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Let K and L be fields such that K C L. One says that K is a
subfield of L, and that L is an extension of K.

R is a subfield of C, and C is an extension of R.
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In what follows, whenever a € L, we write K(«) for the
subfield of L generated by K and «, and K[«] for the subring
of L generated by K and «.

The ring K[a] is a subring of the field K(«).

C = R(i) = RJi].

We have
Kla] = {P(a), P(x) € KI[x]}.

For K(«), more delicate, as we will see below.
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Algebraic vs. transcendental (1/2)
Definition (Algebraic, transcendental)

Let K C L, and let o € L. Then
lo = {F(x) € K[x] | F(a) = 0}

is an ideal of K[x]. One says that o is algebraic over K if this
ideal is nonzero, that is to say if there exists a

nonzero F(x) € K|[x] which vanishes at «.. Else one says

that « is transcendental over K.

a =i € C is algebraic over R, since it is a root of the nonzero
polynomial P(x) = x> + 1 € R[x]. In fact, « is even algebraic
over QQ since P(x) € Q[x].
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Algebraic vs. transcendental (2/2)

Counter-example

One can show (but this is difficult) that 7 is transcendental
over Q. This means for instance that an “identity” of the form

21302417 — 2229433872 4 515162017 — 7857464 = 0

is automatically FALSE.
On the other hand, 7 is algebraic over R, since it is a root
of x — 7 € R[x].

Definition (Algebraic extension)

If every element of L is algebraic over K, one says that L is an
algebraic extension of K.
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Minimal polynomials (1/2)

Since since the ring K[x] is a PID, the ideal I, is principal, so
there exists a polynomial M(x) € K[x] such that

I, = (M(x)) = M(x)K[x].

If v is transcendental over K, then I, = {0} so M(x) is the
zero polynomial.

Suppose on the contrary that « is algebraic over K, so that
M(x) # 0. Since K|[x] is a domain, the other generators of I,
are the associates of M(x) in K[x], that is the U(x)M(x) for
U € K[x]*. But K[x]* = K*, so M(x) is unique up to
scaling, so there is a unique monic polynomial m,(x) that
generates /,.

Definition (Minimal polynomial)

m,(x) is called the minimal polynomial of . over K.
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Minimal polynomials (2/2)

Definition (Degree of an algebraic element)

One then says that « is algebraic over K of degree n,
where n = deg m,, € N, and one writes deg, o = n.

By definition, for all F(x) € K[x], F(a) =0<= F is a
multiple of m,. In particular, m, is the unique (up to scaling)
polynomial of minimal degree vanishing at x = «, hence the
name minimal polynomial.
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Minimal polynomials and irreducibility

Minimal polynomials (over a field K) are always irreducible
(over the same field K). Indeed, let m,(x) € K[x] be the
minimal polynomial of some o € L, and

suppose m,(x) = A(x)B(x) with A(x), B(x) € K[x].

Then 0 = m, (o) = A(e) B(ar), so WLOG we may assume
that A(«) = 0. By definition of the minimal polynomial,
my(x) | A(x); but also A(x) | m,(x), so A and m, must be
associate, so B(x) must be a constant as K[x]* = K*.

Conversely, if M(x) € K[x] vanishes at x = « and it monic and
irreducible, then M(x) is the minimal polynomial of . Indeed,
M(«) = 0 implies m,, | M, and since both are irreducible, they
must be associate, hence equal since they are both monic.
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Minimal polynomials: examples (1/2)

Example

Let K=Q, L=C, and &« = v/2 € L. Then « is a root of
M(x) = x® — 2, so « is algebraic over Q. Besides, M(x) is
monic and irreducible over Q because it is Eisenstein at p = 2,
so M(x) is the minimal polynomial of « over Q, so

l, = (x3 —2),

which means an element of K[x] vanishes at « iff. it is
divisible by M(x). In particular, we have

degya = degM = 3.

However, the minimal polynomial of o over R is NOT M(x),
but x — o € R[x].
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Minimal polynomials: examples (2/2)

Let K =Q, L =C, and o = €*™/3 so that a® = 1. Then « is
a root of

M(x) = x* —1 € K[x],
so « is algebraic over K (of degree at most 3, since its
minimal polynomial must divide M). However,
M(x) = (x — 1)(x* + x + 1) € K[x]
is not irreducible over K, so it is NOT the minimal polynomial
of a over K. In fact, since « — 1 # 0, « is a root of the
cofactor
N(x) = x*+x+1¢€ K[x].
This cofactor is irreducible over K, so it is the minimal
polynomial of v over K, and deg, o = 2.
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The degree of an extension
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The degree of an extension

Let L be an extension of a field K. If we forget temporarily
about the multiplication on L, so that only addition is left,
then L can be seen as a vector space over K.

