MAU22102 Rings, Fields, and Modules 3 - Field extensions

> Nicolas Mascot <u>mascotn@tcd.ie</u> Module web page

Hilary 2020–2021 Version: March 17, 2021

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Field extensions, algebraicness

Let K and L be fields such that $K \subseteq L$. One says that K is a subfield of L, and that L is an extension of K.

Example

 $\mathbb R$ is a subfield of $\mathbb C,$ and $\mathbb C$ is an extension of $\mathbb R.$

In what follows, whenever $\alpha \in L$, we write $K(\alpha)$ for the <u>subfield</u> of *L* generated by *K* and α , and $K[\alpha]$ for the <u>subring</u> of *L* generated by *K* and α .

Example

The ring $K[\alpha]$ is a subring of the field $K(\alpha)$.

Example

$$\mathbb{C}=\mathbb{R}(i)=\mathbb{R}[i].$$

We have

$$K[\alpha] = \{P(\alpha), P(x) \in K[x]\}.$$

For $K(\alpha)$, more delicate, as we will see below.

Definition (Algebraic, transcendental)

Let $K \subset L$, and let $\alpha \in L$. Then

$$I_{\alpha} = \{F(x) \in K[x] \mid F(\alpha) = 0\}$$

is an ideal of K[x]. One says that α is <u>algebraic</u> over K if this ideal is nonzero, that is to say if there exists a nonzero $F(x) \in K[x]$ which vanishes at α . Else one says that α is transcendental over K.

Example

 $\alpha = i \in \mathbb{C}$ is algebraic over \mathbb{R} , since it is a root of the nonzero polynomial $P(x) = x^2 + 1 \in \mathbb{R}[x]$. In fact, α is even algebraic over \mathbb{Q} since $P(x) \in \mathbb{Q}[x]$.

Counter-example

One can show (but this is difficult) that π is transcendental over \mathbb{Q} . This means for instance that an "identity" of the form

 $2130241\pi^3 - 22294338\pi^2 + 51516201\pi - 7857464 = 0$

is automatically **FALSE**. On the other hand, π is algebraic over \mathbb{R} , since it is a root of $x - \pi \in \mathbb{R}[x]$.

Definition (Algebraic extension)

If every element of L is algebraic over K, one says that L is an algebraic extension of K.

Minimal polynomials (1/2)

Since since the ring K[x] is a PID, the ideal I_{α} is principal, so there exists a polynomial $M(x) \in K[x]$ such that

$$I_{\alpha} = (M(x)) = M(x)K[x].$$

If α is transcendental over K, then $I_{\alpha} = \{0\}$ so M(x) is the zero polynomial.

Suppose on the contrary that α is algebraic over K, so that $M(x) \neq 0$. Since K[x] is a domain, the other generators of I_{α} are the associates of M(x) in K[x], that is the U(x)M(x) for $U \in K[x]^{\times}$. But $K[x]^{\times} = K^{\times}$, so M(x) is unique up to scaling, so there is a unique monic polynomial $m_{\alpha}(x)$ that generates I_{α} .

Definition (Minimal polynomial)

 $m_{\alpha}(x)$ is called the <u>minimal polynomial</u> of α over K.

Definition (Degree of an algebraic element)

One then says that α is algebraic over K of degree n, where $n = \deg m_{\alpha} \in \mathbb{N}$, and one writes $\deg_{K} \alpha = n$.

Remark

By definition, for all $F(x) \in K[x]$, $F(\alpha) = 0 \iff F$ is a multiple of m_{α} . In particular, m_{α} is the unique (up to scaling) polynomial of <u>minimal</u> degree vanishing at $x = \alpha$, hence the name <u>minimal</u> polynomial.

Minimal polynomials and irreducibility

Remark

Minimal polynomials (over a field K) are always irreducible (over the same field K). Indeed, let $m_{\alpha}(x) \in K[x]$ be the minimal polynomial of some $\alpha \in L$, and suppose $m_{\alpha}(x) = A(x)B(x)$ with $A(x), B(x) \in K[x]$. Then $0 = m_{\alpha}(\alpha) = A(\alpha)B(\alpha)$, so WLOG we may assume that $A(\alpha) = 0$. By definition of the minimal polynomial, $m_{\alpha}(x) \mid A(x)$; but also $A(x) \mid m_{\alpha}(x)$, so A and m_{α} must be associate, so B(x) must be a constant as $K[x]^{\times} = K^{\times}$.

