MAU22102

Rings, Fields, and Modules 3 - Field extensions

Nicolas Mascot mascotn@tcd.ie
Module web page

Hilary 2020-2021
Version: March 17, 2021

Trinity College Dublin
Coláiste na Tríonóide, Baile Átha Cliath
The University of Dublin

Field extensions, algebraicness

Context

Let K and L be fields such that $K \subseteq L$. One says that K is a subfield of L, and that L is an extension of K.

Example

\mathbb{R} is a subfield of \mathbb{C}, and \mathbb{C} is an extension of \mathbb{R}.

Notation

In what follows, whenever $\alpha \in L$, we write $K(\alpha)$ for the subfield of L generated by K and α, and $K[\alpha]$ for the subring of L generated by K and α.

Example

The ring $K[\alpha]$ is a subring of the field $K(\alpha)$.

Example

$\mathbb{C}=\mathbb{R}(i)=\mathbb{R}[i]$.
We have

$$
K[\alpha]=\{P(\alpha), P(x) \in K[x]\}
$$

For $K(\alpha)$, more delicate, as we will see below.

Algebraic vs. transcendental (1/2)

Definition (Algebraic, transcendental)

Let $K \subset L$, and let $\alpha \in L$. Then

$$
I_{\alpha}=\{F(x) \in K[x] \mid F(\alpha)=0\}
$$

is an ideal of $K[x]$. One says that α is algebraic over K if this ideal is nonzero, that is to say if there exists a nonzero $F(x) \in K[x]$ which vanishes at α. Else one says that α is transcendental over K.

Example

$\alpha=i \in \mathbb{C}$ is algebraic over \mathbb{R}, since it is a root of the nonzero polynomial $P(x)=x^{2}+1 \in \mathbb{R}[x]$. In fact, α is even algebraic over \mathbb{Q} since $P(x) \in \mathbb{Q}[x]$.

Algebraic vs. transcendental (2/2)

Counter-example

One can show (but this is difficult) that π is transcendental over \mathbb{Q}. This means for instance that an "identity" of the form

$$
2130241 \pi^{3}-22294338 \pi^{2}+51516201 \pi-7857464=0
$$

is automatically FALSE.
On the other hand, π is algebraic over \mathbb{R}, since it is a root of $x-\pi \in \mathbb{R}[x]$.

Definition (Algebraic extension)

If every element of L is algebraic over K, one says that L is an algebraic extension of K.

Minimal polynomials (1/2)

Since since the ring $K[x]$ is a PID, the ideal I_{α} is principal, so there exists a polynomial $M(x) \in K[x]$ such that

$$
I_{\alpha}=(M(x))=M(x) K[x]
$$

If α is transcendental over K, then $I_{\alpha}=\{0\}$ so $M(x)$ is the zero polynomial.
Suppose on the contrary that α is algebraic over K, so that $M(x) \neq 0$. Since $K[x]$ is a domain, the other generators of I_{α} are the associates of $M(x)$ in $K[x]$, that is the $U(x) M(x)$ for $U \in K[x]^{\times}$. But $K[x]^{\times}=K^{\times}$, so $M(x)$ is unique up to scaling, so there is a unique monic polynomial $m_{\alpha}(x)$ that generates I_{α}.

Definition (Minimal polynomial)

$m_{\alpha}(x)$ is called the minimal polynomial of α over K.

Minimal polynomials $(2 / 2)$

Definition (Degree of an algebraic element)

One then says that α is algebraic over K of degree n, where $n=\operatorname{deg} m_{\alpha} \in \mathbb{N}$, and one writes $\operatorname{deg}_{K} \alpha=n$.

Remark

By definition, for all $F(x) \in K[x], F(\alpha)=0 \Longleftrightarrow F$ is a multiple of m_{α}. In particular, m_{α} is the unique (up to scaling) polynomial of minimal degree vanishing at $x=\alpha$, hence the name minimal polynomial.

Minimal polynomials and irreducibility

Remark

Minimal polynomials (over a field K) are always irreducible (over the same field K). Indeed, let $m_{\alpha}(x) \in K[x]$ be the minimal polynomial of some $\alpha \in L$, and suppose $m_{\alpha}(x)=A(x) B(x)$ with $A(x), B(x) \in K[x]$. Then $0=m_{\alpha}(\alpha)=A(\alpha) B(\alpha)$, so WLOG we may assume that $A(\alpha)=0$. By definition of the minimal polynomial, $m_{\alpha}(x) \mid A(x)$; but also $A(x) \mid m_{\alpha}(x)$, so A and m_{α} must be associate, so $B(x)$ must be a constant as $K[x]^{\times}=K^{\times}$.

