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Context

Let K and L be fields such that K ⊆ L. One says that K is a
subfield of L, and that L is an extension of K .

Example

R is a subfield of C, and C is an extension of R.
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Notation

In what follows, whenever α ∈ L, we write K (α) for the
subfield of L generated by K and α, and K [α] for the subring
of L generated by K and α.

Example

The ring K [α] is a subring of the field K (α).

Example

C = R(i) = R[i ].

We have
K [α] = {P(α), P(x) ∈ K [x ]}.

For K (α), more delicate, as we will see below.
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Algebraic vs. transcendental (1/2)

Definition (Algebraic, transcendental)

Let K ⊂ L, and let α ∈ L. Then

Iα = {F (x) ∈ K [x ] | F (α) = 0}

is an ideal of K [x ]. One says that α is algebraic over K if this
ideal is nonzero, that is to say if there exists a
nonzero F (x) ∈ K [x ] which vanishes at α. Else one says
that α is transcendental over K .

Example

α = i ∈ C is algebraic over R, since it is a root of the nonzero
polynomial P(x) = x2 + 1 ∈ R[x ]. In fact, α is even algebraic
over Q since P(x) ∈ Q[x ].
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Algebraic vs. transcendental (2/2)

Counter-example

One can show (but this is difficult) that π is transcendental
over Q. This means for instance that an “identity” of the form

2130241π3 − 22294338π2 + 51516201π − 7857464 = 0

is automatically FALSE.
On the other hand, π is algebraic over R, since it is a root
of x − π ∈ R[x ].

Definition (Algebraic extension)

If every element of L is algebraic over K , one says that L is an
algebraic extension of K .
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Minimal polynomials (1/2)

Since since the ring K [x ] is a PID, the ideal Iα is principal, so
there exists a polynomial M(x) ∈ K [x ] such that

Iα =
(
M(x)

)
= M(x)K [x ].

If α is transcendental over K , then Iα = {0} so M(x) is the
zero polynomial.
Suppose on the contrary that α is algebraic over K , so that
M(x) 6= 0. Since K [x ] is a domain, the other generators of Iα
are the associates of M(x) in K [x ], that is the U(x)M(x) for
U ∈ K [x ]×. But K [x ]× = K×, so M(x) is unique up to
scaling, so there is a unique monic polynomial mα(x) that
generates Iα.

Definition (Minimal polynomial)

mα(x) is called the minimal polynomial of α over K .
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Minimal polynomials (2/2)

Definition (Degree of an algebraic element)

One then says that α is algebraic over K of degree n,
where n = degmα ∈ N, and one writes degK α = n.

Remark

By definition, for all F (x) ∈ K [x ], F (α) = 0⇐⇒ F is a
multiple of mα. In particular, mα is the unique (up to scaling)
polynomial of minimal degree vanishing at x = α, hence the
name minimal polynomial.
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Minimal polynomials and irreducibility

Remark

Minimal polynomials (over a field K ) are always irreducible
(over the same field K ). Indeed, let mα(x) ∈ K [x ] be the
minimal polynomial of some α ∈ L, and
suppose mα(x) = A(x)B(x) with A(x),B(x) ∈ K [x ].
Then 0 = mα(α) = A(α)B(α), so WLOG we may assume
that A(α) = 0. By definition of the minimal polynomial,
mα(x) | A(x); but also A(x) | mα(x), so A and mα must be
associate, so B(x) must be a constant as K [x ]× = K×.

Remark

Conversely, if M(x) ∈ K [x ] vanishes at x = α and it monic and
irreducible, then M(x) is the minimal polynomial of α. Indeed,
M(α) = 0 implies mα | M , and since both are irreducible, they
must be associate, hence equal since they are both monic.
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Minimal polynomials: examples (1/2)

Example

Let K = Q, L = C, and α = 3
√

2 ∈ L. Then α is a root of
M(x) = x3 − 2, so α is algebraic over Q. Besides, M(x) is
monic and irreducible over Q because it is Eisenstein at p = 2,
so M(x) is the minimal polynomial of α over Q, so

Iα = (x3 − 2),

which means an element of K [x ] vanishes at α iff. it is
divisible by M(x). In particular, we have

degQ α = degM = 3.

