ′ is
an ideal. Since I ′ 3 ri for all i (as ri = x1r1 + · · ·+xmrm for xj = 0 when
j 6= i and xi = 1), and since I is by definition the smallest ideal which
contains all the ri, this will prove that I ⊆ I ′.

First of all, I ′ 3 0 (take xi = 0 for all i).

Second, I ′ is stable by sum: if x, x′ ∈ I, then by definition of I ′ we have
x = x1r1 + · · · + xmrm, x′ = x′1r1 + · · · + x′mrm for some xi, x

′
i ∈ R, and

so x+ x′ = (x1 + x′1)r1 + · · ·+ (xm + x′m)rm ∈ I ′ as well.

Finally, I ′ is stable by multiplication by R: if x ∈ I and y ∈ R, then
writing x = x1r1 + · · ·+ xmrm we see that yx = (yx1)r1 + · · ·+ (yxm)rm
by distributivity and associativity of multiplication, so yx ∈ I ′.
In conclusion, I ′ is an ideal, so we are done.

(b) Simply notice that for each i we have (ri) = {xiri, xi ∈ R}, whence

(r1) + · · ·+ (rm) = {s1 + · · ·+ sm | s1 ∈ (r1), · · · , sm ∈ (rm)}

= {x1r1 + · · ·+ xmrm | x1, · · · , xm ∈ R} = (r1, · · · , rm)

where the last equality was proved in the previous question.

(c) We prove the inclusions separately. We have

(r)(s) = {rx, x ∈ R}{sy, y ∈ R} =

{
finite∑
i

rxisyi | xi, yi ∈ R

}
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=

{
rs

finite∑
i

xiyi | xi, yi ∈ R

}
⊆ {rsz | z ∈ R} = (rs),

and the reverse inclusion holds since every z ∈ R is of the form
∑finite

i xiyi
with xi, yi ∈ R: simply take a 1-term sum with x1 = z and y1 = 1.
Alternatively, we could also argue that since r = r1 ∈ (r) and s = s1 ∈
(s), we have rs ∈ (r)(s), whence (rs) ⊆ (r)(s) by the first question of the
exercise (since (r)(s) is an ideal, as shown in class).

(d) We prove again both inclusions separately.

Since (r1s1, · · · , r1sn, r2s1, · · · , r2sn, · · · , rms1, · · · , rmsn) is by definition
the smallest ideal containing the risj and since the product of two ideals
is an ideal, in order to prove that

(r1s1, · · · , r1sn, r2s1, · · · , r2sn, · · · , rms1, · · · , rmsn) ⊆ (r1, · · · , rm)(s1, · · · , sn),

it is enough to prove that risj ∈ (r1, · · · , rm)(s1, · · · , sn) for all i and j;
but this is clear since ri ∈ (r1, · · · , rm) and sj ∈ (s1, · · · , sn).

Conversely, let z ∈ (r1, · · · , rm)(s1, · · · , sn). By definition of the product,
we have z =

∑finite
k rksk with rk ∈ (r1, · · · , rm) and sk ∈ (s1, · · · , sn) for

all k. By Question 2a, we have rk = xk,1r1+· · ·+xk,mrm =
∑m

i=1 xk,iri and
s = yk,1s1 + · · ·+ yk,nsn =

∑n
j=1 yk,jsj for some xk,i, yk,j ∈ R. Expanding,

we find that rksk = (
∑m

i=1 xk,iri)
(∑n

j=1 yk,jsj

)
=
∑m

i=1

∑n
j=1 xk,iriyk,jsj =∑m

i=1

∑n
j=1(xk,iyk,j)risj, whence

z =
finite∑
k

rksk =
finite∑
k

m∑
i=1

n∑
j=1

(xk,iyk,j)risj =
m∑
i=1

n∑
j=1

(
finite∑
k

xk,iyk,j

)
risj

which lies in (r1s1, · · · , r1sn, r2s1, · · · , r2sn, · · · , rms1, · · · , rmsn) by Ques-
tion 2a.

3. Let J = (2, x); we are going to prove that I and J contain each other.

By question 2a, we have that J = {2P (x)+xQ(x) | P (x), Q(x) ∈ Z[x]}. Since
the expression 2P (x) + xQ(x) clearly evaluates to an even number at x = 0
for all P (x), Q(x) ∈ Z[x], we conclude that J ⊆ I.

Conversely, let F (x) ∈ I. We can write F (x) = fdx
d + · · · + f1x + f0 with

the fi ∈ Z. Since f0 = F (0) is even, we can write f0 = 2n for some n ∈ Z;
but then F (x) = xQ(x) + 2P (x) where Q(x) = fdx

d−1 + · · · + f1 ∈ Z[x] and
P (x) ∈ Z[x] is the constant polynomial n, whence F (x) ∈ J ; this proves that
I ⊆ J .

