
Introduction to number theory
Exercise sheet 1
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Version: October 16, 2020

Answers are due for Friday October 16th, 2PM.
The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Money money money (100 pts)

How many ways are there to pay one million euros, using only 20 euro and 50 euro
notes? (For instance, we could use 50,000 20 euro notes and 0 50 euro notes, or
25,000 20 euro notes and 10,000 50 euro notes, etc.)

Hint: Solve the Diophantine equation 20x+ 50y = 1, 000, 000.
NB you are not allowed to give a negative amount of one kind of notes, even to

compensate for a large positive amounts of the other kind! So for instance, 100,000
20 euro notes plus -20,000 50 euro notes is not an acceptable form of payment —
unless you claim to master the creation of antimatter, but I will definitely want to
see proof of that.

Solution 1

We want to solve the equation 20x + 50y = 1, 000, 000 with x and y non-negative
integers. We will begin by solving it without the non-negativity condition, and then
impose this condition later.

We thus begin by solving 20x + 50y = 1, 000, 000 for x, y ∈ Z. We have
gcd(20, 50) = 10, as can be seen either by Euclid’s algorithm (50 = 20 × 2 + 10,
20 = 10 × 2 + 0), or by direct inspection of the divisors of 20 = 22 × 5 and of
50 = 2× 52. Since 10 | 1, 000, 000, we do have solutions.

In order to proceed, we simplify by gcd(20, 50) = 10, which yields 2x + 5y =
100, 000 (an 2 and 5 are automatically coprime).

Next, we need a particular solution. We may take x0 = 50, 000, y0 = 0, which
corresponds to the first example given in the question.

As 2 and 5 are coprime, we know that the solutions to the equation are x =
x0 − 5k = 50, 000 − 5k, y = y0 + 2k = 2k for k ∈ Z. This solves the equation for
x, y ∈ Z.

Finally, we re-inject the non-negativity condition. The fact that y > 0 yields k >
0, and the fact that x > 0 say that 50, 000− 5k > 0, which amounts to k 6 10, 000.
This shows that the solutions to 20x+50y = 1, 000, 000 are x = 50, 000−5k, y = 2k,
for 0 6 k 6 10, 000 an integer. As there are 10, 001 such k, and as each value of k
corresponds to a different solution (obviously, since y = 2k), we conclude that

There are 10,001 ways to make this payment.
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This was the only mandatory exercise, that you must submit before
the deadline. The following exercises are not mandatory; they are not
worth any points, and you do not have to submit them. However, I
highly recommend that you try to solve them for practice, and you are
welcome to email me if you have questions about them. The solutions
will be made available with the solution to the mandatory exercise.

Exercise 2 Euclid at work

Prove that 2020 and 353 are coprime, and find integers u and v such that

2020u+ 353v = 1.

Solution 2

To compute the gcd, Euclid’s algorithm goes as follows:

2 0 2 0
2 5 5

3 5 3
5

3 5 3
9 8

2 5 5
1

2 5 5
5 9

9 8
2

9 8
3 9

5 9
1

5 9
2 0

3 9
1

3 9
1 9

2 0
1

2 0
1

1 9
1

1 9
0 9

0

1
1 9

The gcd is the last nonzero remainder, which is 1 in this case. This means that 2020
and 353 are coprime.
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In order to find u and v such that 2020u + 353v = 1, we first rewrite the above
divisions in a way that isolates the remainder (in bold) on one side:

255 = 2020− 5× 353

98 = 353− 255

59 = 255− 2× 98

39 = 98− 59

20 = 59− 39

19 = 39− 20

1 = 20− 19

Then we use these equations to express 1 (the gcd) as a combination of the terms
of each division from bottom up:

1 = 20− 19

= 20− (39− 20) = 20× 2− 39

= (59− 39)× 2− 39 = 59× 2− 39× 3

= 59× 2− (98− 59)× 3 = 59× 5− 98× 3

= (255− 98× 2)× 5− 98× 3 = 255× 5− 98× 13

= 255× 5− (353− 255)× 13 = 255× 18− 353× 13

= (2020− 353× 5)× 18− 353× 13 = 2020× 18− 353× 103

So we can take u = 18, v = −103.