Remark

Conversely, if $M(x) \in K[x]$ vanishes at $x = \alpha$ and it monic and irreducible, then M(x) is the minimal polynomial of α . Indeed, $M(\alpha) = 0$ implies $m_{\alpha} \mid M$, and since both are irreducible, they must be associate, hence equal since they are both monic.

Minimal polynomials: examples (1/2)

Example

Let $K = \mathbb{Q}$, $L = \mathbb{C}$, and $\alpha = \sqrt[3]{2} \in L$. Then α is a root of $M(x) = x^3 - 2$, so α is algebraic over \mathbb{Q} . Besides, M(x) is monic and irreducible over \mathbb{Q} because it is Eisenstein at p = 2, so M(x) is the minimal polynomial of α over \mathbb{Q} , so

$$I_{\alpha}=(x^{3}-2),$$

which means an element of K[x] vanishes at α iff. it is divisible by M(x). In particular, we have

$$\deg_{\mathbb{Q}} \alpha = \deg M = 3.$$

However, the minimal polynomial of α over \mathbb{R} is **NOT** M(x), but $x - \alpha \in \mathbb{R}[x]$.

Minimal polynomials: examples (2/2)

Example

Let $K = \mathbb{Q}$, $L = \mathbb{C}$, and $\alpha = e^{2\pi i/3}$ so that $\alpha^3 = 1$. Then α is a root of $M(x) = x^3 - 1 \in K[x]$

$$M(x)=x^3-1\in K[x],$$

so α is algebraic over K (of degree at most 3, since its minimal polynomial must divide M). However,

$$M(x)=(x-1)(x^2+x+1)\in K[x]$$

is not irreducible over K, so it is **NOT** the minimal polynomial of α over K. In fact, since $\alpha - 1 \neq 0$, α is a root of the cofactor

$$N(x) = x^2 + x + 1 \in K[x].$$

This cofactor is irreducible over K, so it is the minimal polynomial of α over K, and deg_K $\alpha = 2$.

The degree of an extension

The degree of an extension

Let L be an extension of a field K. If we forget temporarily about the multiplication on L, so that only addition is left, then L can be seen as a vector space over K.

Definition

The <u>degree</u> of L over K is the dimension (finite or infinite) of L seen as a K-vector space. It is denoted by [L : K]. If this degree is finite, one says that L is a <u>finite extension</u> of K.

Example

 \mathbb{C} is an extension of \mathbb{R} , so \mathbb{C} is a vector space over \mathbb{R} . In fact, it admits $\{1, i\}$ are a basis, so it has finite dimension, namely 2, so \mathbb{C} is a <u>finite</u> extension of \mathbb{R} , of degree

$$[\mathbb{C}:\mathbb{R}]=2.$$

Theorem

Let $K \subset L$ be a field extension, and let $\alpha \in L$.

- If α is transcendental over K, then evaluating at x = α yields a ring isomorphism K[x] ≃ K[α] and a field isomorphism K(x) ≃ K(α). In particular, K(α) is an infinite extension of K.
- If α is algebraic over K of degree n, then K[α] is a field, so it agrees with K(α). It is also a vector space of dimension n over K, with basis 1, α, α², · · · , αⁿ⁻¹. In particular, K(α) is a finite extension of K, of degree [K(α) : K] = n.

Extension degree vs. algebraic degree, proof (1/3)

Proof, case α transcendental over K

$$\begin{array}{rcl} \mathcal{K}[x] & \longrightarrow & \mathcal{K}[\alpha] \\ \mathcal{P}(x) & \longmapsto & \mathcal{P}(\alpha) \end{array}$$

is a ring morphism, is surjective by definition of $K[\alpha]$, and injective: if P(x) lies in the kernel, then $P(\alpha) = 0$, so P(x) is the 0 polynomial as α is transcendental.

