MAU22102 Rings, Fields, and Modules 4 - Modules over a ring

> Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Hilary 2020–2021 Version: March 29, 2021

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Modules vs. vector spaces

Definition (Vector space over a field)

Let K be a field. A <u>K-vector space</u> is a set V equipped with two composition laws

such that (V, +) is an Abelian group, and that for all $\lambda, \mu \in K$ and $v, w \in V$, we have

$$\lambda(\mu \mathbf{v}) = (\lambda \mu) \mathbf{v}, \qquad \qquad \mathbf{1} \mathbf{v} = \mathbf{v},$$

 $(\lambda + \mu)\mathbf{v} = (\lambda \mathbf{v}) + (\mu \mathbf{v}), \qquad \lambda(\mathbf{v} + \mathbf{w}) = (\lambda \mathbf{v}) + (\lambda \mathbf{w}).$

Definition (Module over a ring)

Let R be a (not necessarily commutative) ring. An <u>R-module</u> is a set M equipped with two composition laws

such that (M, +) is an Abelian group, and that for all $\lambda, \mu \in R$ and $m, n \in M$, we have

 $\lambda(\mu m) = (\lambda \mu)m, \qquad \qquad 1m = m,$

 $(\lambda + \mu)m = (\lambda m) + (\mu m), \qquad \lambda(m + n) = (\lambda m) + (\lambda n).$

Modules: examples

Example

Let *R* be a ring, and let $n \in \mathbb{N}$. Then

$$R^n = \{(x_1, \cdots, x_n) \mid x_i \in R\}$$

is an R-module.

Example

Let (G, +) be an Abelian group. Then G is actually a \mathbb{Z} -module:

$$ng = \underbrace{g + \cdots + g}_{n \text{ times}}$$
 $(n \in \mathbb{Z}, g \in G).$

Definition (Submodule)

Let M be an R-module. A <u>submodule</u> of M is a subset of M which is nonempty and closed under + and under multiplication by R.

Example

Let M = R, viewed as an *R*-module. Then the submodules of *M* are the ideals of *R*.

Definition (Generating set, finitely generated)

Let M be an R-module. Elements $m_1, \dots, m_n \in M$ form a generating set if every $m \in M$ can be expressed in the form

$$m=\sum_{i=1}^n\lambda_im_i$$

for some (not necessarily unique) $\lambda_i \in R$. If such a finite generating set exists, then we say that M is finitely generated.

Counter-example

Let R be a commutative ring. Then R[x] is an R-module, which is <u>not</u> finitely generated.

Definition (Linearly independent, free)

Let M be an R-module. Elements $m_1, \dots, m_n \in M$ are linearly independent if the only $\lambda_1, \dots, \lambda_n \in R$ satisfying

$$\sum_{i=1}^{n} \lambda_i m_i = 0$$

are $\lambda_1 = \cdots = \lambda_n = 0$.

If furthermore m_1, \dots, m_n form a generating set of M, we say that M is a free R-module of rank n, and that the m_i form a basis of M. In this case, every $m \in M$ can be expressed as

$$m=\sum_{i=1}^n\lambda_im_i$$

for some unique $\lambda_i \in R$.

Example

 R^n is a free *R*-module of rank *n*, with basis

$$e_1 = (1, 0, \cdots, 0), e_2 = (0, 1, 0, \cdots, 0), \cdots, e_n = (0, \cdots, 0, 1).$$

Counter-example

The \mathbb{Z} -module $M = \mathbb{Z}/2\mathbb{Z}$ is finitely generated, but it is <u>not</u> a free module.

In a vector space, one can extract a basis out of any generating set, and every linearly independent family can be extended into a basis.

Counter-example

 $\{2,3\}$ is a generating family of the \mathbb{Z} -module $M = \mathbb{Z}$, because n = (-n)2 + (n)3 for all $n \in \mathbb{Z}$. But one cannot extract a basis out of it.

Counter-example

In the \mathbb{Z} -module $M = \mathbb{Z}$, the linearly independent family {2} cannot be extended into a basis.

Module morphisms

Definition (Module morphism)

Let M and N be two R-modules. A map $f : M \longrightarrow N$ is a morphism if it is R-linear, meaning

f(m + m') = f(m) + f(m') and $f(\lambda m) = \lambda f(m)$

for all $m, m' \in M$ and $\lambda \in R$. A morphism is an isomorphism if it is bijective, in which case its inverse is automatically a morphism.