However, the minimal polynomial of α over R is NOT M(x),
but x − α ∈ R[x ].
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Minimal polynomials: examples (2/2)

Example

Let K = Q, L = C, and α = e2πi/3 so that α3 = 1. Then α is
a root of

M(x) = x3 − 1 ∈ K [x ],

so α is algebraic over K (of degree at most 3, since its
minimal polynomial must divide M). However,

M(x) = (x − 1)(x2 + x + 1) ∈ K [x ]

is not irreducible over K , so it is NOT the minimal polynomial
of α over K . In fact, since α− 1 6= 0, α is a root of the
cofactor

N(x) = x2 + x + 1 ∈ K [x ].

This cofactor is irreducible over K , so it is the minimal
polynomial of α over K , and degK α = 2.
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The degree of an extension
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The degree of an extension

Let L be an extension of a field K . If we forget temporarily
about the multiplication on L, so that only addition is left,
then L can be seen as a vector space over K .

Definition

The degree of L over K is the dimension (finite or infinite)
of L seen as a K -vector space. It is denoted by [L : K ].
If this degree is finite, one says that L is a finite extension
of K .

Example

C is an extension of R, so C is a vector space over R. In fact,
it admits {1, i} are a basis, so it has finite dimension,
namely 2, so C is a finite extension of R, of degree

[C : R] = 2.
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Extension degree vs. algebraic degree

Theorem

Let K ⊂ L be a field extension, and let α ∈ L.

1 If α is transcendental over K , then evaluating at x = α
yields a ring isomorphism K [x ] ' K [α] and a field
isomorphism K (x) ' K (α). In particular, K (α) is an
infinite extension of K .

2 If α is algebraic over K of degree n, then K [α] is a field,
so it agrees with K (α). It is also a vector space of
dimension n over K , with basis 1, α, α2, · · · , αn−1.
In particular, K (α) is a finite extension of K , of degree

[K (α) : K ] = n.
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Extension degree vs. algebraic degree, proof (1/3)

Proof, case α transcendental over K

K [x ] −→ K [α]
P(x) 7−→ P(α)

is a ring morphism, is surjective by definition of K [α], and
injective: if P(x) lies in the kernel, then P(α) = 0, so P(x) is
the 0 polynomial as α is transcendental.
This extends into the field morphism

K (x) −→ K (α)
P(x)

Q(x)
7−→ P(α)

Q(α)
which is well defined since Q(α) 6= 0 for nonzero Q(x),
surjective by definition of K (α), and injective by the same
reason as above.
In particular, 1 = α0, α, α2, α3, · · · ∈ K (α) are linearly
independent over K , so [K (α) : K ] = +∞.
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Extension degree vs. algebraic degree, proof (2/3)

Proof, case α algebraic over K

Let us begin by proving that 1, α, · · · , αn−1 is a K -basis of
K [α]. Let m(x) = mα(x) ∈ K [x ] be the minimal polynomial
of α over K ; it has degree n. For all P(x) ∈ K [x ], we may
perform the Euclidean division

P(x) = m(x)Q(x) + R(x)

where Q(x),R(x) ∈ K [x ] and degR(x) < n. Evaluating
at x = α, we find that P(α) = R(α), so every element of
K [α] is of the form

∑n−1
j=0 λjα

j for some λj ∈ K . Besides, if we

had a relation of the form
∑n−1

j=0 λjα
j = 0 with the λj in K

and not all zero, this would mean that the nonzero polynomial∑n−1
j=0 λjx

j ∈ K [x ] of degree < n vanishes at x = α, which
contradicts the definition of the minimal polynomial.
Therefore, 1, α, · · · , αn−1 is a K -basis of K [α]. Since there are
n of them, we have [K (α) : K ] = n.
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Extension degree vs. algebraic degree, proof (3/3)

