Rings, fields, and modules Exercise sheet 3

https://www.maths.tcd.ie/~mascotn/teaching/2021/MAU22102/index.html
Version: March 3, 2021

Email your answers to aylwarde@tcd.ie by Monday March 22, 4PM.

Exercise 1 Associates to irreducibles (20 pts)
Let R be a commutative ring, which is not necessarily a domain.

1. (6 pts) Let $x, y \in R$. Prove that if $x y \in R^{\times}$, then $x \in R^{\times}$and $y \in R^{\times}$.
2. (14 pts) Let $p \in R$ be irreducible, and let $x \in R$. Prove that if x is associate to p, then x is also irreducible.

Exercise 2 Nilpotent elements (80 pts)
Let R be a commutative ring. We say that an element $x \in R$ is nilpotent if there exists an integer $n \geqslant 1$ such that $x^{n}=0$. We write $\operatorname{Nil}(R) \subset R$ for the subset of R formed of the nilpotent elements of R.
Example: if $R=\mathbb{Z} / 8 \mathbb{Z}$, then $x=\overline{2} \in \operatorname{Nil}(R)$, since $x^{3}=\overline{8}=\overline{0}$ in R; in fact

$$
\operatorname{Nil}(\mathbb{Z} / 8 \mathbb{Z})=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}
$$

Note that by definition, the 0 of R lies in $\operatorname{Nil}(R)$.

1. (5 pts) Prove that if R is a domain, then $\operatorname{Nil}(R)$ is reduced to $\{0\}$.
2. (5 pts) Prove that if $x \in \operatorname{Nil}(R)$, then $1-x \in R^{\times}$.

Hint: What is $(1-x)\left(1+x+x^{2}+\cdots+x^{n}\right)$?
3. (10 pts) Let $x, y \in R$. Prove that if x and y are both nilpotent, then so is $x+y$.
Hint: Use the binomial formula to expand $(x+y)^{n}$ for some large enough $n \in \mathbb{N}$.
4. (5 pts) Prove that $\operatorname{Nil}(R)$ is an ideal of R.
5. (15 pts) Prove that the quotient $\operatorname{ring} R / \operatorname{Nil}(R)$ has no nonzero nilpotents, i.e. that $\operatorname{Nil}(R / \operatorname{Nil}(R))=\{\overline{0}\}$ where $\overline{0}$ denotes the 0 of the quotient $R / \operatorname{Nil}(R)$.
6. (15 pts) Prove that $\operatorname{Nil}(R)$ is contained in the intersection of all prime ideals of R.
Hint: Let $P \subset R$ be a prime ideal. Which property does the quotient ring R / P have? How does this relate to this exercise?
From now on, we admit without proof the fact that actually,

$$
\operatorname{Nil}(R)=\bigcap_{P \text { prime ideal } \triangleleft R} P
$$

agrees with the intersection of all prime ideals of R.
7. (25 pts) Let $F(x) \in R[x]$. Prove that if $F(x)$ is invertible in $R[x]$ iff. its constant coefficient is invertible in R and its other coefficients are all nilpotent.
Hint: Use some of the previous questions. What would $R[x]^{\times}$be if R were a domain?