Remark

Conversely, if $M(x) \in K[x]$ vanishes at $x=\alpha$ and it monic and irreducible, then $M(x)$ is the minimal polynomial of α. Indeed, $M(\alpha)=0$ implies $m_{\alpha} \mid M$, and since both are irreducible, they must be associate, hence equal since they are both monic.

Minimal polynomials: examples $(1 / 2)$

Example

Let $K=\mathbb{Q}, L=\mathbb{C}$, and $\alpha=\sqrt[3]{2} \in L$. Then α is a root of $M(x)=x^{3}-2$, so α is algebraic over \mathbb{Q}. Besides, $M(x)$ is monic and irreducible over \mathbb{Q} because it is Eisenstein at $p=2$, so $M(x)$ is the minimal polynomial of α over \mathbb{Q}, so

$$
I_{\alpha}=\left(x^{3}-2\right),
$$

which means an element of $K[x]$ vanishes at α iff. it is divisible by $M(x)$. In particular, we have

$$
\operatorname{deg}_{\mathbb{Q}} \alpha=\operatorname{deg} M=3 .
$$

However, the minimal polynomial of α over \mathbb{R} is NOT $M(x)$, but $x-\alpha \in \mathbb{R}[x]$.

Minimal polynomials: examples (2/2)

Example

Let $K=\mathbb{Q}, L=\mathbb{C}$, and $\alpha=e^{2 \pi i / 3}$ so that $\alpha^{3}=1$. Then α is a root of

$$
M(x)=x^{3}-1 \in K[x]
$$

so α is algebraic over K (of degree at most 3 , since its minimal polynomial must divide M). However,

$$
M(x)=(x-1)\left(x^{2}+x+1\right) \in K[x]
$$

is not irreducible over K, so it is NOT the minimal polynomial of α over K. In fact, since $\alpha-1 \neq 0, \alpha$ is a root of the cofactor

$$
N(x)=x^{2}+x+1 \in K[x]
$$

This cofactor is irreducible over K, so it is the minimal polynomial of α over K, and $\operatorname{deg}_{K} \alpha=2$.

The degree of an extension

The degree of an extension

Let L be an extension of a field K. If we forget temporarily about the multiplication on L, so that only addition is left, then L can be seen as a vector space over K.

Definition

The degree of L over K is the dimension (finite or infinite) of L seen as a K-vector space. It is denoted by $[L: K]$. If this degree is finite, one says that L is a finite extension of K.

Example

\mathbb{C} is an extension of \mathbb{R}, so \mathbb{C} is a vector space over \mathbb{R}. In fact, it admits $\{1, i\}$ are a basis, so it has finite dimension, namely 2 , so \mathbb{C} is a finite extension of \mathbb{R}, of degree

$$
[\mathbb{C}: \mathbb{R}]=2
$$

Extension degree vs. algebraic degree

Theorem

Let $K \subset L$ be a field extension, and let $\alpha \in L$.
(1) If α is transcendental over K, then evaluating at $x=\alpha$ yields a ring isomorphism $K[x] \simeq K[\alpha]$ and a field isomorphism $K(x) \simeq K(\alpha)$. In particular, $K(\alpha)$ is an infinite extension of K.
(2) If α is algebraic over K of degree n, then $K[\alpha]$ is a field, so it agrees with $K(\alpha)$. It is also a vector space of dimension n over K, with basis $1, \alpha, \alpha^{2}, \cdots, \alpha^{n-1}$. In particular, $K(\alpha)$ is a finite extension of K, of degree

$$
[K(\alpha): K]=n
$$

Extension degree vs. algebraic degree, proof (1/3)

Proof, case α transcendental over K

$$
\left.\begin{array}{l}
K[x] \\
P(x)
\end{array} \quad \longmapsto P[\alpha], \text { P(} \alpha\right)
$$

is a ring morphism, is surjective by definition of $K[\alpha]$, and injective: if $P(x)$ lies in the kernel, then $P(\alpha)=0$, so $P(x)$ is the 0 polynomial as α is transcendental.
This extends into the field morphism

$$
\begin{aligned}
K(x) & \longrightarrow K(\alpha) \\
\frac{P(x)}{Q(x)} & \longmapsto \frac{P(\alpha)}{Q(\alpha)}
\end{aligned}
$$

which is well defined since $Q(\alpha) \neq 0$ for nonzero $Q(x)$, surjective by definition of $K(\alpha)$, and injective by the same reason as above.
In particular, $1=\alpha^{0}, \alpha, \alpha^{2}, \alpha^{3}, \cdots \in K(\alpha)$ are linearly independent over K, so $[K(\alpha): K]=+\infty$.