Proof, case α algebraic over K

We must now prove that the ring K [α] is actually a field. Let
us thus prove that any nonzero β ∈ K [α] is invertible in K [α].
We know from the above that β = P(α) for some
nonzero P(x) ∈ K [x ] of degree < n. Since m(x) is irreducible
over K and degP(x) < degm(x) = n, it follows that P(x)
and m(x) are coprime, so that there exist U(x) and V (x)
in K [x ] such that

U(x)P(x) + V (x)m(x) = 1.

Evaluating at x = α, we find that U(α)P(α) + 0 = 1, which
proves that U(α) ∈ K [α] is the inverse of β = P(α).
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Extension degree vs. algebraic degree, examples

Example

Let α = 3
√

2. We have seen that the minimal polynomial
of 3
√

2 over Q is x3 − 2, so degQ
3
√

2 = 3. As a result,

Q(
3
√

2) = Q[
3
√

2] = Q⊕Q 3
√

2⊕Q 3
√

2
2
,

which means that every element of Q( 3
√

2) can be written in a

unique way as a + b 3
√

2 + c 3
√

2
2

with a, b, c ∈ Q.

Nicolas Mascot Rings, fields, and modules



Extension degree vs. algebraic degree, examples

Example

Similarly, since i2 = −1, i is algebraic of degree 2 over Q, with
minimal polynomial x2 + 1. It is also algebraic of degree 2
over R, with the same minimal polynomial x2 + 1, but which
is this time seen as lying in R[x ]. We deduce that

Q(i) = Q[i ] = Q⊕Qi

and that
C = R(i) = R[i ] = R⊕ Ri .

We thus recover the well-known fact that every complex
number can be written uniquely as a + bi with a, b ∈ R. We
also get that the elements of Q(i) may be written uniquely as
a + bi with a, b ∈ Q; in particular, these elements form a
subfield of C.
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Extension degree vs. algebraic degree, examples

Example

On the contrary, since π is transcendental over Q, R is not an
algebraic extension of Q, and its subfield Q(π) is isomorphic
to Q(x) by x 7→ π.
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Extension degree vs. algebraic degree, examples

Example

Finally, one can prove that
√

3 is algebraic of degree 2
over Q(

√
2). This amounts to say that x2 − 3, which is

irreducible over Q, remains irreducible over Q(
√

2). Indeed, if
it became reducible, then

√
3 would lie in Q(

√
2).

Since (1,
√

2) is a Q-basis of Q(
√

2), there would
exist a, b ∈ Q such that

√
3 = a + b

√
2. Squaring

yields 3 = (a2 + 2b2) + 2ab
√

2, which implies
that a2 + 2b2 = 3 and that 2ab = 0, which is clearly
impossible. So

Q(
√

2)(
√

3) = Q(
√

2)⊕Q(
√

2)
√

3

as a vector space over Q(
√

2), so that every element
of Q(

√
2,
√

3) can be written in a unique way as a + b
√

3
with a, b ∈ Q(

√
2).
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A converse

Theorem (Finite =⇒ algebraic)

If an extension is finite, then it is algebraic.

Proof.

Let n = [L : K ] < +∞, and let α ∈ L. The n + 1 vectors

1 = α0, α, α2, · · · , αn

lie in the vector space L of dimension n, so they must be
linearly dependent. This means we have

λ01 + λ1α + λ2α
2 + · · ·+ λnα

n = 0

for some λi ∈ K not all 0, which proves that α is algebraic
over K .
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A converse

Example

Let L be an extension of K , and α ∈ L be algebraic over K .
Then K (α) is a finite extension of K , so it is an algebraic
extension of K , so that all its elements (such that α2) are also
algebraic over K .