The degree of L over K is the dimension (finite or infinite)
of L seen as a K-vector space. It is denoted by [L : K].

If this degree is finite, one says that L is a finite extension
of K.

C is an extension of R, so C is a vector space over R. In fact,
it admits {1, /} are a basis, so it has finite dimension,
namely 2, so C is a finite extension of R, of degree

[C:R]=2.
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Extension degree vs. algebraic degree

Let K C L be a field extension, and let o € L.

© /f « is transcendental over K, then evaluating at x = «
yields a ring isomorphism K[x| ~ K|[a| and a field
isomorphism K(x) ~ K(«). In particular, K(«) is an
infinite extension of K.

@ If a is algebraic over K of degree n, then K[a] is a field,
so it agrees with K(«). It is also a vector space of

dimension n over K, with basis 1,c,a?,- -+, a" 1.
In particular, K(«) is a finite extension of K, of degree
[K(«) : K] = n.
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Extension degree vs. algebraic degree, proof (1/3)
Proof, case « transcendental over K

K[x] — K]q]

P(x) +— P(«a)
is a ring morphism, is surjective by definition of K|[«], and
injective: if P(x) lies in the kernel, then P(a) =0, so P(x) is
the 0 polynomial as « is transcendental.
This extends into the field morphism

K(x) — K(a)

Px) . Pl

Qx) " Qo)
which is well defined since Q(«) # 0 for nonzero Q(x),
surjective by definition of K(«), and injective by the same
reason as above.
In particular, 1 = a% a,a?,a3,--- € K( ) are linearly
independent over K, so [K( ) : K] =
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Extension degree vs. algebraic degree, proof (2/3)

Proof, case « algebraic over K

Let us begin by proving that 1,c,--- ,a" ! is a K-basis of
K[a]. Let m(x) = m,(x) € K[x] be the minimal polynomial
of a over K; it has degree n. For all P(x) € K[x], we may
perform the Euclidean division

P(x) = m(x)Q(x) + R(x)
where Q(x), R(x) € K[x]| and deg R(x) < n. Evaluating
at x = «, we find that P(a) = R(«), so every element of
K[a] is of the form Z}:ol \jod for some \; € K. Besides, if we
had a relation of the form er':ol Ajod = 0 with the )\; in K
and not all zero, this would mean that the nonzero polynomial
Zf:_ol A\ix) € K[x] of degree < n vanishes at x = a, which
contradicts the definition of the minimal polynomial.
Therefore, 1,ar,--- ,a" ! is a K-basis of K[a]. Since there are
n of them, we have [K(«) : K] = n.
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Extension degree vs. algebraic degree, proof (3/3)

Proof, case « algebraic over K

We must now prove that the ring K[a] is actually a field. Let
us thus prove that any nonzero 8 € KJa] is invertible in K[a].
We know from the above that 3 = P(«) for some

nonzero P(x) € K[x] of degree < n. Since m(x) is irreducible
over K and deg P(x) < deg m(x) = n, it follows that P(x)
and m(x) are coprime, so that there exist U(x) and V/(x)

in K[x] such that

U(x)P(x) + V(x)m(x) = 1.

Evaluating at x = «, we find that U(a)P(a) + 0 = 1, which
proves that U(«a) € K|a] is the inverse of § = P(a). O
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Extension degree vs. algebraic degree, examples

Example

Let & = v/2. We have seen that the minimal polynomial
of /2 over Q is x3 — 2, so degy, /2 = 3. As a result,

Q(¥2) = Q[V/2] = Q@ QV2 8 QV2,

which means that every element of Q(v/2) can be written in a
unique way as a + bv/2 + c¥/2° with a,b,ceQ.
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Extension degree vs. algebraic degree, examples

Example

Similarly, since i> = —1, i is algebraic of degree 2 over Q, with
minimal polynomial x2 + 1. It is also algebraic of degree 2
over R, with the same minimal polynomial x? + 1, but which
is this time seen as lying in R[x]. We deduce that

Q) =Qlll=Qe Qi

and that
C=R()=R[[]=RaRI.