Extension degree vs. algebraic degree, proof (2/3)

Proof, case α algebraic over K

Let us begin by proving that $1, \alpha, \cdots, \alpha^{n-1}$ is a K-basis of $K[\alpha]$. Let $m(x)=m_{\alpha}(x) \in K[x]$ be the minimal polynomial of α over K; it has degree n. For all $P(x) \in K[x]$, we may perform the Euclidean division

$$
P(x)=m(x) Q(x)+R(x)
$$

where $Q(x), R(x) \in K[x]$ and $\operatorname{deg} R(x)<n$. Evaluating at $x=\alpha$, we find that $P(\alpha)=R(\alpha)$, so every element of $K[\alpha]$ is of the form $\sum_{j=0}^{n-1} \lambda_{j} \alpha^{j}$ for some $\lambda_{j} \in K$. Besides, if we had a relation of the form $\sum_{j=0}^{n-1} \lambda_{j} \alpha^{j}=0$ with the λ_{j} in K and not all zero, this would mean that the nonzero polynomial $\sum_{j=0}^{n-1} \lambda_{j} x^{j} \in K[x]$ of degree $<n$ vanishes at $x=\alpha$, which contradicts the definition of the minimal polynomial. Therefore, $1, \alpha, \cdots, \alpha^{n-1}$ is a K-basis of $K[\alpha]$. Since there are n of them, we have $[K(\alpha): K]=n$.

Extension degree vs. algebraic degree, proof $(3 / 3)$

Proof, case α algebraic over K

We must now prove that the ring $K[\alpha]$ is actually a field. Let us thus prove that any nonzero $\beta \in K[\alpha]$ is invertible in $K[\alpha]$. We know from the above that $\beta=P(\alpha)$ for some nonzero $P(x) \in K[x]$ of degree $<n$. Since $m(x)$ is irreducible over K and $\operatorname{deg} P(x)<\operatorname{deg} m(x)=n$, it follows that $P(x)$ and $m(x)$ are coprime, so that there exist $U(x)$ and $V(x)$ in $K[x]$ such that

$$
U(x) P(x)+V(x) m(x)=1 .
$$

Evaluating at $x=\alpha$, we find that $U(\alpha) P(\alpha)+0=1$, which proves that $U(\alpha) \in K[\alpha]$ is the inverse of $\beta=P(\alpha)$.

Extension degree vs. algebraic degree, examples

Example

Let $\alpha=\sqrt[3]{2}$. We have seen that the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} is $x^{3}-2$, so $\operatorname{deg}_{\mathbb{Q}} \sqrt[3]{2}=3$. As a result,

$$
\mathbb{Q}(\sqrt[3]{2})=\mathbb{Q}[\sqrt[3]{2}]=\mathbb{Q} \oplus \mathbb{Q} \sqrt[3]{2} \oplus \mathbb{Q} \sqrt[3]{2}^{2}
$$

which means that every element of $\mathbb{Q}(\sqrt[3]{2})$ can be written in a unique way as $a+b \sqrt[3]{2}+c \sqrt[3]{2}^{2}$ with $a, b, c \in \mathbb{Q}$.

Extension degree vs. algebraic degree, examples

Example

Similarly, since $i^{2}=-1, i$ is algebraic of degree 2 over \mathbb{Q}, with minimal polynomial $x^{2}+1$. It is also algebraic of degree 2 over \mathbb{R}, with the same minimal polynomial $x^{2}+1$, but which is this time seen as lying in $\mathbb{R}[x]$. We deduce that

$$
\mathbb{Q}(i)=\mathbb{Q}[i]=\mathbb{Q} \oplus \mathbb{Q} i
$$

and that

$$
\mathbb{C}=\mathbb{R}(i)=\mathbb{R}[i]=\mathbb{R} \oplus \mathbb{R} i
$$

We thus recover the well-known fact that every complex number can be written uniquely as $a+b i$ with $a, b \in \mathbb{R}$. We also get that the elements of $\mathbb{Q}(i)$ may be written uniquely as $a+b i$ with $a, b \in \mathbb{Q}$; in particular, these elements form a subfield of \mathbb{C}.