Example

An *R*-module *M* is finitely generated iff. there exits $n \in \mathbb{N}$ and a surjective morphism $\mathbb{R}^n \longrightarrow M$. It is free of rank *n* iff. it is isomorphic to \mathbb{R}^n .

Remark

Let $I \subset R$ be a maximal ideal, and let k = R/I be the corresponding field. Then

$$R^n \simeq R^m \Longrightarrow k^n \simeq k^m \Longrightarrow n = m,$$

so the rank of a free module is well-defined.

Theorem (Kernel and image are submodules)

Let M and N be two R-modules, and $f: M \longrightarrow N$ be a morphism. Then

$$\operatorname{Ker} f = \{m \in M \mid f(m) = 0\} \subseteq M$$

is a submodule of M, and

$$\operatorname{Im} f = \{f(m) \mid m \in M\} \subseteq N$$

is a submodule of N.

f is injective iff. Ker $f = \{0\}$, surjective iff. Im f = N, and an isomorphism iff. it is both.

Example

Let

$$f: \begin{array}{ccc} \mathbb{Z}^2 & \longrightarrow & \mathbb{Z}/2\mathbb{Z} \\ (x,y) & \longmapsto & x-y \bmod 2. \end{array}$$

Then

$$\operatorname{Im} f = \mathbb{Z}/2\mathbb{Z},$$

and

$$\operatorname{Ker} f = \{(x, y) \in \mathbb{Z}^2 \mid x \equiv y \bmod 2\}$$

is a free submodule of rank 2 of \mathbb{Z}^2 with basis $\{(1,1), (1,-1)\}$.

Let *M* be a free *R*-module with basis m_1, m_2, \cdots . Every $m \in M$ can be expressed uniquely as $m = \lambda_1 m_1 + \lambda_2 m_2 + \cdots$, and can thus be represented by its coordinates $\lambda_1, \lambda_2, \cdots \in R$.

Likewise, if N is another free R-module with basis n_1, n_2, \cdots , then each morphism from M to N may be represented by it matrix with respect to these bases. Conversely, each matrix (of the appropriate size) corresponds to a morphism from M to N.

Composition of morphisms corresponds to multiplication of matrices. In particular, a morphism from M to N is an isomorphism if and only if its matrix is invertible.

Let R be a commutative ring and $n \in \mathbb{N}$ be n integer. Write

 $M_n(R) = \{n \times n \text{ matrices with coefficients in } R\}$

and

$$\operatorname{GL}_n(R) = M_n(R)^{\times}.$$

Theorem (Invertible matrices over a ring)

 $\operatorname{GL}_n(R) = \{A \in M_n(R) \mid \det A \in R^{\times}\}.$

$GL_n(R)$: proof and example

Proof.

If
$$A, B \in M_n(R)$$
 satisfy $AB = I_n$, then

$$1 = \det(I_n) = \det(AB) = \det(A)\det(B)$$

so
$$\mathsf{det}(A) \in R^{ imes}.$$

Conversely, every $A \in M_n(R)$ satisfies

 $AA' = \det(A)I_n$

where A' is the adjugate matrix of A.

$$\operatorname{GL}_n(\mathbb{Z}) = \{ A \in M_n(\mathbb{Z}) \mid \det A = \pm 1 \}.$$

Theorem (Construction of quotient modules)

Let M be an R-module, and $S \subseteq M$ be a submodule. Then the quotient set

$$M/S = M/\sim$$
, where $m \sim m' \iff m - m' \in S$,

inherits an R-module structure. The projection map

$$M \longrightarrow M/S$$

is a surjective morphism whose kernel is S.

Theorem (Isomorphism theorem for modules)

Let M and N be two R-modules, $S \subseteq M$ a submodule, and $f: M \longrightarrow N$ be a morphism. Then f factors as

iff. $S \subseteq \text{Ker } f$.

In particular, f induces an isomorphism $M/\operatorname{Ker} f \simeq \operatorname{Im} f$.

Modules over a PID:

theorems

Nicolas Mascot Rings, fields, and modules

Theorem (Freeness over a PID)

Let R be a PID, and let M be an R-module. If M is free, then every submodule of M is also free.

Theorem (Freeness over PID)

Let R be a commutative domain. TFAE:

- R is a PID,
- If M is a free R-module, then all the submodules of M are also free.

Proof.