4. Let g = gcd(m,n), so that we can write m = gm′, n = gn′ with m,′ n′ ∈ Z
as this gcd is a common divisor of m and n. We have (m) + (n) = (m,n) by
Question 2b, and (m,n) = {mx + ny | x, y ∈ Z by Question 2a. Therefore,
g ∈ (m) + (n) by the admitted fact about the gcd, so (g) ⊆ (m) + (n) by
Question 1. Conversely, if z ∈ (m) + (n), then by the above z = mx + ny for
some x, y ∈ Z; but then z = gm′x+gn′y = g(m′x+n′y) ∈ Z as M ′x+n′y ∈ Z
(because Z is a ring), which shows that (m) + (n) ⊆ (g). In conclusion, we
have (m) + (n) = (g).
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Let l = lcm(m,n). By definition, (m) ∩ (n) is the set of common multiples
of m and n, whence (m) ∩ (n) ⊆ (l) by the admitted property of the lcm.
Conversely, since l is a multiple of m and also of n, any multiple of l is also
a multiple of m and of n, whence (l) ⊆ (m) ∩ (n). In conclusion, we have
(m) ∩ (n) = (l).

Finally, we simply have (m)(n) = (mn) by Question 3c.

5. (a) Recall that IJ =
{∑finite

k ikjk | ik ∈ I, jk ∈ J
}

. For each k, since ik ∈ I,

we have that ikjk ∈ I since I is an ideal; similarly ikjk ∈ J as J is an
ideal and jk ∈ J , so that ikjk ∈ I ∩ J . As I ∩ J is an ideal, it is closed by
sum, whence

∑finite
k ikjk ∈ I ∩ J ; this proves that IJ ⊆ I ∩ J .

We have I ∩ J ⊆ I by definition of the intersection.

Finally, since J is an ideal, J 3 0, so I + J = {i + j | i ∈ I, j ∈ J} ⊇
{i+ 0 | i ∈ I} = I.

(b) Let us take R = Z, I = (6), J = (4). Then by Question 4, we then have
IJ = (24), I∩J = (12), and I+J = (2). It follows that all the inclusions
are strict: 12 is in I ∩ J but not in IJ , 6 is in I but not I ∩ J , and 2 is
in I + J but not in I.

This was the only mandatory exercise, that you must submit before
the deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them. However, I
highly recommend that you try to solve them for practice, and you are
welcome to email me if you have questions about them. The solutions
will be made available with the solution to the mandatory exercises.

Exercise 2 Associate elements

Let R be a commutative domain, and let x, y ∈ R. Recall the notation

(x) = {xz | z ∈ R} ⊆ R,

for the ideal generated by x, and similarly for (y).

1. Prove that (x) ⊆ (y) if and only if there exists z ∈ R such that x = yz (in
other words, if x ∈ (y)).

2. Deduce that (x) = (y) if and only if there exists a unit u ∈ R× such that
x = uy.
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Solution 2

1. We prove both implications separately.

Suppose first (x) ⊆ (y). Then in particular x ∈ (y), so thre exists z ∈ R such
that x = yz.

Conversely, suppose there exists z ∈ R such that x = yz. Then every multiple
of x is also a multiple of x, since for all t ∈ R, xt = (yz)t = y(zt). In other
words, we have (x) ⊆ (y).

2. Again, we prove both implications separately.

Suppose first (x) = (y). Then (x) ⊆ (y), so by the above there exists z ∈ R
such that x = yz; but also (y) ⊆ (x), so there exists z′ ∈ R such that
y = xz′. Thus x = yz = xzz′, so x(1 − zz′) = 0. Since R is a domain,
this forces either x = 0 or 1 − zz′ = 0. In the first case (x = 0), we have
y ∈ (y) = (x) = (0) = {0} so y = 0 as well, and we indeed have x = uy for
u = 1 ∈ R× for instance (and for any other u as well). In the second case, we
have zz′ = 1, so z and z′ are units that are inverses of each other; in particular,
we have x = yz with z ∈ R× as desired.

Suppose conversely that there exists u ∈ R× such that x = uy, and let v =
u−1 ∈ R. Then since x = yu we have (x) ⊆ (y) by the previous question,
and since y = 1y = vuy = vx = xv, we have similarly (y) ⊆ (x), so finally
(x) = (y).

Exercise 3 Products of rings

Let R1 an R2 be two rings, neither of which is the 0 ring. Consider the set of pairs

R1 ×R2 = {(x1, x2) | x1 ∈ R1, x2 ∈ R2}.

1. Let R be a ring, and suppose we have a ring isomorphism

φ : R1 ×R2
∼−→ R

between a product ring R1 × R2 of nonzero rings and R. Prove that there
exists an e ∈ R such that e2 = e but e 6= 0 and e 6= 1. Use this to deduce that
R cannot be a domain.

Hint: Take a look at the pair (1, 0) ∈ R1 ×R2.

2. Prove that conversely, if there exists e ∈ R such that e2 = e but e 6= 0 and
e 6= 1, then R is isomorphic to the product of two nonzero rings.

Hint: R1 = eR, R2 = (1− e)R.