Extension degree vs. algebraic degree, examples

Example

On the contrary, since π is transcendental over \mathbb{Q}, \mathbb{R} is not an algebraic extension of \mathbb{Q}, and its subfield $\mathbb{Q}(\pi)$ is isomorphic to $\mathbb{Q}(x)$ by $x \mapsto \pi$.

Extension degree vs. algebraic degree, examples

Example

Finally, one can prove that $\sqrt{3}$ is algebraic of degree 2 over $\mathbb{Q}(\sqrt{2})$. This amounts to say that $x^{2}-3$, which is irreducible over \mathbb{Q}, remains irreducible over $\mathbb{Q}(\sqrt{2})$. Indeed, if it became reducible, then $\sqrt{3}$ would lie in $\mathbb{Q}(\sqrt{2})$.
Since $(1, \sqrt{2})$ is a \mathbb{Q}-basis of $\mathbb{Q}(\sqrt{2})$, there would exist $a, b \in \mathbb{Q}$ such that $\sqrt{3}=a+b \sqrt{2}$. Squaring yields $3=\left(a^{2}+2 b^{2}\right)+2 a b \sqrt{2}$, which implies that $a^{2}+2 b^{2}=3$ and that $2 a b=0$, which is clearly impossible. So

$$
\mathbb{Q}(\sqrt{2})(\sqrt{3})=\mathbb{Q}(\sqrt{2}) \oplus \mathbb{Q}(\sqrt{2}) \sqrt{3}
$$

as a vector space over $\mathbb{Q}(\sqrt{2})$, so that every element of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ can be written in a unique way as $a+b \sqrt{3}$ with $a, b \in \mathbb{Q}(\sqrt{2})$.

A converse

Theorem (Finite \Longrightarrow algebraic)

If an extension is finite, then it is algebraic.

Proof.

Let $n=[L: K]<+\infty$, and let $\alpha \in L$. The $n+1$ vectors

$$
1=\alpha^{0}, \alpha, \alpha^{2}, \cdots, \alpha^{n}
$$

lie in the vector space L of dimension n, so they must be linearly dependent. This means we have

$$
\lambda_{0} 1+\lambda_{1} \alpha+\lambda_{2} \alpha^{2}+\cdots+\lambda_{n} \alpha^{n}=0
$$

for some $\lambda_{i} \in K$ not all 0 , which proves that α is algebraic over K.

A converse

Example

Let L be an extension of K, and $\alpha \in L$ be algebraic over K. Then $K(\alpha)$ is a finite extension of K, so it is an algebraic extension of K, so that all its elements (such that α^{2}) are also algebraic over K.

Counter-example

The converse is false: there exist extensions that are algebraic, but not finite. More below.

The tower law

Theorem (Tower law)

Let $K \subseteq L \subseteq M$ be finite extensions, let

$$
\left(I_{i}\right)_{1 \leqslant i \leqslant[L: K]}
$$

be a K-basis of L, and let

$$
\left(m_{j}\right)_{1 \leqslant j \leqslant[M: L]}
$$

be an L-basis of M. Then

$$
\left(l_{i} m_{j}\right)_{\substack{1 \leqslant i \leqslant[L: K] \\ 1 \leqslant j \leqslant[M: L]}}
$$

is a K-basis of M.
In particular, $[M: K]=[M: L][L: K]$.

The tower law, proof $(1 / 2)$

Proof : Generating

Let $m \in M$. Since $\left(m_{j}\right)_{1 \leqslant j \leqslant[M: L]}$ is an L-basis of M, we have

$$
m=\sum_{j=1}^{[M: L]} \lambda_{j} m_{j}
$$

for some $\lambda_{j} \in L$, and since $\left(I_{i}\right)_{1 \leqslant i \leqslant[L: K]}$ is a K-basis of L, each λ_{j} can be written

$$
\lambda_{j}=\sum_{i=1}^{[L: K]} \mu_{i, j} I_{i} .
$$

Thus we have

$$
m=\sum_{j=1}^{[M: L]} \sum_{i=1}^{[L: K]} \mu_{i, j} l_{i} m_{j}
$$

which proves that the $l_{i} m_{j}$ span M over K.