Exercise 3 An “obvious” factorisation

1. Let n ≥ 2 be an integer, and let N = n2 − 1. Depending on the value of n,
N can be prime or not; for example N = 3 is prime if n = 2, but N = 8 is
composite if n = 3. Find all n ≥ 2 such that N is prime.

Hint: a2 − b2 = ?

2. Factor N = 9999 into primes. Make sure to prove that the factors you find
are prime.

Solution 3

1. We have N = n2 − 12 = (n + 1)(n − 1). Beware however that this does not
mean that N is composite, since one of the factors could be ±1! Since we are
assuming n ≥ 2, n + 1 can never be ±1; and we have n − 1 = ±1 only when
n = 2. As a result, N is prime only when n = 2.

2. By the same principle, 9999 = 10000−1 = 1002−1 = 99·101. Now 99 = 9·11 =
32 · 11, and 11 is prime (else it would be divisible by a prime ≤

√
11 ≈ 3.3,

but it is not divisible by 2 nor by 3. Similarly, if 101 were composite, if would
be divisible by a prime ≤

√
101 ≈ 10, so by 2, 3, 5, or 7. But

2 | 101 =⇒ 2 | (101− 100) = 1, absurd,
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3 | 101 =⇒ 3 | (101− 99) = 2, absurd,

5 | 101 =⇒ 5 | (101− 100) = 1, absurd,

7 | 101 =⇒ 7 | (101− 70) = 31 =⇒ 7 | (35− 31) = 4, absurd.

So 101 is prime, and the complete factorisation of 9999 is

9999 = 32 · 11 · 101.

Remark: This illustrates the fact that (n + 1)(n − 1) is not in general the
complete factorisation of n2 − 1.

Exercise 4 (In)variable gcd’s

Let n ∈ Z.

1. Prove that gcd(n, 2n+ 1) = 1, no matter what the value of n is.

Hint: How do you prove that two integers are coprime?

2. What can you say about gcd(n, n+ 2)?

Solution 4

1. Remember that two integers a and b are coprime if and only if there exist
integers x and y such that ax+ by = 1.

Since (n)(−2) + (2n+ 1)(1) = 1, n and 2n+ 1 are coprime.

2. Let g = gcd(n, n+ 2). By Strong Bézout, 2 = n(−1) + (n+ 2)(1) is a multiple
of g, so g can only be 1 or 2. Besides, if n = 2k is even, then so is n + 2 =
2k + 2 = 2(k + 1), and if n = 2k + 1 is odd, then so is n + 2 = 2(k + 1) + 1.
Conclusion: g = 2 if n is even, and g = 1 if n is odd.

Exercise 5 Another algorithm for the gcd

1. Let a, b ∈ Z be integers. Prove that gcd(a, b) = gcd(b, a− b).

2. Use the previous question to design an algorithm to compute gcd(a, b) similar
to the one seen in class, but using subtractions instead of Euclidean divisions.
Demonstrate its use on the case a = 50, b = 22.

4



Solution 5

1. If d divides a and b, then d also divides a − b. Conversely, if d divides b and
a− b, then it also divides b+ (a− b) = a. Therefore, the two pairs (a, b) and
(b, a− b) have the same common divisors, and in particular the same gcd.

2. We can repeatedly replace the pair (a, b) and (b, a − b) so as to make its size
decrease until the gcd is obvious. For instance,

gcd(50, 22) = gcd(22, 50− 22) = gcd(28, 22)

= gcd(22, 28− 22) = gcd(22, 6)

= gcd(22− 6, 6) = gcd(16, 6)

= gcd(16− 6, 6) = gcd(10, 6)

= gcd(6, 10− 6) = gcd(6, 4)

= gcd(4, 6− 4) = gcd(4, 2)

= gcd(2, 4− 2) = gcd(2, 2)

= 2.

