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Reminder: vector spaces

Definition (Vector space over a field)

Let K be a field. A K -vector space is a set V equipped with
two composition laws

V × V −→ V
(v ,w) 7−→ v + w ,

K × V −→ V
(λ, v) 7−→ λv

such that (V ,+) is an Abelian group, and that for all
λ, µ ∈ K and v ,w ∈ V , we have

λ(µv) = (λµ)v , 1v = v ,

(λ + µ)v = (λv) + (µv), λ(v + w) = (λv) + (λw).
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Modules

Definition (Module over a ring)

Let R be a (not necessarily commutative) ring. An R-module
is a set M equipped with two composition laws

M ×M −→ M
(m, n) 7−→ m + n,

R ×M −→ M
(λ,m) 7−→ λm

such that (M ,+) is an Abelian group, and that for all
λ, µ ∈ R and m, n ∈ M , we have

λ(µm) = (λµ)m, 1m = m,

(λ + µ)m = (λm) + (µm), λ(m + n) = (λm) + (λn).
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Modules: examples

Example

Let R be a ring, and let n ∈ N. Then

Rn = {(x1, · · · , xn) | xi ∈ R}

is an R-module.

Example

Let (G ,+) be an Abelian group. Then G is actually
a Z-module:

ng = g + · · ·+ g︸ ︷︷ ︸
n times

(n ∈ Z, g ∈ G ).
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Submodules

Definition (Submodule)

Let M be an R-module. A submodule of M is a subset of M
which is nonempty and closed under + and under
multiplication by R .

Example

Let M = R , viewed as an R-module. Then the submodules of
M are the ideals of R .
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Generating sets of a module

Definition (Generating set, finitely generated)

Let M be an R-module. Elements m1, · · · ,mn ∈ M form a
generating set if every m ∈ M can be expressed in the form

m =
n∑

i=1

λimi

for some (not necessarily unique) λi ∈ R .
If such a finite generating set exists, then we say that M is
finitely generated.

Counter-example

Let R be a commutative ring. Then R[x ] is an R-module,
which is not finitely generated.
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Linear independence, free modules

Definition (Linearly independent, free)

Let M be an R-module. Elements m1, · · · ,mn ∈ M are
linearly independent if the only λ1, · · · , λn ∈ R satisfying

n∑
i=1

λimi = 0

are λ1 = · · · = λn = 0.
If furthermore m1, · · · ,mn form a generating set of M , we say
that M is a free R-module of rank n, and that the mi form a
basis of M . In this case, every m ∈ M can be expressed as

m =
n∑

i=1

λimi

for some unique λi ∈ R .
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Free modules: examples

Example

Rn is a free R-module of rank n, with basis

e1 = (1, 0, · · · , 0), e2 = (0, 1, 0, · · · , 0), · · · , en = (0, · · · , 0, 1).

Counter-example

The Z-module M = Z/2Z is finitely generated, but it is not a
free module.
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Modules vs. vector spaces

In a vector space, one can extract a basis out of any
generating set, and every linearly independent family can be
extended into a basis.

Counter-example

{2, 3} is a generating family of the Z-module M = Z, because
n = (−n)2 + (n)3 for all n ∈ Z. But one cannot extract a
basis out of it.

Counter-example

In the Z-module M = Z, the linearly independent family {2}
cannot be extended into a basis.
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Module morphisms
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Morphisms

Definition (Module morphism)

Let M and N be two R-modules. A map f : M −→ N is a
morphism if it is R-linear, meaning

f (m + m′) = f (m) + f (m′) and f (λm) = λf (m)

for all m,m′ ∈ M and λ ∈ R .
A morphism is an isomorphism if it is bijective, in which case
its inverse is automatically a morphism.
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Morphisms: examples

Example

An R-module M is finitely generated iff. there exits n ∈ N and
a surjective morphism Rn −→ M . It is free of rank n iff. it is
isomorphic to Rn.

Remark

Let I ⊂ R be a maximal ideal, and let k = R/I be the
corresponding field. Then

Rn ' Rm =⇒ kn ' km =⇒ n = m,

so the rank of a free module is well-defined.
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Kernels and images

Theorem (Kernel and image are submodules)

Let M and N be two R-modules, and f : M −→ N be a
morphism. Then

Ker f = {m ∈ M | f (m) = 0} ⊆ M

is a submodule of M , and

Im f = {f (m) | m ∈ M} ⊆ N

is a submodule of N .

f is injective iff. Ker f = {0}, surjective iff. Im f = N , and an
isomorphism iff. it is both.
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Kernels and images: example

Example

Let

f :
Z2 −→ Z/2Z

(x , y) 7−→ x − y mod 2.