The tower law, proof $(2 / 2)$

Proof: Independent

Suppose now that

$$
\sum_{j=1}^{[M: L]} \sum_{i=1}^{[L: K]} \mu_{i, j} l_{i} m_{j}=0
$$

with $\mu_{i, j} \in K$. This can be written as

$$
\sum_{j=1}^{[M: L]} \lambda_{j} m_{j}=0, \text { where } \lambda_{j}=\sum_{i=1}^{[L: K]} \mu_{i, j} l_{i} \in L
$$

Since $\left(m_{j}\right)_{1 \leqslant j \leqslant[M: L]}$ is an L-basis of M, this would imply that each of the λ_{j} is 0 . And since $\left(l_{i}\right)_{1 \leqslant i \leqslant[L: K]}$ is a K-basis of L, this means that the $\mu_{i, j}$ are all zero. Thus the $l_{i} m_{j}$ are linearly independent over K.

The tower law, example

Example

We have seen above that

$$
[\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2 \text { and }[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})]=2
$$

It then follows from the tower law that

$$
[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=2 \times 2=4 .
$$

More precisely, since we know that $(1, \sqrt{2})$ is a \mathbb{Q}-basis of $\mathbb{Q}(\sqrt{2})$, and that $(1, \sqrt{3})$ is a $\mathbb{Q}(\sqrt{2})$-basis of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, we deduce from the tower law that $(1, \sqrt{2}, \sqrt{3}, \sqrt{6})$ is a \mathbb{Q}-basis of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. This means that each element of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ may be written as $a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}$ for unique $a, b, c, d \in \mathbb{Q}$.

Algebraicness is preserved by field operations

> Theorem (Preservation of algebraicness)
> Let L / K be a field extension. The sum, difference, product, and quotient of two elements of L which are algebraic over K are algebraic over K.

Algebraicness is preserved by field operations

Proof.

Let $\alpha, \beta \in L$; note that $K(\alpha, \beta)=K(\alpha)(\beta)$. If α is algebraic over K, then we have $[K(\alpha): K]<+\infty$. If furthermore β is also algebraic over K, then it satisfies a non-trivial equation in $K[x]$; viewing this equation as an element of $K(\alpha)[x]$, we deduce that β is also algebraic over $K(\alpha)$, so that $[K(\alpha)(\beta): K(\alpha)]<+\infty$. The tower law then yields

$$
[K(\alpha, \beta): K]=[K(\alpha, \beta): K(\alpha)][K(\alpha): K]<+\infty,
$$

in other words $K(\alpha, \beta)$ is a finite extension of K. It is thus an algebraic extension of K. which means that all its elements, including $\alpha+\beta, \alpha-\beta, \alpha \beta$, and α / β (if $\beta \neq 0$) are algebraic over K.

Algebraicness is preserved by field operations

Example

Let

$$
\overline{\mathbb{Q}}=\{\alpha \in \mathbb{C} \mid \alpha \text { algebraic over } \mathbb{Q}\} .
$$

By the above, $\overline{\mathbb{Q}}$ is actually a subfield of \mathbb{C}. Besides, $\overline{\mathbb{Q}}$ is by definition an algebraic extension of \mathbb{Q}. However, it it is not a finite one. Indeed, one can show that in the chain

$$
\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) \subseteq \cdots
$$

(throw in the square root of each prime number one by one), each extension is of degree 2 , so that the n-th extension is of degree 2^{n} over \mathbb{Q} by the tower law, which forces $[\overline{\mathbb{Q}}: \mathbb{Q}]=\infty$. We thus have an example of an extenson which is algebraic, but not finite.

Application:

constructible numbers

Extensions of degree 2

Lemma

Let $K \subset L$ be subfields of \mathbb{C} such that $[L: K]=2$. Then $L=K(\sqrt{k})$ for some $k \in K$.

Proof.

Let $\alpha \in L \backslash K$. Then $K \subsetneq K(\alpha) \subset L$; as

$$
2=[L: K]=[L: K(\alpha)][K(\alpha): K],
$$

we have $L=K(\alpha)$ and $\operatorname{deg}_{K} \alpha=2$.
Let $m_{\alpha}(x)=x^{2}+b x+c \in K[x]$; then $\alpha=\frac{-b \pm \sqrt{\Delta}}{2}$ where
$\Delta=b^{2}-4 c \in K$, so $L=K(\alpha)=K(\sqrt{\Delta})$.