Remark: This is how Euclid’s original algorithm worked. The version with
Euclidean divisions seen in class is more efficient: if the division is a = bq+r,
it goes from (a, b) to (b, r) directly in one step, whereas this version takes (a, b)
to (b, a − b), then to (b, a − 2b), and so on, and thus takes q steps to reach
(b, r).

Exercise 6 Product of coprimes

Let a, b and c be integers. Suppose that a and b are coprime, and that a and c are
coprime. Prove that a and bc are coprime.

Solution 6

Suppose that d ∈ N is such that d | a and d | bc. Since d | a, d and b are coprime.
Indeed, a divisor of d is also a divisor of a, so a common divisor of d and b is a
common divisor of a and b, which can only be ±1 since a and b are coprime. We
can now conclude by Gauss’s lemma: since d | bc and d is coprime to b, we must
have d | c. So d is a common divisor of a and c; since a and c are coprime, d can
only be ±1. So the only common divisors of a and bc are ±1.

Here is an alternative, less obvious proof using Bézout: since a and b are coprime,
there are u and v ∈ Z such that au+ bv = 1. Similarly, there are u′ and v′ ∈ Z such
that au′ + cv′ = 1. By multiplying these identities, we get

1 = (au+ bv)(au′ + cv′) = a(uau′ + ucv′ + bvu′) + bc(vv′).

This last identity has the form 1 = ax + (bc)y with x, y ∈ Z, which proves that a
and bc are coprime.

And here is a third proof, in terms of prime factorisations this time: Since a and
b are coprime, the primes in the factorisation of b are all distinct from those in the
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factorisation of a. Similarly, the primes in the factorisation of c are all distinct from
those in the factorisation of a. Now, the prime factorisation of bc is obtained by
merging that of b with that of c (which could involve regrouping some primes b and
c have in common, since b and c may not be coprime); as a result, it still does not
involve any prime that appears in the factorissation of a. This shows that a and bc
are coprime (think of how you can read the factorisation of the gcd of two integers
off their respective factorisations).

Exercise 7 Valuations

1. Let m =
∏

i p
ai
i , n =

∏
i p

bi
i be two integers, where the pi are pairwise distinct

primes. Prove that m | n iff. ai 6 bi for each i.

Hint: If n = km, consider the prime factorisation of k.

2. In what follows, let p ∈ N be prime. Recall that for nonzero n ∈ Z, we define
vp(n) as the exponent of p in n. Prove that for all nonzero n ∈ Z, vp(n) is the
largest integer v such that pv | n.

3. Recall that we set vp(0) = +∞ by convention. In view of the previous question,
does this convention seem appropriate?

4. Let m,n ∈ Z, both nonzero. Prove that vp(mn) = vp(m) + vp(n). What
happens if m or n is zero?

5. Let m,n ∈ Z, both nonzero. Prove that vp(m+n) > min(vp(m), vp(n)). What
happens if m or n is zero?

6. Letm,n ∈ Z. Prove that if vp(m) 6= vp(n), then vp(m+n) = min(vp(m), vp(n)).

7. Give an example where vp(m+ n) > min(vp(m), vp(n)).

Solution 7

1. If m | n, we have n = km for some integer k. Possibly after extending1 the set
of primes pi, we may factor k =

∏
i p

ci
i , where the ci are non-negative integers.

Then ∏
i

pbii = n = km =
∏
i

pcii
∏
i

paii =
∏
i

pai+ci
i .

The uniqueness statement of the fundamental theorem of arithmetic shows
that necessarily, bi = ai + ci for all i; in particular bi > ai for all i since the ci
are nonnegative.

Conversely, if bi > ai for all i, define ci = bi − ai (which is thus nonnegative),
and

k =
∏
i

pcii ,

which is an integer since the ci are nonnegative. The same computation as
above shows that n = km, which proves that m - n.

1Actually that won’t be necessary, since the primes dividing k also divide n = km.
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2. Since the prime factorisation of pv is simply pv, the previous question shows
that pv | n iff. v 6 vp(n), whence the result.