We thus recover the well-known fact that every complex
number can be written uniquely as a + bi with a,b € R. We
also get that the elements of Q(/) may be written uniquely as
a -+ bi with a, b € QQ; in particular, these elements form a
subfield of C.
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Extension degree vs. algebraic degree, examples

On the contrary, since 7 is transcendental over Q, R is not an
algebraic extension of Q, and its subfield Q() is isomorphic
to Q(x) by x — .
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Extension degree vs. algebraic degree, examples

Example

Finally, one can prove that v/3 is algebraic of degree 2
over Q(\/E) This amounts to say that x*> — 3, which is
irreducible over Q, remains irreducible over Q(v/2). Indeed, if
it became reducible, then v/3 would lie in Q(1/2).
Since (1,v/2) is a Q-basis of Q(1/2), there would
exist a, b € Q such that v/3 = a + bv/2. Squaring
yields 3 = (a? 4 2b?) 4 2aby/2, which implies
that a® + 2b% = 3 and that 2ab = 0, which is clearly
impossible. So

Q(V2)(V3) = Q(V2) & Q(v2)V3
as a vector space over Q(\/E) so that every element
of Q(v/2,+/3) can be written in a unique way as a + byv/3
with a, b € Q(v/2).
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A converse

Theorem (Finite = algebraic)

If an extension is finite, then it is algebraic.

Proof.
Let n=[L: K] < 400, and let & € L. The n+ 1 vectors

1=a%a,0% - ,a"

lie in the vector space L of dimension n, so they must be
linearly dependent. This means we have

Aol + o+ X+ +2,0"=0

for some A\; € K not all 0, which proves that « is algebraic
over K. ]
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A converse

Let L be an extension of K, and a € L be algebraic over K.
Then K(a) is a finite extension of K, so it is an algebraic
extension of K, so that all its elements (such that a?) are also
algebraic over K.

Counter-example

The converse is false: there exist extensions that are algebraic,
but not finite. More below.

v,
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The tower law

Theorem (Tower law)

Let K C L C M be finite extensions, let

(IN1<i<iLk
be a K-basis of L, and let

(mj)i<j<mig

be an L-basis of M. Then
(/imj)lgig[L:K]
1<<[M:L]

is a K-basis of M.

In particular, [M : K| = [M : L][L : K].
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The tower law, proof (1/2)

Proof : Generating

Let m € M. Since (m;)1<j<m:1] is an L-basis of M, we have
[M:L]

m—Z)\mj

for some \; € L, and since (/)1<,<[L:K] is a K-basis of L,

each \; can be written
[L:K]

)‘ _Z/’Ll,j

[M:L] [L:K]

m = Z Z/’LIJ/mjv

j=1 i=1
which proves that the /;m; span M over K.

Thus we have
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The tower law, proof (2/2)

Proof: Independent

Suppose now that

[M:L] [L:K]
> D mijhm; =0
j=1 i=1
with p;; € K. This can be written as
[M:L] [L:K]

Z Ajmj =0, where \; = Zuul; e L.

i=1
Since (mj)ng[M:L] is an L-basis of M, this would imply that
each of the A; is 0. And since (/;)1<i<L.k] is a K-basis of L,
this means that the y; ; are all zero. Thus the /;m; are linearly
independent over K. O
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The tower law, example

We have seen above that
[@(v2) : Q] =2 and [Q(V2,V3) : Q(V2)] = 2.
It then follows from the tower law that
[Q(V2,V3): Q] =2 x 2 =4.

More precisely, since we know that (1, \/5) is a Q-basis

of Q(v/2), and that (1,+/3) is a Q(v/2)-basis of Q(+/2,/3),
we deduce from the tower law that (1,v/2,/3,1/6) is

a Q-basis of Q(\/Z \/§) This means that each element of
@(\/5, \/§) may be written as a + bv/2 + ¢v/3 + dv/6 for
unique a, b,c,d € Q.
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Algebraicness is preserved by field operations

Theorem (Preservation of algebraicness)

Let L/K be a field extension. The sum, difference, product,
and quotient of two elements of L which are algebraic over K
are algebraic over K.
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Algebraicness is preserved by field operations

Proof.

Let a, 5 € L; note that K(«, ) = K(«)(5). If « is algebraic
over K, then we have [K(a) : K] < +oo. If furthermore 5 is
also algebraic over K, then it satisfies a non-trivial equation in
K[x]; viewing this equation as an element of K(a)[x], we
deduce that f3 is also algebraic over K(«), so that

[K(a)(B) : K(a)] < +00. The tower law then yields

[K(a, B) - K] = [K(, B) : K(a)][K() : K] < +oo,

in other words K(«, 3) is a finite extension of K. It is thus an
algebraic extension of K. which means that all its elements,

including o + 3, a — 8, a3, and /3 (if 5 # 0) are algebraic
over K. O]
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Algebraicness is preserved by field operations

Let

Q = {a € C | «a algebraic over Q}.