This extends into the field morphism

K(x)	\longrightarrow	$K(\alpha)$
P(x)		$P(\alpha)$
$\overline{Q(x)}$	— 7	$\overline{Q(\alpha)}$

which is well defined since $Q(\alpha) \neq 0$ for nonzero Q(x), surjective by definition of $K(\alpha)$, and injective by the same reason as above.

In particular, $1 = \alpha^0, \alpha, \alpha^2, \alpha^3, \dots \in K(\alpha)$ are linearly independent over K, so $[K(\alpha) : K] = +\infty$.

Extension degree vs. algebraic degree, proof (2/3)

Proof, case α algebraic over K

Let us begin by proving that $1, \alpha, \dots, \alpha^{n-1}$ is a *K*-basis of $K[\alpha]$. Let $m(x) = m_{\alpha}(x) \in K[x]$ be the minimal polynomial of α over K; it has degree n. For all $P(x) \in K[x]$, we may perform the Euclidean division

P(x) = m(x)Q(x) + R(x)

where $Q(x), R(x) \in K[x]$ and deg R(x) < n. Evaluating at $x = \alpha$, we find that $P(\alpha) = R(\alpha)$, so every element of $\mathcal{K}[\alpha]$ is of the form $\sum_{i=0}^{n-1} \lambda_i \alpha^i$ for some $\lambda_i \in \mathcal{K}$. Besides, if we had a relation of the form $\sum_{i=0}^{n-1} \lambda_i \alpha^i = 0$ with the λ_i in K and not all zero, this would mean that the nonzero polynomial $\sum_{i=0}^{n-1} \lambda_j x^j \in K[x]$ of degree < n vanishes at $x = \alpha$, which contradicts the definition of the minimal polynomial. Therefore, $1, \alpha, \dots, \alpha^{n-1}$ is a K-basis of $K[\alpha]$. Since there are *n* of them, we have $[K(\alpha) : K] = n$.

Proof, case α algebraic over K

We must now prove that the ring $K[\alpha]$ is actually a field. Let us thus prove that any nonzero $\beta \in K[\alpha]$ is invertible in $K[\alpha]$. We know from the above that $\beta = P(\alpha)$ for some nonzero $P(x) \in K[x]$ of degree < n. Since m(x) is irreducible over K and deg $P(x) < \deg m(x) = n$, it follows that P(x)and m(x) are coprime, so that there exist U(x) and V(x)in K[x] such that

$$U(x)P(x)+V(x)m(x)=1.$$

Evaluating at $x = \alpha$, we find that $U(\alpha)P(\alpha) + 0 = 1$, which proves that $U(\alpha) \in K[\alpha]$ is the inverse of $\beta = P(\alpha)$.

Example

Let $\alpha = \sqrt[3]{2}$. We have seen that the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} is $x^3 - 2$, so deg_{\mathbb{Q}} $\sqrt[3]{2} = 3$. As a result,

$$\mathbb{Q}(\sqrt[3]{2}) = \mathbb{Q}[\sqrt[3]{2}] = \mathbb{Q} \oplus \mathbb{Q}\sqrt[3]{2} \oplus \mathbb{Q}\sqrt[3]{2}^2,$$

which means that every element of $\mathbb{Q}(\sqrt[3]{2})$ can be written in a unique way as $a + b\sqrt[3]{2} + c\sqrt[3]{2}^2$ with $a, b, c \in \mathbb{Q}$.

Extension degree vs. algebraic degree, examples

Example

Similarly, since $i^2 = -1$, *i* is algebraic of degree 2 over \mathbb{Q} , with minimal polynomial $x^2 + 1$. It is also algebraic of degree 2 over \mathbb{R} , with the same minimal polynomial $x^2 + 1$, but which is this time seen as lying in $\mathbb{R}[x]$. We deduce that

$$\mathbb{Q}(i) = \mathbb{Q}[i] = \mathbb{Q} \oplus \mathbb{Q}i$$

and that

$$\mathbb{C} = \mathbb{R}(i) = \mathbb{R}[i] = \mathbb{R} \oplus \mathbb{R}i.$$

We thus recover the well-known fact that every complex number can be written uniquely as a + bi with $a, b \in \mathbb{R}$. We also get that the elements of $\mathbb{Q}(i)$ may be written uniquely as a + bi with $a, b \in \mathbb{Q}$; in particular, these elements form a subfield of \mathbb{C} .

