MAU22102
 Rings, Fields, and Modules 4 - Modules over a ring

Nicolas Mascot mascotn@tcd.ie
Module web page

Hilary 2020-2021
Version: March 29, 2021

Trinity College Dublin
Coláiste na Tríonóide, Baile Átha Cliath
The University of Dublin

Modules vs. vector spaces

Reminder: vector spaces

Definition (Vector space over a field)

Let K be a field. A K-vector space is a set V equipped with two composition laws

$$
\begin{array}{lllll}
V \times V & \longrightarrow & V & K \times V & \longrightarrow V \\
(v, w) & \longmapsto v+w, & (\lambda, v) & \longmapsto \lambda v
\end{array}
$$

such that $(V,+)$ is an Abelian group, and that for all $\lambda, \mu \in K$ and $v, w \in V$, we have

$$
\begin{array}{rcr}
\lambda(\mu v)=(\lambda \mu) v, & 1 v=v, \\
(\lambda+\mu) v=(\lambda v)+(\mu v), & \lambda(v+w)=(\lambda v)+(\lambda w)
\end{array}
$$

Modules

Definition (Module over a ring)

Let R be a (not necessarily commutative) ring. An $\underline{R \text {-module }}$ is a set M equipped with two composition laws

$$
\begin{array}{cllll}
M \times M & \longrightarrow & M & R \times M & \longrightarrow M \\
(m, n) & \longmapsto & \longrightarrow n, & (\lambda, m) & \longmapsto \lambda m
\end{array}
$$

such that $(M,+)$ is an Abelian group, and that for all $\lambda, \mu \in R$ and $m, n \in M$, we have

$$
\begin{array}{cc}
\lambda(\mu m)=(\lambda \mu) m, & 1 m=m \\
(\lambda+\mu) m=(\lambda m)+(\mu m), & \lambda(m+n)=(\lambda m)+(\lambda n)
\end{array}
$$

Modules: examples

Example

Let R be a ring, and let $n \in \mathbb{N}$. Then

$$
R^{n}=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid x_{i} \in R\right\}
$$

is an R-module.

Example

Let $(G,+)$ be an Abelian group. Then G is actually a \mathbb{Z}-module:

$$
n g=\underbrace{g+\cdots+g}_{n \text { times }} \quad(n \in \mathbb{Z}, g \in G)
$$

Submodules

Definition (Submodule)

Let M be an R-module. A submodule of M is a subset of M which is nonempty and closed under + and under multiplication by R.

Example

Let $M=R$, viewed as an R-module. Then the submodules of M are the ideals of R.

Generating sets of a module

Definition (Generating set, finitely generated)

Let M be an R-module. Elements $m_{1}, \cdots, m_{n} \in M$ form a generating set if every $m \in M$ can be expressed in the form

$$
m=\sum_{i=1}^{n} \lambda_{i} m_{i}
$$

for some (not necessarily unique) $\lambda_{i} \in R$. If such a finite generating set exists, then we say that M is finitely generated.

Counter-example

Let R be a commutative ring. Then $R[x]$ is an R-module, which is not finitely generated.

Linear independence, free modules

Definition (Linearly independent, free)

Let M be an R-module. Elements $m_{1}, \cdots, m_{n} \in M$ are linearly independent if the only $\lambda_{1}, \cdots, \lambda_{n} \in R$ satisfying

$$
\sum_{i=1}^{n} \lambda_{i} m_{i}=0
$$

are $\lambda_{1}=\cdots=\lambda_{n}=0$.
If furthermore m_{1}, \cdots, m_{n} form a generating set of M, we say that M is a free R-module of rank n, and that the m_{i} form a basis of M. In this case, every $m \in M$ can be expressed as
for some unique $\lambda_{i} \in R$.

$$
m=\sum_{i=1}^{n} \lambda_{i} m_{i}
$$

Free modules: examples

Example

R^{n} is a free R-module of rank n, with basis
$e_{1}=(1,0, \cdots, 0), e_{2}=(0,1,0, \cdots, 0), \cdots, e_{n}=(0, \cdots, 0,1)$.