R is a free *R*-module of rank 1, whose submodules are the ideals of *R*. Let $I \neq 0$ be such an ideal. If *I* is free of rank ≥ 2 , let i_1, i_2, \cdots be an *R*-basis of *I*. Then

$$\lambda i_1 + \mu i_2 = 0$$
 for $\lambda = i_2 \in R, \mu = -i_1 \in R$,

contradition. So if I is free, it must be of rank 1. Let i_1 be a basis; then

$$I = \{\lambda i_1, \ \lambda \in R\} = (i_1)$$

is principal.

Proof: sufficiency of PID

Proof.

Conversely, let M be free of rank n. Then $M \simeq R^n$, so WLOG we suppose $M = R^n$. Let $S \subset R^n$ be a sub-R-module, we prove by induction on n that S is free. If n = 0, then $R^n = \{0\}$, so $S = \{0\}$ is free of rank 0.

Suppose true for n-1. Define

$$\pi: \begin{array}{ccc} S & \longrightarrow & R \\ (x_1, \cdots, x_n) & \longmapsto & x_n \end{array}$$

and

$$S_0 = \text{Ker } \pi = \{ (x_1, \cdots, x_n) \in S \mid x_n = 0 \}.$$

Proof: sufficiency of PID

Proof.

By induction hypothesis, $S_0 \subset \mathbb{R}^{n-1}$ is free; let s_1, \dots, s_m be a basis. Besides, Im $\pi \subset R$ is a submodule, hence an ideal, so of the form gR for some $g \in R$. If g = 0, then Im $\pi = \{0\}$, so $S = S_0$, done. Else, we have $g \neq 0$. Let $s = (\cdots, g) \in S$. **Claim**: s_1, \dots, s_m, s is an *R*-basis of *S*. Generating: Let $x = (x_1, \dots, x_n) \in S$. Then $x_n \in \text{Im } \pi = gR$, so $x_n = gy$ for some $y \in R$. Then $x - ys \in S_0$, so is of the form $\sum_i \lambda_i s_i$ for some $\lambda_i \in R$. Thus $x = \sum_i \lambda_i s_i + ys$. Linearly independent: Suppose $\sum_i \lambda_i s_i + ys = 0$ for some $\lambda_i, y \in R$. Look at the last coordinate: $\sum_i \lambda_i 0 + yg = 0$, whence yg = 0, whence y = 0. So $\sum_i \lambda_i s_i = 0$.

Theorem (SNF & invariant factors)

Let R be a PID, and let A be a matrix with entries in R. It is possible to turn A into a diagonal matrix with entries

 $d_1 \mid d_2 \mid \cdots$

using a succession of the following operations:

- Add a multiple of a row of A to another row,
- Swap two rows of A,
- Add a multiple of a column of A to another column,
- Swap two columns of A.

The d_i are called the <u>invariant factors</u> of A; they are unique up to associates.

SNF: proof, case R Euclidean

Proof.

- Swap rows and columns until one of the nonzero entries of A of the smallest size is at the top-left corner.
- Use the top-left entry \(\lambda\) as a pivot so as to replace all the terms in the first row and in the first column by their reminders by \(\mathcal{a}\).

3 If
$$A = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ \hline 0 & & \\ \vdots & A' & \\ 0 & & \end{pmatrix}$$
 with λ dividing all the entries of A' , iterate on the block A' . Else, swap rows and

columns again and go to step 2.

$$\begin{pmatrix} 8 & 4 & 8 \\ 16 & 14 & 10 \\ 12 & 12 & 6 \end{pmatrix}$$

$$\begin{pmatrix} 8 & 4 & 8 \\ 16 & 14 & 10 \\ 12 & 12 & 6 \end{pmatrix} \qquad C_2 \leftrightarrow C_1$$

$$\begin{pmatrix} 4 & 8 & 8 \\ 14 & 16 & 10 \\ 12 & 12 & 6 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 8 & 8 \\ 14 & 16 & 10 \\ 12 & 12 & 6 \end{pmatrix} \qquad \begin{array}{c} R_2 \leftarrow R_2 - 3R_1, \\ R_3 \leftarrow R_3 - 3R_1 \end{array}$$

$$\begin{pmatrix} 4 & 8 & 8 \\ 2 & -8 & -14 \\ 0 & -12 & -18 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 8 & 8 \\ 2 & -8 & -14 \\ 0 & -12 & -18 \end{pmatrix} \qquad \begin{array}{c} C_2 \leftarrow C_2 - 2C_1, \\ C_3 \leftarrow C_3 - 2C_1 \end{array}$$