Example

On the contrary, since π is transcendental over \mathbb{Q} , \mathbb{R} is not an algebraic extension of \mathbb{Q} , and its subfield $\mathbb{Q}(\pi)$ is isomorphic to $\mathbb{Q}(x)$ by $x \mapsto \pi$.

Example

Finally, one can prove that $\sqrt{3}$ is algebraic of degree 2 over $\mathbb{Q}(\sqrt{2})$. This amounts to say that $x^2 - 3$, which is irreducible over \mathbb{Q} , remains irreducible over $\mathbb{Q}(\sqrt{2})$. Indeed, if it became reducible, then $\sqrt{3}$ would lie in $\mathbb{Q}(\sqrt{2})$. Since $(1, \sqrt{2})$ is a \mathbb{Q} -basis of $\mathbb{Q}(\sqrt{2})$, there would exist $a, b \in \mathbb{Q}$ such that $\sqrt{3} = a + b\sqrt{2}$. Squaring yields $3 = (a^2 + 2b^2) + 2ab\sqrt{2}$, which implies that $a^2 + 2b^2 = 3$ and that 2ab = 0, which is clearly impossible. So

$$\mathbb{Q}(\sqrt{2})(\sqrt{3}) = \mathbb{Q}(\sqrt{2}) \oplus \mathbb{Q}(\sqrt{2})\sqrt{3}$$

as a vector space over $\mathbb{Q}(\sqrt{2})$, so that every element of $\mathbb{Q}(\sqrt{2},\sqrt{3})$ can be written in a unique way as $a + b\sqrt{3}$ with $a, b \in \mathbb{Q}(\sqrt{2})$.

A converse

Theorem (Finite \Longrightarrow algebraic)

If an extension is finite, then it is algebraic.

Proof.

Let $n = [L : K] < +\infty$, and let $\alpha \in L$. The n + 1 vectors

$$1 = \alpha^{0}, \alpha, \alpha^{2}, \cdots, \alpha^{n}$$

lie in the vector space L of dimension n, so they must be linearly dependent. This means we have

$$\lambda_0 1 + \lambda_1 \alpha + \lambda_2 \alpha^2 + \dots + \lambda_n \alpha^n = 0$$

for some $\lambda_i \in K$ not all 0, which proves that α is algebraic over K.

Example

Let *L* be an extension of *K*, and $\alpha \in L$ be algebraic over *K*. Then $K(\alpha)$ is a finite extension of *K*, so it is an algebraic extension of *K*, so that all its elements (such that α^2) are also algebraic over *K*.

Counter-example

The converse is false: there exist extensions that are algebraic, but not finite. More below.

Theorem (Tower law)

Let $K \subset L \subset M$ be finite extensions. let $(I_i)_{1 \leq i \leq [L:K]}$ be a K-basis of L, and let $(m_i)_{1 \leq i \leq [M:L]}$ be an L-basis of M. Then $(I_i m_i)_{1 \leq i \leq [L:K]}$ $1 \leq j \leq [M:L]$ is a K-basis of M. In particular, [M : K] = [M : L][L : K].

The tower law, proof (1/2)

Proof : Generating

Let $m \in M$. Since $(m_j)_{1 \leq j \leq [M:L]}$ is an *L*-basis of *M*, we have [M:L]

 $m = \sum_{i=1} \lambda_j m_j$

for some $\lambda_j \in L$, and since $(I_i)_{1 \leq i \leq [L:K]}$ is a *K*-basis of *L*, each λ_j can be written

$$\lambda_j = \sum_{i=1}^{[L:K]} \mu_{i,j} I_i.$$

Thus we have

$$m = \sum_{j=1}^{[M:L]} \sum_{i=1}^{[L:K]} \mu_{i,j} l_i m_j,$$

which proves that the $l_i m_j$ span M over K.