By the above, Q is actually a subfield of C. Besides, Q is by
definition an algebraic extension of Q. However, it it is not a
finite one. Indeed, one can show that in the chain

Q C Q(V2) CQ(V2,v3) CQ(vV2,v3,V5) C -

(throw in the square root of each prime number one by one),
each extension is of degree 2, so that the n-th extension is of
degree 2" over Q by the tower law, which forces [Q : Q] = oc.
We thus have an example of an extenson which is algebraic,
but not finite.
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Application:

constructible numbers
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Extensions of degree 2

Let K C L be subfields of C such that [L : K] = 2. Then
L = K(\Vk) for some k € K.

Proof.
Let a € L\ K. Then K C K(a) C L; as

2=[L:K]=[L: K(a)][K() : K],

we have L = K(«) and deg, o = 2.

—b+ VA

Let m,(x) = x> + bx + ¢ € K[x]; then a = — where
A=b —4ceK, sol=K(a)=KHD). O
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Constructible numbers (1/6)

Suppose we are given an orthonormal coordinate

frame (O, 1, J) in the plane. A point is said to be constructible
if we can obtain it from O, /, J in finitely many steps using
only a ruler and a compass. A number o € R is said to be
constructible if it is a coordinate of a constructible point;
equivalently, « is constructible if |« is the distance between
two constructible points.

A bit of geometry shows that the set of constructible numbers

is a subfield of R, which is stable under radicals (of positive
elements only, of course).

Nicolas Mascot Rings, fields, and modules



Constructible numbers (2/6)

Conversely, suppose that we perform a ruler-and-compass
construction in n € N steps, and let K; (j < n) be the subfield
of R generated by the coordinates of the points constructed at
the j-th step, so that Q = Ky C K; C --- C K,,. At each

step j, we either construct the intersection of two lines, or the
intersection of a line and a circle or of two circles. In the first
case, the coordinates of the intersection can be found by
solving a linear system, which can be done by field operations
in Kj, so that Ki;1 = Kj. In the second case, the coordinates
of the intersection can be found by solving quadratic
equations, so that [Kj1 : Kj] is either 1 (if the solutions to
these equations already lie in K;) or 2 (if they do not, so

that Kj1; is genuinely bigger than Kj). By removing the steps
such that Kj;1 = Kj, we thus establish the following result:
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Constructible numbers (3/6)

Theorem (Wantzel)

Let « € R. Then « is constructible iff. there exist fields
Q:KogKlg...gKn

such that [Ki11 : K] =2 for all j and that a € K,,.
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Constructible numbers (4/6)

Corollary

If « € R is constructible, then « is algebraic over Q,
and degg v is a power of 2.

Proof.
Since « is constructible, there exist fields

Q=K CKiC---CK,3a

such that [Kj;1 : Kj] = 2 for all j. By the tower law, we
have [K; : Q] = 2 for all j, so in particular [K,, : Q] = 2". It
follows that K, is a finite, and therefore algebraic, extension
of Q, so «a is algebraic over Q. Besides,

degg(a) = [Q(a) : Q] = ezl divides [K, : Q] = 27, so it is
also a power of 2. O
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Constructible numbers (5/6)

Counter-example

Since 7 is transcendental over Q, is is not constructible. This
shows that squaring the circle is impossible.

Counter-example

We have seen that v/2 is algebraic of degree 3 over Q. Since 3
is not a power of 2, /2 is not constructible.

v,
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Constructible numbers (6/6)

Beware that the converse to the corollary is false! For
instance, the polynomial x* — 8x2 + 4x 4+ 2 is irreducible

over QQ since it is Eisenstein at 2, and is therefore the minimal
polynomial of each of its roots over QQ, so that these roots are
algebraic of degree 4 over Q. It happens that these roots are
all real, but that none of them is constructible!

The problem is that if a is such a root, then we do

have [Q(«) : Q] = 4, but this does not imply the existence of
an intermediate field K such that Q C K C Q(«) where both
intermediate extensions are of degree 2, i.e. the hypotheses of
Wantzel's theorem are not necessarily satisfied (and in fact
they are not).
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