Then
Im f = Z/2Z,

and
Ker f = {(x , y) ∈ Z2 | x ≡ y mod 2}

is a free submodule of rank 2 of Z2 with basis {(1, 1), (1,−1)}.
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Morphisms between free modules

Let M be a free R-module with basis m1,m2, · · · . Every
m ∈ M can be expressed uniquely as m = λ1m1 + λ2m2 + · · · ,
and can thus be represented by its coordinates λ1, λ2, · · · ∈ R .

Likewise, if N is another free R-module with basis n1, n2, · · · ,
then each morphism from M to N may be represented by it
matrix with respect to these bases. Conversely, each matrix (of
the appropriate size) corresponds to a morphism from M to N .

Composition of morphisms corresponds to multiplication of
matrices. In particular, a morphism from M to N is an
isomorphism if and only if its matrix is invertible.
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GLn(R): statement

Let R be a commutative ring and n ∈ N be n integer. Write

Mn(R) = {n × n matrices with coefficients in R}

and
GLn(R) = Mn(R)×.

Theorem (Invertible matrices over a ring)

GLn(R) = {A ∈ Mn(R) | detA ∈ R×}.
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GLn(R): proof and example

Proof.

If A,B ∈ Mn(R) satisfy AB = In, then

1 = det(In) = det(AB) = det(A) det(B)

so det(A) ∈ R×.
Conversely, every A ∈ Mn(R) satisfies

AA′ = det(A)In

where A′ is the adjugate matrix of A.

Example

GLn(Z) = {A ∈ Mn(Z) | detA = ±1}.
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Quotient modules

Theorem (Construction of quotient modules)

Let M be an R-module, and S ⊆ M be a submodule. Then
the quotient set

M/S = M/ ∼, where m ∼ m′ ⇐⇒ m −m′ ∈ S ,

inherits an R-module structure. The projection map

M −→ M/S

is a surjective morphism whose kernel is S .
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The isomorphism theorem for modules

Theorem (Isomorphism theorem for modules)

Let M and N be two R-modules, S ⊆ M a submodule, and
f : M −→ N be a morphism. Then f factors as

M f //

��

N

M/S

==

iff. S ⊆ Ker f .

In particular, f induces an isomorphism M/Ker f ' Im f .
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Modules over a PID:

theorems
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Submodules of free modules

Theorem (Freeness over a PID)

Let R be a PID, and let M be an R-module. If M is free, then
every submodule of M is also free.
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Submodules of free modules

Theorem (Freeness over PID)

Let R be a commutative domain. TFAE:

1 R is a PID,

2 If M is a free R-module, then all the submodules of M
are also free.
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Proof: necessity of PID

Proof.

R is a free R-module of rank 1, whose submodules are the
ideals of R . Let I 6= 0 be such an ideal.
If I is free of rank > 2, let i1, i2, · · · be an R-basis of I . Then

λi1 + µi2 = 0 for λ = i2 ∈ R , µ = −i1 ∈ R ,

contradition. So if I is free, it must be of rank 1. Let i1 be a
basis; then

I = {λi1, λ ∈ R} = (i1)

is principal.
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Proof: sufficiency of PID

Proof.

Conversely, let M be free of rank n. Then M ' Rn, so WLOG
we suppose M = Rn.
Let S ⊂ Rn be a sub-R-module, we prove by induction on n
that S is free.
If n = 0, then Rn = {0}, so S = {0} is free of rank 0.

Suppose true for n − 1. Define

π : S −→ R
(x1, · · · , xn) 7−→ xn

and
S0 = Ker π = {(x1, · · · , xn) ∈ S | xn = 0}.
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Proof: sufficiency of PID

Proof.

By induction hypothesis, S0 ⊂ Rn−1 is free; let s1, · · · , sm be a
basis. Besides, Imπ ⊂ R is a submodule, hence an ideal, so of
the form gR for some g ∈ R .

If g = 0, then Im π = {0}, so S = S0, done.

Else, we have g 6= 0. Let s = (· · · , g) ∈ S .
Claim: s1, · · · , sm, s is an R-basis of S .

Generating: Let x = (x1, · · · , xn) ∈ S . Then xn ∈ Im π = gR ,
so xn = gy for some y ∈ R . Then x − ys ∈ S0, so is of the
form

∑
i λisi for some λi ∈ R . Thus x =

∑
i λisi + ys.