$$\begin{pmatrix} 4 & 0 & 0 \\ 2 & -12 & -18 \\ 0 & -12 & -18 \end{pmatrix}$$

$$egin{pmatrix} 4 & 0 & 0 \ 2 & -12 & -18 \ 0 & -12 & -18 \end{pmatrix} \qquad R_2 \leftrightarrow R_1$$

$$\begin{pmatrix} 2 & -12 & -18 \\ 4 & 0 & 0 \\ 0 & -12 & -18 \end{pmatrix}$$

$$egin{pmatrix} 2 & -12 & -18 \ 4 & 0 & 0 \ 0 & -12 & -18 \end{pmatrix} \qquad R_2 \leftarrow R_2 - 2R_1 \ \end{cases}$$

$$\begin{pmatrix} 2 & -12 & -18 \\ 0 & 24 & 36 \\ 0 & -12 & -18 \end{pmatrix}$$

$$egin{pmatrix} 2 & -12 & -18 \ 0 & 24 & 36 \ 0 & -12 & -18 \end{pmatrix} \qquad egin{pmatrix} C_2 \leftarrow C_2 + 6C_1, \ C_3 \leftarrow C_3 + 9C_1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 24 & 36 \\ 0 & -12 & -18 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 24 & 36 \\ 0 & -12 & -18 \end{pmatrix} \qquad R_3 \leftrightarrow R_2$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & -12 & -18 \\ 0 & 24 & 36 \end{pmatrix}$$

$$egin{pmatrix} 2 & 0 & 0 \ 0 & -12 & -18 \ 0 & 24 & 36 \end{pmatrix} \qquad R_3 \leftarrow R_3 + 2R_2$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & -12 & -18 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & -12 & -18 \\ 0 & 0 & 0 \end{pmatrix} \qquad C_3 \leftarrow C_3 - 2C_2$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & -12 & 6 \\ 0 & 0 & 0 \end{pmatrix}$$

$$egin{pmatrix} 2 & 0 & 0 \ 0 & -12 & 6 \ 0 & 0 & 0 \end{pmatrix} \qquad \mathcal{C}_3 \leftrightarrow \mathcal{C}_2$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 6 & -12 \\ 0 & 0 & 0 \end{pmatrix}$$

$$egin{pmatrix} 2 & 0 & 0 \ 0 & 6 & -12 \ 0 & 0 & 0 \end{pmatrix} \qquad C_3 \leftarrow C_3 + 2C_2$$

Example

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Nicolas Mascot Rings, fields, and modules

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Invariant factors: $d_1 = 2 | d_2 = 6 | d_3 = 0$.

Modules over a PID:

applications

Nicolas Mascot Rings, fields, and modules

Application: Finitely generated modules over a PID

Theorem

Let R be a PID, and let M be a finitely generated R-module. There exist invariant factors

$$d_1 \mid d_2 \mid \dots \in R$$

such that

$$M \simeq (R/d_1R) \times (R/d_2R) \times \cdots$$

These invariant factors are unique up to associates.

Remark

$$R/0R = R$$
, and $R/uR = \{0\}$ for all $u \in R^{\times}$.

Finitely generated modules over a PID: proof

Proof.

Let $m_1, \cdots, m_p \in M$ generate M; then the morphism

$$\begin{array}{cccc} F: & R^{p} & \longrightarrow & M \\ & (\lambda_{1}, \cdots, \lambda_{p}) & \longmapsto & \sum_{i} \lambda_{i} m_{i} \end{array}$$

is surjective, so $M \simeq R^p / \operatorname{Ker} f$ by the isomorphism theorem. Let

$$N = \operatorname{Ker} f \subset R^p;$$

then *N* is a free *R*-module, let n_1, \dots, n_q be a basis. Express the $n_i \in R^p$ as a $p \times q$ matrix *A*. Operations on the columns of *A* amount to changing the basis n_1, \dots, n_q , and operations on the rows amount to changing the generators m_1, \dots, m_p . So taking the SNF of *A*, we get generators m'_1, m'_2, \dots of *M* satisfying the relations $d_im'_i = 0 \in M$. Corollary (Classification of finitely generated Abelian groups)

Let G be a finitely generated Abelian group. There exist invariant factors

$$d_1 \mid d_2 \mid \cdots \in \mathbb{Z}_{\geq 0}$$

such that

$$G\simeq (\mathbb{Z}/d_1\mathbb{Z}) imes (\mathbb{Z}/d_2\mathbb{Z}) imes \cdots$$

These invariant factors are unique.