Counter-example
The \mathbb{Z}-module $M=\mathbb{Z} / 2 \mathbb{Z}$ is finitely generated, but it is not a free module.

Modules vs. vector spaces

In a vector space, one can extract a basis out of any generating set, and every linearly independent family can be extended into a basis.

Counter-example
$\{2,3\}$ is a generating family of the \mathbb{Z}-module $M=\mathbb{Z}$, because $n=(-n) 2+(n) 3$ for all $n \in \mathbb{Z}$. But one cannot extract a basis out of it.

Counter-example

In the \mathbb{Z}-module $M=\mathbb{Z}$, the linearly independent family $\{2\}$ cannot be extended into a basis.

Module morphisms

Morphisms

Definition (Module morphism)

Let M and N be two R-modules. A map $f: M \longrightarrow N$ is a morphism if it is $\underline{R \text {-linear, meaning }}$

$$
f\left(m+m^{\prime}\right)=f(m)+f\left(m^{\prime}\right) \text { and } f(\lambda m)=\lambda f(m)
$$

for all $m, m^{\prime} \in M$ and $\lambda \in R$.
A morphism is an isomorphism if it is bijective, in which case its inverse is automatically a morphism.

Morphisms: examples

Example

An R-module M is finitely generated iff. there exits $n \in \mathbb{N}$ and a surjective morphism $R^{n} \longrightarrow M$. It is free of rank n iff. it is isomorphic to R^{n}.

Remark

Let $I \subset R$ be a maximal ideal, and let $k=R / I$ be the corresponding field. Then

$$
R^{n} \simeq R^{m} \Longrightarrow k^{n} \simeq k^{m} \Longrightarrow n=m
$$

so the rank of a free module is well-defined.

Kernels and images

Theorem (Kernel and image are submodules)

Let M and N be two R-modules, and $f: M \longrightarrow N$ be a morphism. Then

$$
\operatorname{Ker} f=\{m \in M \mid f(m)=0\} \subseteq M
$$

is a submodule of M, and

$$
\operatorname{lm} f=\{f(m) \mid m \in M\} \subseteq N
$$

is a submodule of N.
f is injective iff. $\operatorname{Ker} f=\{0\}$, surjective iff. $\operatorname{Im} f=N$, and an isomorphism iff. it is both.

Kernels and images: example

Example

Let

$$
f: \begin{aligned}
\mathbb{Z}^{2} & \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \\
(x, y) & \longmapsto x-y \bmod 2
\end{aligned}
$$

Then

$$
\operatorname{Im} f=\mathbb{Z} / 2 \mathbb{Z}
$$

and

$$
\operatorname{Ker} f=\left\{(x, y) \in \mathbb{Z}^{2} \mid x \equiv y \bmod 2\right\}
$$

is a free submodule of rank 2 of \mathbb{Z}^{2} with basis $\{(1,1),(1,-1)\}$.

Morphisms between free modules

Let M be a free R-module with basis m_{1}, m_{2}, \cdots. Every $m \in M$ can be expressed uniquely as $m=\lambda_{1} m_{1}+\lambda_{2} m_{2}+\cdots$, and can thus be represented by its coordinates $\lambda_{1}, \lambda_{2}, \cdots \in R$.

Likewise, if N is another free R-module with basis n_{1}, n_{2}, \cdots, then each morphism from M to N may be represented by it matrix with respect to these bases. Conversely, each matrix (of the appropriate size) corresponds to a morphism from M to N.

Composition of morphisms corresponds to multiplication of matrices. In particular, a morphism from M to N is an isomorphism if and only if its matrix is invertible.

$\mathrm{GL}_{n}(R)$: statement

Let R be a commutative ring and $n \in \mathbb{N}$ be n integer. Write

$$
M_{n}(R)=\{n \times n \text { matrices with coefficients in } R\}
$$

and

$$
\mathrm{GL}_{n}(R)=M_{n}(R)^{\times} .
$$

Theorem (Invertible matrices over a ring)

$$
\mathrm{GL}_{n}(R)=\left\{A \in M_{n}(R) \mid \operatorname{det} A \in R^{\times}\right\} .
$$

$\mathrm{GL}_{n}(R)$: proof and example

Proof.