Linearly independent: Suppose
∑

i λisi + ys = 0 for some
λi , y ∈ R . Look at the last coordinate:

∑
i λi0 + yg = 0,

whence yg = 0, whence y = 0. So
∑

i λisi = 0.
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The Smith normal form

Theorem (SNF & invariant factors)

Let R be a PID, and let A be a matrix with entries in R . It is
possible to turn A into a diagonal matrix with entries

d1 | d2 | · · ·

using a succession of the following operations:

Add a multiple of a row of A to another row,

Swap two rows of A,

Add a multiple of a column of A to another column,

Swap two columns of A.

The di are called the invariant factors of A; they are unique up
to associates.
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SNF: proof, case R Euclidean

Proof.
1 Swap rows and columns until one of the nonzero entries

of A of the smallest size is at the top-left corner.

2 Use the top-left entry λ as a pivot so as to replace all the
terms in the first row and in the first column by their
reminders by a.

3 If A =


λ 0 · · · 0
0
... A′

0

 with λ dividing all the entries

of A′, iterate on the block A′. Else, swap rows and
columns again and go to step 2.
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Example: SNF over Z

Example  8 4 8
16 14 10
12 12 6



C2 ↔ C1
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Example: SNF over Z

Example  8 4 8
16 14 10
12 12 6

 C2 ↔ C1
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Example: SNF over Z

Example  4 8 8
14 16 10
12 12 6



R2 ← R2 − 3R1,
R3 ← R3 − 3R1
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Example: SNF over Z

Example  4 8 8
14 16 10
12 12 6

 R2 ← R2 − 3R1,
R3 ← R3 − 3R1
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Example: SNF over Z

Example 4 8 8
2 −8 −14
0 −12 −18



C2 ← C2 − 2C1,
C3 ← C3 − 2C1
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Example: SNF over Z

Example 4 8 8
2 −8 −14
0 −12 −18

 C2 ← C2 − 2C1,
C3 ← C3 − 2C1
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Example: SNF over Z

Example 4 0 0
2 −12 −18
0 −12 −18



R2 ↔ R1

Nicolas Mascot Rings, fields, and modules



Example: SNF over Z

Example 4 0 0
2 −12 −18
0 −12 −18

 R2 ↔ R1
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Example: SNF over Z

Example 2 −12 −18
4 0 0
0 −12 −18



R2 ← R2 − 2R1

Nicolas Mascot Rings, fields, and modules



Example: SNF over Z

Example 2 −12 −18
4 0 0
0 −12 −18

 R2 ← R2 − 2R1
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Example: SNF over Z

Example 2 −12 −18
0 24 36
0 −12 −18



C2 ← C2 + 6C1,
C3 ← C3 + 9C1
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Example: SNF over Z

Example 2 −12 −18
0 24 36
0 −12 −18

 C2 ← C2 + 6C1,
C3 ← C3 + 9C1
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Example: SNF over Z

Example 2 0 0
0 24 36
0 −12 −18



R3 ↔ R2
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Example: SNF over Z

Example 2 0 0
0 24 36
0 −12 −18

 R3 ↔ R2
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Example: SNF over Z

Example 2 0 0
0 −12 −18
0 24 36



R3 ← R3 + 2R2
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Example: SNF over Z

Example 2 0 0
0 −12 −18
0 24 36

 R3 ← R3 + 2R2
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Example: SNF over Z

Example 2 0 0
0 −12 −18
0 0 0



C3 ← C3 − 2C2

Nicolas Mascot Rings, fields, and modules



Example: SNF over Z

Example 2 0 0
0 −12 −18
0 0 0

 C3 ← C3 − 2C2

Nicolas Mascot Rings, fields, and modules



Example: SNF over Z

Example 2 0 0
0 −12 6
0 0 0



C3 ↔ C2
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Example: SNF over Z

Example 2 0 0
0 −12 6
0 0 0

 C3 ↔ C2
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Example: SNF over Z

Example 2 0 0
0 6 −12
0 0 0



C3 ← C3 + 2C2
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Example: SNF over Z

Example 2 0 0
0 6 −12
0 0 0

 C3 ← C3 + 2C2

Nicolas Mascot Rings, fields, and modules



Example: SNF over Z

Example 2 0 0
0 6 0
0 0 0
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Example: SNF over Z

Example 2 0 0
0 6 0
0 0 0


Invariant factors: d1 = 2 | d2 = 6 | d3 = 0.
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Modules over a PID:

applications
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Application: Finitely generated modules over a PID

Theorem

Let R be a PID, and let M be a finitely generated R-module.
There exist invariant factors

d1 | d2 | · · · ∈ R

such that
M ' (R/d1R)× (R/d2R)× · · ·

These invariant factors are unique up to associates.