3. We have m | 0 for all m ∈ N; in particular pv | 0 for all v ∈ Z>0. As a
result, there is no largest integer v such that pv | 0, but this also explains the
convention vp(0) = +∞.

4. Suppose first that m,n 6= 0. We can write the prime factorisation of m as
pv × powers of other primes, where v = vp(m) by definition; similarly n =
pvp(n) × powers of other primes. Then

mn = pvp(m)× powers of other primespvp(n)× powers of other primes = pvp(m)+vp(n)× powers of other primes,

which shows that vp(mn) = vp(m) + vp(n).

If now exactly one of m and n, say m, is 0, then mn = 0, so the identity to
prove becomes

+∞ = +∞+ vp(n),

which holds if we make the convention that +∞ + v = +∞ for all v ∈ Z,
which is reasonable.

Finally, in the case m = n = 0, the identity still holds provided that we agree
that +∞+ +∞ = +∞, which is also reasonable.

5. Suppose first that m,n 6= 0, and let v = min(vp(m), vp(n)). Then v 6 vp(m),
so pv | m by question 2.; similarly pv | n. Therefore pv | (m + n), whence
v 6 vp(m+ n) again by question 2.

If now exactly one of m and n, say m, is 0, then we have

vp(m+ n) = vp(n) = min(vp(m), vp(n))

under the reasonable convention that min(+∞, v) = v for all v ∈ Z.

Finally, if m = n = 0, we still have

vp(m+ n) > min(vp(m), vp(n))

if we make the reasonable convention that min(+∞,+∞) = +∞.

6. Without loss of generality, we may assume that vp(m) > vp(n). By question
2., this implies pvp(n)+1 | m. Therefore, if we have pvp(n)+1 | (m+ n), we would
have that pvp(n)+1 | ((m+ n)−m) = n, contradicting question 2. about vp(n).
Therefore vp(m + n) 6 vp(n). But by the previous question, we also have
vp(m+ n) > min(vp(m), vp(n)) = vp(n), whence the result.

7. The previous question shows that this can happen only when vp(m) = vp(n).
We can take for instance p = 3, m = 6, n = 12, so that m+ n = 18 and

v3(m+ n) = 2 > min(v3(m), v3(n)) = 1.
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Exercise 8
√
n is either an integer or irrational

Let n be a positive integer which is not a square, so that
√
n is not an integer.

The goal of this exercise is to prove that
√
n is irrational, i.e. not of the form a

b

where a and b are integers.

1. Prove that there exists at least one prime p such that the p-adic valuation
vp(n) is odd.

2. Suppose on the contrary that
√
n = a

b
with a, b ∈ N; this may be rewritten as

a2 = nb2. Examine the p-adic valuations of both sides of this equation, and
derive a contradiction.

Solution 8

1. Write the factorization of n as
∏
paii , where ai = vpi(n). If the ai were all

even, then the ai/2 would all be integers, and so we would have n = m2 with

m =
∏
p
ai/2
i , contradicting our hypothesis that n is not a square. So at least

one of the ai is odd, and we can take p to be the corresponding pi.

2. On the one hand, vp(a
2) = 2vp(a) is even; on the other hand, vp(nb

2) =
vp(n) + vp(b

2) = vp(n) + 2vp(b) is odd, since we have chosen p so that vp(n)
is odd. So the p-adic valuation of the integer a2 = nb2 is both even and odd,
which is absurd.

Exercise 9 Divisors

1. Factor 2020 into primes. Make sure to prove that you factorization is complete,
i.e. that the factors you find are prime.

2. Deduce the number of divisors of 2020, and the sum of these divisors.

3. Do the same computations with 6000 instead of 2020.

Solution 9

1. Obviously, 2020 = 20 × 101 = 22 × 5 × 101. If 101 were composite, if would
be divisible by a prime ≤

√
101 ≈ 10, so by 2, 3, 5, or 7. But

2 | 101 =⇒ 2 | (101− 100) = 1, absurd,

3 | 101 =⇒ 3 | (101− 99) = 2, absurd,

5 | 101 =⇒ 5 | (101− 100) = 1, absurd,

7 | 101 =⇒ 7 | (101− 70) = 31 =⇒ 7 | (35− 31) = 4, absurd.