If $A, B \in M_{n}(R)$ satisfy $A B=I_{n}$, then

$$
1=\operatorname{det}\left(I_{n}\right)=\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

so $\operatorname{det}(A) \in R^{\times}$.
Conversely, every $A \in M_{n}(R)$ satisfies

$$
A A^{\prime}=\operatorname{det}(A) I_{n}
$$

where A^{\prime} is the adjugate matrix of A.

Example

$$
\mathrm{GL}_{n}(\mathbb{Z})=\left\{A \in M_{n}(\mathbb{Z}) \mid \operatorname{det} A= \pm 1\right\} .
$$

Quotient modules

Theorem (Construction of quotient modules)

Let M be an R-module, and $S \subseteq M$ be a submodule. Then the quotient set

$$
M / S=M / \sim, \quad \text { where } m \sim m^{\prime} \Longleftrightarrow m-m^{\prime} \in S,
$$

inherits an R-module structure. The projection map

$$
M \longrightarrow M / S
$$

is a surjective morphism whose kernel is S.

The isomorphism theorem for modules

Theorem (Isomorphism theorem for modules)
Let M and N be two R-modules, $S \subseteq M$ a submodule, and $f: M \longrightarrow N$ be a morphism. Then f factors as

iff. $S \subseteq \operatorname{Ker} f$.
In particular, f induces an isomorphism $M / \operatorname{Ker} f \simeq \operatorname{Im} f$.

Modules over a PID:

theorems

Submodules of free modules

Theorem (Freeness over a PID)
Let R be a PID, and let M be an R-module. If M is free, then every submodule of M is also free.

Submodules of free modules

Theorem (Freeness over PID)

Let R be a commutative domain. TFAE:
(1) R is a PID,
(2) If M is a free R-module, then all the submodules of M are also free.

Proof: necessity of PID

Proof.

R is a free R-module of rank 1 , whose submodules are the ideals of R. Let $I \neq 0$ be such an ideal.
If I is free of rank $\geqslant 2$, let i_{1}, i_{2}, \cdots be an R-basis of I. Then

$$
\lambda i_{1}+\mu i_{2}=0 \quad \text { for } \quad \lambda=i_{2} \in R, \mu=-i_{1} \in R,
$$

contradition. So if I is free, it must be of rank 1 . Let i_{1} be a basis; then

$$
I=\left\{\lambda i_{1}, \lambda \in R\right\}=\left(i_{1}\right)
$$

is principal.

Proof: sufficiency of PID

Proof.

Conversely, let M be free of rank n. Then $M \simeq R^{n}$, so WLOG we suppose $M=R^{n}$.
Let $S \subset R^{n}$ be a sub- R-module, we prove by induction on n that S is free.
If $n=0$, then $R^{n}=\{0\}$, so $S=\{0\}$ is free of rank 0 .
Suppose true for $n-1$. Define

$$
\pi: \begin{array}{ccc}
S & \longrightarrow & R \\
\left(x_{1}, \cdots, x_{n}\right) & \longmapsto & x_{n}
\end{array}
$$

and

$$
S_{0}=\operatorname{Ker} \pi=\left\{\left(x_{1}, \cdots, x_{n}\right) \in S \mid x_{n}=0\right\}
$$

Proof: sufficiency of PID

Proof.