Counter-example

The converse is false: there exist extensions that are algebraic,
but not finite. More below.
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The tower law

Theorem (Tower law)

Let K ⊆ L ⊆ M be finite extensions, let

(li)16i6[L:K ]

be a K -basis of L, and let

(mj)16j6[M:L]

be an L-basis of M . Then

(limj)16i6[L:K ]
16j6[M:L]

is a K -basis of M .

In particular, [M : K ] = [M : L][L : K ].
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The tower law, proof (1/2)

Proof : Generating

Let m ∈ M . Since (mj)16j6[M:L] is an L-basis of M , we have

m =

[M:L]∑
j=1

λjmj

for some λj ∈ L, and since (li)16i6[L:K ] is a K -basis of L,
each λj can be written

λj =

[L:K ]∑
i=1

µi ,j li .

Thus we have

m =

[M:L]∑
j=1

[L:K ]∑
i=1

µi ,j limj ,

which proves that the limj span M over K .
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The tower law, proof (2/2)

Proof: Independent

Suppose now that
[M:L]∑
j=1

[L:K ]∑
i=1

µi ,j limj = 0

with µi ,j ∈ K . This can be written as
[M:L]∑
j=1

λjmj = 0, where λj =

[L:K ]∑
i=1

µi ,j li ∈ L.

Since (mj)16j6[M:L] is an L-basis of M , this would imply that
each of the λj is 0. And since (li)16i6[L:K ] is a K -basis of L,
this means that the µi ,j are all zero. Thus the limj are linearly
independent over K .
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The tower law, example

Example

We have seen above that

[Q(
√

2) : Q] = 2 and [Q(
√

2,
√

3) : Q(
√

2)] = 2.

It then follows from the tower law that

[Q(
√

2,
√

3) : Q] = 2× 2 = 4.

More precisely, since we know that (1,
√

2) is a Q-basis
of Q(

√
2), and that (1,

√
3) is a Q(

√
2)-basis of Q(

√
2,
√

3),
we deduce from the tower law that (1,

√
2,
√

3,
√

6) is
a Q-basis of Q(

√
2,
√

3). This means that each element of
Q(
√

2,
√

3) may be written as a + b
√

2 + c
√

3 + d
√

6 for
unique a, b, c , d ∈ Q.

Nicolas Mascot Rings, fields, and modules



Algebraicness is preserved by field operations

Theorem (Preservation of algebraicness)

Let L/K be a field extension. The sum, difference, product,
and quotient of two elements of L which are algebraic over K
are algebraic over K .

Nicolas Mascot Rings, fields, and modules



Algebraicness is preserved by field operations

Proof.

Let α, β ∈ L; note that K (α, β) = K (α)(β). If α is algebraic
over K , then we have [K (α) : K ] < +∞. If furthermore β is
also algebraic over K , then it satisfies a non-trivial equation in
K [x ]; viewing this equation as an element of K (α)[x ], we
deduce that β is also algebraic over K (α), so that
[K (α)(β) : K (α)] < +∞. The tower law then yields

[K (α, β) : K ] = [K (α, β) : K (α)][K (α) : K ] < +∞,

in other words K (α, β) is a finite extension of K . It is thus an
algebraic extension of K . which means that all its elements,
including α + β, α− β, αβ, and α/β (if β 6= 0) are algebraic
over K .

Nicolas Mascot Rings, fields, and modules



Algebraicness is preserved by field operations

Example

Let
Q = {α ∈ C | α algebraic over Q}.

By the above, Q is actually a subfield of C. Besides, Q is by
definition an algebraic extension of Q. However, it it is not a
finite one. Indeed, one can show that in the chain

Q ⊆ Q(
√

2) ⊆ Q(
√

2,
√

3) ⊆ Q(
√

2,
√

3,
√

5) ⊆ · · ·

(throw in the square root of each prime number one by one),
each extension is of degree 2, so that the n-th extension is of
degree 2n over Q by the tower law, which forces [Q : Q] =∞.
We thus have an example of an extenson which is algebraic,
but not finite.
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Application:

constructible numbers
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Extensions of degree 2

Lemma

Let K ⊂ L be subfields of C such that [L : K ] = 2. Then
L = K (

√
k) for some k ∈ K .