So 101 is prime, so 2020 = 22 × 51 × 1011 is the full factorisation.
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2. From the formulas σ0 (
∏
paii ) =

∏
(1 + ai) and σ1 (

∏
paii ) =

∏ p
ai+1
i −1
pi−1 , we find

that
σ0(2020) = (1 + 2)× (1 + 1)× (1 + 1) = 12,

and that

σ1(2020) =
23 − 1

2− 1
× 52 − 1

5− 1
× 1011 − 1

101− 1
= 7× (5 + 1)× (101 + 1) = 4284.

3. We have 6000 = 6× 1000 = 2× 3× 103 = 2× 3× (2× 5)3 = 24 × 3× 53, so

σ0(6000) = (1 + 4)× (1 + 1)× (1 + 3) = 40

and

σ1(6000) =
25 − 1

2− 1
× 32 − 1

3− 1
× 54 − 1

5− 1
= 31× 4× 156 = 19344.

Exercise 10 Divisors again

1. Find all integers M ∈ N of the form 3a5b such that the sum of the positive
divisors of M is 33883.

Hint: 33883 = 31× 1093, and both factors are prime.

2. Find all integers L ∈ N of the form 2a3b such that the product of the divisors
of L is 1215.

Hint: What are the divisors of L? Can you arrange them in a 2-dimensional
array? Count the number of 2’s, and deduce that the 2-adic valuation the
product of all these divisors is (b + 1)(1 + 2 + 3 + · · · + a). What about the
3-adic valuation?

Solution 10

1. Clearly, finding M is equivalent to finding a and b. So we are looking for
integers a, b ≥ 0 such that

(1 + 3 + · · ·+ 3a)(1 + 5 + · · ·+ 5b) = 31× 1093.

Since 13 and 1093 are prime, either one of the factors is 31 and the other is
1093, or one is 1 and the other is 33883.

By trying the values b = 0, 1, · · · , 7 (or better, by using 1 + 5 + · · · + 5b =
(5b+1 − 1)/4 to find b), we see that 33883 is not of the form 1 + 5 + · · · + 5b,
and similarly we see that 33883 is not of the form 1 + 3 + · · ·+ 3a either.

So we must have either 1 + 3 + · · · + 3a = 31 and 1 + 5 + · · · + 5b = 1093, or
the other way round. In the first case, we find again no solution; in the second
case, we find the unique solution a = 6, b = 2.

As a conclusion, the only solution is M = 3652.
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2. Again, we have to find a and b. The divisors of L are the 2x3y for 0 ≤ x ≤ a
and 0 ≤ y ≤ b. Let us multiply all of them, by order of increasing x.

• For x = 0, we are multiplying the b + 1 divisors 1, 3, · · · , 3b; these con-
tribute no power of 2.

• For x = 1, we are multiplying the b + 1 divisors 2, 2 · 3, · · · , 2 · 3b; each
contributes one factor 2, so in total they contribute b+ 1 factors 2.

• For x = 2, we are multiplying the divisors 22, 22 · 3, · · · , 22 · 3b; each
contributes two factors 2, so in total they contribute 2(b+ 1) factors 2.

•
...

• For x = a, we are multiplying the b+1 divisors divisors 2a, 2a·3, · · · , 2a·3b;
each contributes a factors 2, so in total they contribute a(b + 1) factors
2.

So in total we have 0+(b+1)+2(b+1)+ · · ·+a(b+1) = (b+1)(1+2+ · · ·+a)
factors 2.

Similarly, in total we have (a+ 1)(1 + 2 + · · ·+ b) factors 3, so the product of
the divisors of L is

2(b+1)(1+2+···+a)3(a+1)(1+2+···+b).

We want this to be 1215 = 230315, so by unicity of the factorization we must
solve the system {

(b+ 1)(1 + 2 + · · ·+ a) = 30,
(a+ 1)(1 + 2 + · · ·+ b) = 15.