By induction hypothesis, $S_{0} \subset R^{n-1}$ is free; let s_{1}, \cdots, s_{m} be a basis. Besides, $\operatorname{Im} \pi \subset R$ is a submodule, hence an ideal, so of the form $g R$ for some $g \in R$.
If $g=0$, then $\operatorname{Im} \pi=\{0\}$, so $S=S_{0}$, done.
Else, we have $g \neq 0$. Let $s=(\cdots, g) \in S$.
Claim: s_{1}, \cdots, s_{m}, s is an R-basis of S.
Generating: Let $x=\left(x_{1}, \cdots, x_{n}\right) \in S$. Then $x_{n} \in \operatorname{Im} \pi=g R$, so $x_{n}=g y$ for some $y \in R$. Then $x-y s \in S_{0}$, so is of the form $\sum_{i} \lambda_{i} s_{i}$ for some $\lambda_{i} \in R$. Thus $x=\sum_{i} \lambda_{i} s_{i}+y s$. Linearly independent: Suppose $\sum_{i} \lambda_{i} s_{i}+y s=0$ for some $\overline{\lambda_{i}}, y \in R$. Look at the last coordinate: $\sum_{i} \lambda_{i} 0+y g=0$, whence $y g=0$, whence $y=0$. So $\sum_{i} \lambda_{i} s_{i}=0$.

The Smith normal form

Theorem (SNF \& invariant factors)

Let R be a PID, and let A be a matrix with entries in R. It is possible to turn A into a diagonal matrix with entries

$$
d_{1}\left|d_{2}\right| \cdots
$$

using a succession of the following operations:

- Add a multiple of a row of A to another row,
- Swap two rows of A,
- Add a multiple of a column of A to another column,
- Swap two columns of A.

The d_{i} are called the invariant factors of A; they are unique up to associates.

SNF: proof, case R Euclidean

Proof.

(1) Swap rows and columns until one of the nonzero entries of A of the smallest size is at the top-left corner.
(2) Use the top-left entry λ as a pivot so as to replace all the terms in the first row and in the first column by their reminders by a.
(3) If $A=\left(\begin{array}{c|ccc}\lambda & 0 & \cdots & 0 \\ \hline 0 & & \\ \vdots & & A^{\prime} & \\ 0 & & \end{array}\right)$ with λ dividing all the entries
of A^{\prime}, iterate on the block A^{\prime}. Else, swap rows and columns again and go to step 2.

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
8 & 4 & 8 \\
16 & 14 & 10 \\
12 & 12 & 6
\end{array}\right)
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
8 & 4 & 8 \\
16 & 14 & 10 \\
12 & 12 & 6
\end{array}\right) \quad C_{2} \leftrightarrow C_{1}
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
4 & 8 & 8 \\
14 & 16 & 10 \\
12 & 12 & 6
\end{array}\right)
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
4 & 8 & 8 \\
14 & 16 & 10 \\
12 & 12 & 6
\end{array}\right) \quad \begin{aligned}
& R_{2} \leftarrow R_{2}-3 R_{1}, \\
& R_{3} \leftarrow R_{3}-3 R_{1}
\end{aligned}
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
4 & 8 & 8 \\
2 & -8 & -14 \\
0 & -12 & -18
\end{array}\right)
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
4 & 8 & 8 \\
2 & -8 & -14 \\
0 & -12 & -18
\end{array}\right) \quad \begin{array}{ll}
C_{2} \leftarrow C_{2}-2 C_{1}, \\
C_{3} \leftarrow C_{3}-2 C_{1}
\end{array}
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
4 & 0 & 0 \\
2 & -12 & -18 \\
0 & -12 & -18
\end{array}\right)
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
4 & 0 & 0 \\
2 & -12 & -18 \\
0 & -12 & -18
\end{array}\right) \quad R_{2} \leftrightarrow R_{1}
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & -12 & -18 \\
4 & 0 & 0 \\
0 & -12 & -18
\end{array}\right)
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & -12 & -18 \\
4 & 0 & 0 \\
0 & -12 & -18
\end{array}\right) \quad R_{2} \leftarrow R_{2}-2 R_{1}
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & -12 & -18 \\
0 & 24 & 36 \\
0 & -12 & -18
\end{array}\right)
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & -12 & -18 \\
0 & 24 & 36 \\
0 & -12 & -18
\end{array}\right) \quad \begin{array}{ll}
C_{2} \leftarrow C_{2}+6 C_{1}, \\
C_{3} & \leftarrow C_{3}+9 C_{1}
\end{array}
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 24 & 36 \\
0 & -12 & -18
\end{array}\right)
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 24 & 36 \\
0 & -12 & -18
\end{array}\right) \quad R_{3} \leftrightarrow R_{2}
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -12 & -18 \\
0 & 24 & 36
\end{array}\right)
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -12 & -18 \\
0 & 24 & 36
\end{array}\right) \quad R_{3} \leftarrow R_{3}+2 R_{2}
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -12 & -18 \\
0 & 0 & 0
\end{array}\right)
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -12 & -18 \\
0 & 0 & 0
\end{array}\right) \quad C_{3} \leftarrow C_{3}-2 C_{2}
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -12 & 6 \\
0 & 0 & 0
\end{array}\right)
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -12 & 6 \\
0 & 0 & 0
\end{array}\right) \quad C_{3} \leftrightarrow C_{2}
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 6 & -12 \\
0 & 0 & 0
\end{array}\right)
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 6 & -12 \\
0 & 0 & 0
\end{array}\right) \quad C_{3} \leftarrow C_{3}+2 C_{2}
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Example: SNF over \mathbb{Z}