Remark

R/0R = R , and R/uR = {0} for all u ∈ R×.
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Finitely generated modules over a PID: proof

Proof.

Let m1, · · · ,mp ∈ M generate M ; then the morphism

f : Rp −→ M
(λ1, · · · , λp) 7−→

∑
i λimi

is surjective, so M ' Rp/Ker f by the isomorphism theorem.
Let

N = Ker f ⊂ Rp;

then N is a free R-module, let n1, · · · , nq be a basis. Express
the ni ∈ Rp as a p × q matrix A. Operations on the columns
of A amount to changing the basis n1, · · · , nq, and operations
on the rows amount to changing the generators m1, · · · ,mp.
So taking the SNF of A, we get generators m′1,m

′
2, · · · of M

satisfying the relations dim
′
i = 0 ∈ M .
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Application: Finitely generated Abelian groups

Corollary (Classification of finitely generated Abelian groups)

Let G be a finitely generated Abelian group. There exist
invariant factors

d1 | d2 | · · · ∈ Z>0

such that
G ' (Z/d1Z)× (Z/d2Z)× · · ·

These invariant factors are unique.
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Finitely generated Abelian groups: example

Example

Let G be the Abelian group with generators g1, g2, g3 and
relations 

8g1 + 16g2 + 12g3 = 0,
4g1 + 14g2 + 12g3 = 0,
8g1 + 10g2 + 6g3 = 0.

Then A =
(

8 4 8
16 14 10
12 12 6

)
has SNF with invariant factors

2 | 6 | 0,

so
G ' (Z/2Z)× (Z/6Z)× Z.
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Application: The rational canonical form (1/6)

From this point on, all the material is non-examinable.

Definition (Companion matrix)

Let K be a field, and let

f (x) = xn + an−1x
n−1 + · · ·+ a1x + a0 ∈ K [x ].

The companion matrix of f is

Cf =


0 −a0

1 0 −a1

1
. . .

...
. . . 0

...
1 −an−1

 ∈ Mn(K ).
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Application: The rational canonical form (2/6)

Lemma

Let V = K [x ]/f (x)K [x ] seen as a K -vector space. Then
1, x , x2, · · · , xdeg f−1 is a K -basis of V , and the matrix of
multiplication by x is Cf .

Remark

The characteristic polynomial

det(x1n − Cf )

of Cf and the minimal polynomial of Cf are both f ∈ K [x ].
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Application: The rational canonical form (3/6)

Corollary (Rational canonical form)

Let K be a field, V a finite-dimensional K -vector space, and
T ∈ End(V ). There exist unique monic polynomials

f1(x) | f2(x) | · · · | fk(x) ∈ K [x ]

such that there exists a basis of V such that the matrix of T is
Cf1 0

Cf2
. . .

0 Cfk

 .

The minimal polynomial of T is fk(x), and it characteristic
polynomial is f1(x)f2(x) · · · fk(x).
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Application: The rational canonical form (4/6)

Proof.

Put a K [x ]-module structure on V by letting xv = T (v) for
all v ∈ V . For instance,

(x2 − 1)v = T (T (v))− v .

Since V has finite dimension over K , it is a finitely generated
K [x ]-module. As K [x ] is a PID,

V ' (K [x ]/f1(x)K [x ])× · · · × (K [x ]/fk(x)K [x ])

for some unique monic f1(x) | f2(x) | · · · | fk(x) ∈ K [x ].
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Application: The rational canonical form (5/6)

Example

Take V = K 3 with basis e1, e2, e3, and T ∈ End(V ) having

matrix B =
(

7 −5 −5
5 −3 −5
5 −5 −3

)
.

The ei generate V over K and hence over K [x ], whence a
surjective K [x ]-module morphism f : K [x ]3 −→ V taking the
basis E1,E2,E3 of K [x ]3 to e1, e2, e3.

The xEi − T (Ei) lie in Ker f , and actually form a basis of it;
so we take the SNF of

A =

x − 7 5 5
−5 x + 3 5
−5 5 x + 3

 ∈ M3(K [x ]).
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Application: The rational canonical form (6/6)

Example

We find the invariant factors

1 | (x − 2) | (x − 2)(x + 3) = x2 + x − 6,

so as a K [x ]-module,

V ' (K [x ]/(1))× (K [x ]/(x − 2))× (K [x ]/(x2 + x − 6)),

and the rational canonical form of A is 2 0 0
0 0 6
0 1 −1

 .

In particular, A has minimal polynomial (x − 2)(x + 3) and
characteristic polynomial (x − 2)2(x + 3).
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