Proof.

Let α ∈ L \ K . Then K ( K (α) ⊂ L; as

2 = [L : K ] = [L : K (α)][K (α) : K ],

we have L = K (α) and degK α = 2.

Let mα(x) = x2 + bx + c ∈ K [x ]; then α =
−b ±

√
∆

2
where

∆ = b2 − 4c ∈ K , so L = K (α) = K (
√

∆).
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Constructible numbers (1/6)

Suppose we are given an orthonormal coordinate
frame (O, I , J) in the plane. A point is said to be constructible
if we can obtain it from O, I , J in finitely many steps using
only a ruler and a compass. A number α ∈ R is said to be
constructible if it is a coordinate of a constructible point;
equivalently, α is constructible if |α| is the distance between
two constructible points.

A bit of geometry shows that the set of constructible numbers
is a subfield of R, which is stable under radicals (of positive
elements only, of course).
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Constructible numbers (2/6)

Conversely, suppose that we perform a ruler-and-compass
construction in n ∈ N steps, and let Kj (j ≤ n) be the subfield
of R generated by the coordinates of the points constructed at
the j-th step, so that Q = K0 ⊆ K1 ⊆ · · · ⊆ Kn. At each
step j , we either construct the intersection of two lines, or the
intersection of a line and a circle or of two circles. In the first
case, the coordinates of the intersection can be found by
solving a linear system, which can be done by field operations
in Kj , so that Kj+1 = Kj . In the second case, the coordinates
of the intersection can be found by solving quadratic
equations, so that [Kj+1 : Kj ] is either 1 (if the solutions to
these equations already lie in Kj) or 2 (if they do not, so
that Kj+1 is genuinely bigger than Kj). By removing the steps
such that Kj+1 = Kj , we thus establish the following result:
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Constructible numbers (3/6)

Theorem (Wantzel)

Let α ∈ R. Then α is constructible iff. there exist fields

Q = K0 ( K1 ( · · · ( Kn

such that [Kj+1 : Kj ] = 2 for all j and that α ∈ Kn.
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Constructible numbers (4/6)

Corollary

If α ∈ R is constructible, then α is algebraic over Q,
and degQ α is a power of 2.

Proof.

Since α is constructible, there exist fields

Q = K0 ⊆ K1 ⊆ · · · ⊆ Kn 3 α

such that [Kj+1 : Kj ] = 2 for all j . By the tower law, we
have [Kj : Q] = 2j for all j , so in particular [Kn : Q] = 2n. It
follows that Kn is a finite, and therefore algebraic, extension
of Q, so α is algebraic over Q. Besides,
degQ(α) = [Q(α) : Q] = [Kn:Q]

[Kn:Q(α)]
divides [Kn : Q] = 2n, so it is

also a power of 2.
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Constructible numbers (5/6)

Counter-example

Since π is transcendental over Q, is is not constructible. This
shows that squaring the circle is impossible.

Counter-example

We have seen that 3
√

2 is algebraic of degree 3 over Q. Since 3
is not a power of 2, 3

√
2 is not constructible.
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Constructible numbers (6/6)

Remark

Beware that the converse to the corollary is false! For
instance, the polynomial x4 − 8x2 + 4x + 2 is irreducible
over Q since it is Eisenstein at 2, and is therefore the minimal
polynomial of each of its roots over Q, so that these roots are
algebraic of degree 4 over Q. It happens that these roots are
all real, but that none of them is constructible!
The problem is that if α is such a root, then we do
have [Q(α) : Q] = 4, but this does not imply the existence of
an intermediate field K such that Q ⊆ K ⊆ Q(α) where both
intermediate extensions are of degree 2, i.e. the hypotheses of
Wantzel’s theorem are not necessarily satisfied (and in fact
they are not).
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