Constructible numbers (1/6)

Suppose we are given an orthonormal coordinate frame (O, I, J) in the plane. A point is said to be constructible if we can obtain it from O, I, J in finitely many steps using only a ruler and a compass. A number $\alpha \in \mathbb{R}$ is said to be constructible if it is a coordinate of a constructible point; equivalently, α is constructible if $|\alpha|$ is the distance between two constructible points.

A bit of geometry shows that the set of constructible numbers is a subfield of \mathbb{R}, which is stable under radicals (of positive elements only, of course).

Constructible numbers (2/6)

Conversely, suppose that we perform a ruler-and-compass construction in $n \in \mathbb{N}$ steps, and let $K_{j}(j \leq n)$ be the subfield of \mathbb{R} generated by the coordinates of the points constructed at the j-th step, so that $\mathbb{Q}=K_{0} \subseteq K_{1} \subseteq \cdots \subseteq K_{n}$. At each step j, we either construct the intersection of two lines, or the intersection of a line and a circle or of two circles. In the first case, the coordinates of the intersection can be found by solving a linear system, which can be done by field operations in K_{j}, so that $K_{j+1}=K_{j}$. In the second case, the coordinates of the intersection can be found by solving quadratic equations, so that $\left[K_{j+1}: K_{j}\right]$ is either 1 (if the solutions to these equations already lie in K_{j}) or 2 (if they do not, so that K_{j+1} is genuinely bigger than K_{j}). By removing the steps such that $K_{j+1}=K_{j}$, we thus establish the following result:

Constructible numbers $(3 / 6)$

Theorem (Wantzel)

Let $\alpha \in \mathbb{R}$. Then α is constructible iff. there exist fields

$$
\mathbb{Q}=K_{0} \subsetneq K_{1} \subsetneq \cdots \subsetneq K_{n}
$$

such that $\left[K_{j+1}: K_{j}\right]=2$ for all j and that $\alpha \in K_{n}$.

Constructible numbers (4/6)

Corollary

If $\alpha \in \mathbb{R}$ is constructible, then α is algebraic over \mathbb{Q}, and $\operatorname{deg}_{\mathbb{Q}} \alpha$ is a power of 2 .

Proof.

Since α is constructible, there exist fields

$$
\mathbb{Q}=K_{0} \subseteq K_{1} \subseteq \cdots \subseteq K_{n} \ni \alpha
$$

such that $\left[K_{j+1}: K_{j}\right]=2$ for all j. By the tower law, we have $\left[K_{j}: \mathbb{Q}\right]=2^{j}$ for all j, so in particular $\left[K_{n}: \mathbb{Q}\right]=2^{n}$. It follows that K_{n} is a finite, and therefore algebraic, extension of \mathbb{Q}, so α is algebraic over \mathbb{Q}. Besides, $\operatorname{deg}_{\mathbb{Q}}(\alpha)=[\mathbb{Q}(\alpha): \mathbb{Q}]=\frac{\left[K_{n}: \mathbb{Q}\right]}{\left[K_{n}: \mathbb{Q}(\alpha)\right]}$ divides $\left[K_{n}: \mathbb{Q}\right]=2^{n}$, so it is also a power of 2 .

Constructible numbers (5/6)

Counter-example

Since π is transcendental over \mathbb{Q}, is is not constructible. This shows that squaring the circle is impossible.

Counter-example

We have seen that $\sqrt[3]{2}$ is algebraic of degree 3 over \mathbb{Q}. Since 3 is not a power of $2, \sqrt[3]{2}$ is not constructible.

Constructible numbers (6/6)

Remark

Beware that the converse to the corollary is false! For instance, the polynomial $x^{4}-8 x^{2}+4 x+2$ is irreducible over \mathbb{Q} since it is Eisenstein at 2 , and is therefore the minimal polynomial of each of its roots over \mathbb{Q}, so that these roots are algebraic of degree 4 over \mathbb{Q}. It happens that these roots are all real, but that none of them is constructible!
The problem is that if α is such a root, then we do have $[\mathbb{Q}(\alpha): \mathbb{Q}]=4$, but this does not imply the existence of an intermediate field K such that $\mathbb{Q} \subseteq K \subseteq \mathbb{Q}(\alpha)$ where both intermediate extensions are of degree 2, i.e. the hypotheses of Wantzel's theorem are not necessarily satisfied (and in fact they are not).