Example

$$
\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Invariant factors: $d_{1}=2\left|d_{2}=6\right| d_{3}=0$.

Modules over a PID:

applications

Application: Finitely generated modules over a PID

Theorem

Let R be a PID, and let M be a finitely generated R-module.
There exist invariant factors

$$
d_{1}\left|d_{2}\right| \cdots \in R
$$

such that

$$
M \simeq\left(R / d_{1} R\right) \times\left(R / d_{2} R\right) \times \cdots
$$

These invariant factors are unique up to associates.

Remark

$R / 0 R=R$, and $R / u R=\{0\}$ for all $u \in R^{\times}$.

Finitely generated modules over a PID: proof

Proof.

Let $m_{1}, \cdots, m_{p} \in M$ generate M; then the morphism

$$
\begin{array}{c:ccc}
f: & R^{p} & \longrightarrow & M \\
& \left(\lambda_{1}, \cdots, \lambda_{p}\right) & \longmapsto & \sum_{i} \lambda_{i} m_{i}
\end{array}
$$

is surjective, so $M \simeq R^{p} / \operatorname{Ker} f$ by the isomorphism theorem. Let

$$
N=\operatorname{Ker} f \subset R^{p}
$$

then N is a free R-module, let n_{1}, \cdots, n_{q} be a basis. Express the $n_{i} \in R^{p}$ as a $p \times q$ matrix A. Operations on the columns of A amount to changing the basis n_{1}, \cdots, n_{q}, and operations on the rows amount to changing the generators m_{1}, \cdots, m_{p}. So taking the SNF of A, we get generators $m_{1}^{\prime}, m_{2}^{\prime}, \cdots$ of M satisfying the relations $d_{i} m_{i}^{\prime}=0 \in M$.

Application: Finitely generated Abelian groups

Corollary (Classification of finitely generated Abelian groups)

Let G be a finitely generated Abelian group. There exist invariant factors

$$
d_{1}\left|d_{2}\right| \cdots \in \mathbb{Z}_{\geqslant 0}
$$

such that

$$
G \simeq\left(\mathbb{Z} / d_{1} \mathbb{Z}\right) \times\left(\mathbb{Z} / d_{2} \mathbb{Z}\right) \times \cdots
$$

These invariant factors are unique.

Finitely generated Abelian groups: example

Example

Let G be the Abelian group with generators g_{1}, g_{2}, g_{3} and relations

$$
\left\{\begin{array}{l}
8 g_{1}+16 g_{2}+12 g_{3}=0, \\
4 g_{1}+14 g_{2}+12 g_{3}=0, \\
8 g_{1}+10 g_{2}+6 g_{3}=0 .
\end{array}\right.
$$

Then $A=\left(\begin{array}{ccc}8 & 4 & 8 \\ 16 & 14 \\ 12 & 12 & 10\end{array}\right)$ has SNF with invariant factors

$$
2|6| 0,
$$

SO

$$
G \simeq(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 6 \mathbb{Z}) \times \mathbb{Z} .
$$

Application: The rational canonical form (1/6)

From this point on, all the material is non-examinable.