The tower law, proof (2/2)

Proof: Independent

Suppose now that [M:L] [L:K] $\sum \sum \mu_{i,j} l_i m_j = 0$ i=1 i=1with $\mu_{i,i} \in K$. This can be written as [M:L][L:K] $\sum \lambda_j m_j = 0$, where $\lambda_j = \sum \mu_{i,j} I_i \in L$. Since $(m_i)_{1 \le i \le [M:L]}$ is an *L*-basis of *M*, this would imply that each of the λ_i is 0. And since $(I_i)_{1 \le i \le [L:K]}$ is a K-basis of L, this means that the $\mu_{i,i}$ are all zero. Thus the $l_i m_i$ are linearly independent over K.

The tower law, example

Example

We have seen above that

$$[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$$
 and $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})]=2.$

It then follows from the tower law that

$$[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]=2\times 2=4.$$

More precisely, since we know that $(1, \sqrt{2})$ is a \mathbb{Q} -basis of $\mathbb{Q}(\sqrt{2})$, and that $(1, \sqrt{3})$ is a $\mathbb{Q}(\sqrt{2})$ -basis of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, we deduce from the tower law that $(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$ is a \mathbb{Q} -basis of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. This means that each element of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ may be written as $a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6}$ for unique $a, b, c, d \in \mathbb{Q}$.

Algebraicness is preserved by field operations

Theorem (Preservation of algebraicness)

Let L/K be a field extension. The sum, difference, product, and quotient of two elements of L which are algebraic over K are algebraic over K.

Algebraicness is preserved by field operations

Proof.

Let $\alpha, \beta \in L$; note that $K(\alpha, \beta) = K(\alpha)(\beta)$. If α is algebraic over K, then we have $[K(\alpha) : K] < +\infty$. If furthermore β is also algebraic over K, then it satisfies a non-trivial equation in K[x]; viewing this equation as an element of $K(\alpha)[x]$, we deduce that β is also algebraic over $K(\alpha)$, so that $[K(\alpha)(\beta) : K(\alpha)] < +\infty$. The tower law then yields

$$[K(\alpha,\beta):K] = [K(\alpha,\beta):K(\alpha)][K(\alpha):K] < +\infty,$$

in other words $K(\alpha, \beta)$ is a <u>finite</u> extension of K. It is thus an algebraic extension of K. which means that all its elements, including $\alpha + \beta$, $\alpha - \beta$, $\alpha\beta$, and α/β (if $\beta \neq 0$) are algebraic over K.

Algebraicness is preserved by field operations

Example

Let

$$\overline{\mathbb{Q}} = \{ \alpha \in \mathbb{C} \mid \alpha \text{ algebraic over } \mathbb{Q} \}.$$

By the above, $\overline{\mathbb{Q}}$ is actually a subfield of \mathbb{C} . Besides, $\overline{\mathbb{Q}}$ is by definition an algebraic extension of \mathbb{Q} . However, it it is not a finite one. Indeed, one can show that in the chain

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2},\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5}) \subseteq \cdots$$

(throw in the square root of each prime number one by one), each extension is of degree 2, so that the *n*-th extension is of degree 2^n over \mathbb{Q} by the tower law, which forces $[\overline{\mathbb{Q}} : \mathbb{Q}] = \infty$. We thus have an example of an extension which is algebraic, but not finite.

Application: constructible numbers

Extensions of degree 2

Lemma

Let $K \subset L$ be subfields of \mathbb{C} such that [L : K] = 2. Then $L = K(\sqrt{k})$ for some $k \in K$.

Proof.