Since 15 = 3 · 5 and 3 and 5 are prime, the second equation tells us that a+ 1
is either 1, 3, 5, or 15. Let us examine these cases separately.

• If a + 1 = 1, then a = 0 and 1 + 2 + · · · + b = 15, so b = 5, but then
(b+ 1)(1 + 2 + · · ·+ a) = 6 6= 30, so this does not work.

• If a+ 1 = 3, then 1 + 2 + · · ·+ b = 5, but there is no such b.

• If a+ 1 = 5, then a = 4 and 1 + 2 + · · ·+ b = 3, so b = 2, and then indeed
(b+ 1)(1 + 2 + · · ·+ a) = 30, so we have a solution.

• Finally, If a+ 1 = 15, then a = 14; but then (b+ 1)(1 + 2 + · · ·+ a) will
obviously be much more than 30, so this does no work either.

As a conclusion, the only such L is L = 2432.

Exercise 11 Fermat numbers

Let n ∈ N, and let N = 2n + 1. Prove that if N is prime, then n must be a power
of 2.

Hint: use the identity xm + 1 = (x + 1)(xm−1 − xm−2 + · · · − x + 1), which is
valid for all odd m ∈ N.
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Solution 11

Suppose on the contrary that n is not a power of 2. Then n is divisible by at least
one odd prime. Let p be such a prime, and write n = pq with q ∈ N. We thus have

N = 2n + 1 = 2pq + 1 = (2q)p + 1 = (2q + 1)(2q(p−1) − 2q(p−2) + · · · − 2q + 1)

according to the hint, since p is odd.
In order to conclude that N is composite, it is therefore enough to prove that

none of these two factors is ±1. But clearly 2q + 1 > 1, and if we had 2q(p−1) −
2q(p−2) + · · · − 2q + 1 = ±1, then we would have 2pq + 1 = ±(2q + 1), which is clearly
impossible since p > 3. We have thus found a non-trivial factorization of N , so N
is composite.

Remark: The Fermat numbers are the Fn = 22n+1, n ∈ N. They are named after
the French mathematician Pierre de Fermat, who noticed that F0, F1, F2, F3 and F4

are all prime, and conjectured in 1650 that Fn is prime for all n ∈ N. However, this
turned out to be wrong: in 1732, the Swiss mathematician Leonhard Euler proved
that F5 = 641× 6700417 is not prime. To this day, no other prime Fermat number
has been found; in fact it is unknown if there is any ! This is because Fn grows very
quickly with n, which makes it very difficult to test whether Fn is prime, even with
modern computers.

Exercise 12 Perfect numbers

A positive integer n is said to be perfect if it agrees with the sum of all of its divisors
other than itself; in other words, if σ1(n) = 2n. For instance, 6 is a perfect number,
because its divisors other than itself are 1, 2 and 3, and 1 + 2 + 3 = 6.

1. Let a be a positive integer, and let n = 2a(2a+1 − 1). Prove that if 2a+1 − 1 is
prime, then n is perfect.

We now want to prove that all even perfect numbers are of this form.

2. Let n be an even number. Why may we find integers a and b such that n = 2ab
and b is odd ?

3. In this question and in the following ones, we suppose that n is an even perfect
number. Prove that (2a+1 − 1) | b.

4. Let thus c ∈ N be such that b = (2a+1 − 1)c. Prove that σ1(b) = b+ c.

5. Deduce that c = 1.

6. Conclude that 2a+1 − 1 is prime.

7. Let q ∈ N. Prove that if 2q − 1 is prime, then q is also prime.

Hint: xm − 1 = (x− 1)(xm−1 + xm−2 + · · ·+ x+ 1).

8. Find two even perfect numbers (apart from 6).

11



Solution 12

1. The relation 2 × 2a + (−1) × (2a+1 − 1) = 1 proves that 2a and 2a+1 − 1 are
coprime, so

σ1
(
2a(2a+1 − 1)

)
= σ1(2

a)σ1(2
a+1 − 1)

since σ1 is a multiplicative function.