Definition (Companion matrix)
Let K be a field, and let

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \in K[x] .
$$

The companion matrix of f is

$$
C_{f}=\left(\begin{array}{ccccc}
0 & & & & -a_{0} \\
1 & 0 & & & -a_{1} \\
& 1 & \ddots & & \vdots \\
& & \ddots & 0 & \vdots \\
& & & 1 & -a_{n-1}
\end{array}\right) \in M_{n}(K) .
$$

Application: The rational canonical form $(2 / 6)$

Lemma

Let $V=K[x] / f(x) K[x]$ seen as a K-vector space. Then $1, x, x^{2}, \cdots, x^{\operatorname{deg} f-1}$ is a K-basis of V, and the matrix of multiplication by x is C_{f}.

Remark

The characteristic polynomial

$$
\operatorname{det}\left(x 1_{n}-C_{f}\right)
$$

of C_{f} and the minimal polynomial of C_{f} are both $f \in K[x]$.

Application: The rational canonical form (3/6)

Corollary (Rational canonical form)

Let K be a field, V a finite-dimensional K-vector space, and $T \in \operatorname{End}(V)$. There exist unique monic polynomials

$$
f_{1}(x)\left|f_{2}(x)\right| \cdots \mid f_{k}(x) \in K[x]
$$

such that there exists a basis of V such that the matrix of T is

$$
\left(\begin{array}{cccc}
C_{f_{1}} & & & 0 \\
& C_{f_{2}} & & \\
& & \ddots & \\
0 & & & C_{f_{k}}
\end{array}\right)
$$

The minimal polynomial of T is $f_{k}(x)$, and it characteristic polynomial is $f_{1}(x) f_{2}(x) \cdots f_{k}(x)$.

Application: The rational canonical form (4/6)

Proof.

Put a $K[x]$-module structure on V by letting $x v=T(v)$ for all $v \in V$. For instance,

$$
\left(x^{2}-1\right) v=T(T(v))-v
$$

Since V has finite dimension over K, it is a finitely generated $K[x]$-module. As $K[x]$ is a PID,

$$
V \simeq\left(K[x] / f_{1}(x) K[x]\right) \times \cdots \times\left(K[x] / f_{k}(x) K[x]\right)
$$

for some unique monic $f_{1}(x)\left|f_{2}(x)\right| \cdots \mid f_{k}(x) \in K[x]$.

Application: The rational canonical form (5/6)

Example

Take $V=K^{3}$ with basis e_{1}, e_{2}, e_{3}, and $T \in \operatorname{End}(V)$ having matrix $B=\left(\begin{array}{ccc}7 & -5 & -5 \\ 5 & -3 & -5 \\ 5 & -5 & -3\end{array}\right)$.

The e_{i} generate V over K and hence over $K[x]$, whence a surjective $K[x]$-module morphism $f: K[x]^{3} \longrightarrow V$ taking the basis E_{1}, E_{2}, E_{3} of $K[x]^{3}$ to e_{1}, e_{2}, e_{3}.

The $x E_{i}-T\left(E_{i}\right)$ lie in $\operatorname{Ker} f$, and actually form a basis of it; so we take the SNF of

$$
A=\left(\begin{array}{ccc}
x-7 & 5 & 5 \\
-5 & x+3 & 5 \\
-5 & 5 & x+3
\end{array}\right) \in M_{3}(K[x]) .
$$

Application: The rational canonical form (6/6)

Example

We find the invariant factors

$$
1|(x-2)|(x-2)(x+3)=x^{2}+x-6
$$

so as a $K[x]$-module,

$$
V \simeq(K[x] /(1)) \times(K[x] /(x-2)) \times\left(K[x] /\left(x^{2}+x-6\right)\right)
$$

and the rational canonical form of A is

$$
\left(\begin{array}{c|cc}
2 & 0 & 0 \\
\hline 0 & 0 & 6 \\
0 & 1 & -1
\end{array}\right) .
$$

In particular, A has minimal polynomial $(x-2)(x+3)$ and characteristic polynomial $(x-2)^{2}(x+3)$.