Let
$$\alpha \in L \setminus K$$
. Then $K \subsetneq K(\alpha) \subset L$; as
 $2 = [L : K] = [L : K(\alpha)][K(\alpha) : K],$
we have $L = K(\alpha)$ and $\deg_K \alpha = 2$.
Let $m_{\alpha}(x) = x^2 + bx + c \in K[x]$; then $\alpha = \frac{-b \pm \sqrt{\Delta}}{2}$ where
 $\Delta = b^2 - 4c \in K$, so $L = K(\alpha) = K(\sqrt{\Delta}).$

Suppose we are given an orthonormal coordinate frame (O, I, J) in the plane. A point is said to be <u>constructible</u> if we can obtain it from O, I, J in finitely many steps using only a ruler and a compass. A number $\alpha \in \mathbb{R}$ is said to be <u>constructible</u> if it is a coordinate of a constructible point; equivalently, α is constructible if $|\alpha|$ is the distance between two constructible points.

A bit of geometry shows that the set of constructible numbers is a <u>subfield</u> of \mathbb{R} , which is stable under radicals (of positive elements only, of course).

Conversely, suppose that we perform a ruler-and-compass construction in $n \in \mathbb{N}$ steps, and let K_i (j < n) be the subfield of \mathbb{R} generated by the coordinates of the points constructed at the *j*-th step, so that $\mathbb{Q} = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n$. At each step *i*, we either construct the intersection of two lines, or the intersection of a line and a circle or of two circles. In the first case, the coordinates of the intersection can be found by solving a linear system, which can be done by field operations in $K_{i,i}$ so that $K_{i+1} = K_i$. In the second case, the coordinates of the intersection can be found by solving quadratic equations, so that $[K_{i+1} : K_i]$ is either 1 (if the solutions to these equations already lie in K_i) or 2 (if they do not, so that K_{i+1} is genuinely bigger than K_i). By removing the steps such that $K_{i+1} = K_i$, we thus establish the following result:

Theorem (Wantzel)

Let $\alpha \in \mathbb{R}$. Then α is constructible iff. there exist fields

$$\mathbb{Q}=K_0\subsetneq K_1\subsetneq\cdots\subsetneq K_n$$

such that $[K_{j+1}: K_j] = 2$ for all j and that $\alpha \in K_n$.

Constructible numbers (4/6)

Corollary

If $\alpha \in \mathbb{R}$ is constructible, then α is algebraic over \mathbb{Q} , and $\deg_{\mathbb{Q}} \alpha$ is a power of 2.

Proof.

Since α is constructible, there exist fields

$$\mathbb{Q} = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_n \ni \alpha$$

such that $[K_{j+1}: K_j] = 2$ for all j. By the tower law, we have $[K_j: \mathbb{Q}] = 2^j$ for all j, so in particular $[K_n: \mathbb{Q}] = 2^n$. It follows that K_n is a finite, and therefore algebraic, extension of \mathbb{Q} , so α is algebraic over \mathbb{Q} . Besides, $\deg_{\mathbb{Q}}(\alpha) = [\mathbb{Q}(\alpha): \mathbb{Q}] = \frac{[K_n:\mathbb{Q}]}{[K_n:\mathbb{Q}(\alpha)]}$ divides $[K_n: \mathbb{Q}] = 2^n$, so it is also a power of 2.

Constructible numbers (5/6)

Counter-example

Since π is transcendental over \mathbb{Q} , is is not constructible. This shows that squaring the circle is impossible.

Counter-example

We have seen that $\sqrt[3]{2}$ is algebraic of degree 3 over \mathbb{Q} . Since 3 is not a power of 2, $\sqrt[3]{2}$ is not constructible.

Constructible numbers (6/6)

Remark

Beware that the converse to the corollary is false! For instance, the polynomial $x^4 - 8x^2 + 4x + 2$ is irreducible over \mathbb{Q} since it is Eisenstein at 2, and is therefore the minimal polynomial of each of its roots over \mathbb{Q} , so that these roots are algebraic of degree 4 over \mathbb{Q} . It happens that these roots are all real, but that none of them is constructible! The problem is that if α is such a root, then we do have $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$, but this does not imply the existence of an intermediate field K such that $\mathbb{Q} \subseteq K \subseteq \mathbb{Q}(\alpha)$ where both intermediate extensions are of degree 2, i.e. the hypotheses of Wantzel's theorem are not necessarily satisfied (and in fact they are not).