Finitely generated Abelian groups: example

Example

Let G be the Abelian group with generators g_1, g_2, g_3 and relations

$$\left\{ \begin{array}{l} 8g_1+16g_2+12g_3=0,\\ 4g_1+14g_2+12g_3=0,\\ 8g_1+10g_2+6g_3=0. \end{array} \right.$$

Then $A = \begin{pmatrix} 8 & 4 & 8 \\ 16 & 14 & 10 \\ 12 & 12 & 6 \end{pmatrix}$ has SNF with invariant factors

2 | 6 | 0,

SO

$$G \simeq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/6\mathbb{Z}) \times \mathbb{Z}.$$

Application: The rational canonical form (1/6)

From this point on, all the material is non-examinable.

Definition (Companion matrix)

Let K be a field, and let

$$f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0\in K[x].$$

The companion matrix of f is

$$C_f = egin{pmatrix} 0 & & & -a_0 \ 1 & 0 & & & -a_1 \ & 1 & \ddots & & dots \ & & \ddots & 0 & dots \ & & & 1 & -a_{n-1} \end{pmatrix} \in M_n(\mathcal{K}).$$

Application: The rational canonical form (2/6)

Lemma

Let V = K[x]/f(x)K[x] seen as a K-vector space. Then $1, x, x^2, \dots, x^{\deg f-1}$ is a K-basis of V, and the matrix of multiplication by x is C_f .

Remark

The characteristic polynomial

$$\det(x1_n-C_f)$$

of C_f and the minimal polynomial of C_f are both $f \in K[x]$.

Application: The rational canonical form (3/6)

Corollary (Rational canonical form)

Let K be a field, V a finite-dimensional K-vector space, and $T \in End(V)$. There exist <u>unique</u> monic polynomials

$$f_1(x) \mid f_2(x) \mid \cdots \mid f_k(x) \in K[x]$$

such that there exists a basis of V such that the matrix of T is

$$\begin{pmatrix} C_{f_1} & & 0 \\ & C_{f_2} & & \\ & & \ddots & \\ 0 & & & C_{f_k} \end{pmatrix}$$

The minimal polynomial of T is $f_k(x)$, and it characteristic polynomial is $f_1(x)f_2(x)\cdots f_k(x)$.

Application: The rational canonical form (4/6)

Proof.

Put a K[x]-module structure on V by letting xv = T(v) for all $v \in V$. For instance,

$$(x^2-1)v = T(T(v)) - v.$$

Since V has finite dimension over K, it is a finitely generated K[x]-module. As K[x] is a PID,

 $V \simeq (K[x]/f_1(x)K[x]) \times \cdots \times (K[x]/f_k(x)K[x])$

for some unique monic $f_1(x) | f_2(x) | \cdots | f_k(x) \in K[x]$.

Application: The rational canonical form (5/6)

Example

Take
$$V = K^3$$
 with basis e_1, e_2, e_3 , and $T \in \text{End}(V)$ having matrix $B = \begin{pmatrix} 7 & -5 & -5 \\ 5 & -3 & -5 \\ 5 & -5 & -3 \end{pmatrix}$.

The e_i generate V over K and hence over K[x], whence a surjective K[x]-module morphism $f : K[x]^3 \longrightarrow V$ taking the basis E_1, E_2, E_3 of $K[x]^3$ to e_1, e_2, e_3 .

The $xE_i - T(E_i)$ lie in Ker f, and actually form a basis of it; so we take the SNF of

$$A = \begin{pmatrix} x - 7 & 5 & 5 \\ -5 & x + 3 & 5 \\ -5 & 5 & x + 3 \end{pmatrix} \in M_3(\mathcal{K}[x]).$$

Application: The rational canonical form (6/6)

Example

We find the invariant factors

$$1 \mid (x-2) \mid (x-2)(x+3) = x^2 + x - 6,$$

so as a K[x]-module,

 $V \simeq (K[x]/(1)) \times (K[x]/(x-2)) \times (K[x]/(x^2+x-6)),$

and the rational canonical form of A is

$$\begin{pmatrix} 2 & 0 & 0 \\ \hline 0 & 0 & 6 \\ 0 & 1 & -1 \end{pmatrix}$$

In particular, A has minimal polynomial (x - 2)(x + 3) and characteristic polynomial $(x - 2)^2(x + 3)$.