3. Prove that the ring

F = {f : R −→ R | f continuous}

of continuous functions from R to R, equipped as usual with the laws

(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x)
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for all f, g ∈ F and x ∈ R, is NOT isomorphic to a product ring R1 ×R2.

Hint: Proceed by contradiction. You may use without proof the following con-
sequence of the intermediate value theorem: If f : R −→ R is continuous
and satisfies f(x) ∈ {0, 1} for all x ∈ R, then f is constant (and thus either
identically 0 or 1).

4. What happens if we drop the continuity condition, and consider instead the
ring of all functions from R to R?

Solution 3

1. Let e′ = (1, 0) ∈ R1 ×R2, and e = φ(e′) ∈ R.

First of all, observe that

e′2 = (1, 0)2 = (12, 02) = (1, 0) = e′.

As a result, we have

e2 = φ(e′)2 = φ(e′2) = φ(e′) = e,

where we used the fact that φ is a morphism at the second step.

Besides, since neither R1nor R2 are the 0 ring, we have 0 6= 1 both in R1

and in R2, so e′ is neither the 0 of R1 × R2 (which is (0, 0), as proved in
the previous question) nor the 1 of R1 × R2 (which is (1, 1), as proved in the
previous question).

Next, φ is an isomorphism, it is injective, so φ(e′) 6= φ(0) and φ(e′) 6= φ(1);
and since φ is a morphism, we have φ(0) = 0 ∈ R and φ(1) = 1 ∈ R. This
shows that e = φ(e′) is neither 0 nor 1.

In particular, R cannot be a domain, for else

0 = e2 − e = e(e− 1)

would force e = 0 or e = 1.

2. Let e ∈ R such that e2 = e, define R1 = eR = (e) and R2 = (1−e)R = (1−e).
Then R1 an R2, equipped with the + and × of R, are rings (since re+se = (r+
s)e, re×se = rse2 = rse, and similarly for R2 as (1−e)2 = 1−2e+e2 = 1−e),
whose 1 are respectively e and 1− e (since re× e = re, etc. In particular, they
are NOT subrings since they do not have the same 1 as R). In particular, if
e 6= 0, 1, then R1 and R2 are not the 0 ring since their 1 is distinct from their
0. Finally, we have the mutually inverse ring isomorphisms

R ←→ R1 ×R2

x 7−→
(
ex, (1− e)x

)
ey + (1− e)z ←− [

(
ey, (1− e)z

)
(we leave it to you to check that they are morphisms).

6



3. It is tempting to try to conclude by showing that F is a domain, but this is
not the case (F is NOT a domain, a seen in class).

Instead, we are going to show that it contains no e as above. Suppose by
contradiction that e(x) ∈ F satisfies e2 = e but e 6= 0, 1, and let x ∈ R.

0 = e(x)− e(x) = e2(x)− e(x) = e(x)2 − e(x) = e(x)
(
e(x)− 1) ∈ R

where we used the definition of × on F at the third step. Since R is a field, it
is a domain, so the above forces e(x) = 0 or e(x) = 1. Since this holds for any
x, we may apply the hint and conclude that e is either the constant function
0, or the constant function 1. But these are precisely the 0 an the 1 of the
ring F , so we contradict our assumption that e 6= 0, 1.

In conclusion, F is not isomorphic to a product of rings, even though it is not
a domain.

Remark: The hint relies on the intermediate value theorem, and thus on con-
tinuity. If we drop the continuity assumption, then the hint becomes false:
consider for instance the function e(x) defined by e(x) = 1 if x < 0, and
e(x) = 0 else.

The ring decomposition attached to this e by the converse of the previous ques-
tion (cf. remark above) is simply the restrictions map

{Functions R −→ R} ∼−→ {Functions R<0 −→ R} × {Functions R>0 −→ R}
f 7−→

(
f|R<0

, f|R>0

)
.

In fact, a little reflexion shows that we can keep decomposing. In total, we get
the ring isomorphism

{Functions R −→ R} ' RR

assigning to a function f the “list” of its values f(x) for each x ∈ R. We
cannot decompose further since R, being a field, is a domain.

4. If we do not require our functions to be continuous, then we can find plenty
of functions e(x) such that e(x)2 = e(x) for all x ∈ R. For example, we
can take the function such that e(x) = 1isx > 0, and e(x) = 0 if xleq0; the
corresponding ring decomposition is then

{Functions R→ R} ' {Functions (0,+∞)→ R}×{Functions (−∞, 0]→ R}.

We see that we can continue to decompose; in the end, we find that

{Functions R→ R} ' RR =
∏
x∈R

R

is a product indexed by R of copies of R — for each x ∈ R, we pick a value
f(x) ∈ R, where the f(x) for different x ∈ R need noty satisfy any relation
with each other since we are not imposing continuity.

Moral of the story: the ring of all functions is quite “nice” from an algebraic
point of view, whereas its subring of continuous functions is more difficult
to understand, all because continuity is a rather “obscure” condition for the
algebraist.
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