Now, we have σ1(2
a) = 2a+1−1

2−1 = 2a+1 − 1. Besides, for every prime p ∈ N we
obviously have σ1(p) = 1 + p, so if 2a+1− 1 is prime, then σ1(2

a+1− 1) = 2a+1,
which implies that

σ1(n) = (2a+1 − 1)2a+1 = 2n,

which means that n is perfect.

2. Let n =
∏r

i=1 p
ai
i be the factorization of n. Since n is even, one of the pi, say

p1 is equal to 2, and it exponent a1 is > 1. We can thus take a = a1 and
b =

∏r
i=2 p

ai
i ; indeed, since the pi are prime and 6= 2 for i > 2, they are odd,

so b, as a product of odd numbers, is odd.

Alternative proof: since 2 is prime and does not divide any of the pi for i > 2,
it does not divide b by Euclid’s lemma.

3. Since b is odd, 2a and b are coprime, so by multiplicativity of σ1 we get

σ1(n) = σ1(2
a)σ1(b) = (2a+1 − 1)σ1(b).

But if n is perfect, then σ1(n) = 2n, so we find that (2a+1 − 1) | 2n. Next,
(2a+1 − 1) is clearly odd, so it is coprime to 2; by Gauss’s lemma, we must
have (2a+1 − 1) | n.

4. We have
2a+1b = 2n = σ1(n) = (2a+1 − 1)σ1(b),

so

σ1(b) =
2a+1b

2a+1 − 1
=

2a+1(2a+1 − 1)c

2a+1 − 1
= 2a+1c = (2a+1 − 1)c+ c = b+ c.

5. If c > 1, then 1, c, and b are three distinct divisors of b, so that

1 + c+ b 6 σ1(b) = b+ c,

which is impossible. So necessarily c = 1.

6. From c = 1, we deduce that b = (2a+1 − 1)c = 2a+1 − 1, and that σ1(b) =
b + c = b + 1. Now, clearly 1 and b are divisors of b, and they are distinct
since a > 1. If b had other divisors, then we would have σ1(b) > 1 + b, which
is not the case. So the only divisors of b are 1 and b itself, which means that
b is prime.

7. Suppose q is composite. Then we can write q = kl with k, l > 1 integers. But
then

2q − 1 = (2k)l − 1 = (2k − 1)(2k(l−1) + 2k(l−2) + · · ·+ 2k + 1).

Since k and l are > 1, non of the factors of the RHS can be 1, so we have a
genuine factorisation of 2q − 1, which is thus composite. By contraposition, if
2q − 1 is prime, then so is q.
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8. According to the previous questions, we need to look for integers a ∈ N such
that 2a+1 − 1 is prime; and then n = 2a(2a+1 − 1) will be a perfect number.
By the previous question, we know that we can restrict our search to values
of a such that a+ 1 is prime. We see that a = 1 works, but it corresponds to
n = 6, so we need to try larger values of a.

For a = 2, we have 2a+1 − 1 = 7, which is prime; so n = 2a × 7 = 28 is a
perfect number.

For a = 4, we have 2a+1 − 1 = 31, which is prime; so n = 2a × 31 = 496 is
another perfect number.

Remarks: Prime numbers of the form 2q − 1 are called Mersenne primes after
Marin Mersenne (French, 17th century). Not all numbers of the form 2q − 1 with
q prime are prime, as the counter-example 211 − 1 = 23 × 89 shows. In fact, as of
today, only 49 primes q such that 2q − 1 is prime are known. As a result, only 49
Mersenne primes, and so only 49 even perfect numbers, are known. It is conjectured
that there exist infinitely many Mersenne primes, and so infinitely many even perfect
numbers, but this has never been proved. As for odd perfect numbers, if is unknown
if any exist!

Exercise 13 Ideals of Z
In this exercise, we define an ideal of Z to be a subset I ⊆ Z such that

• I is not empty,

• whenever i ∈ I and j ∈ J , we also have i+ j ∈ I,

• whenever x ∈ Z and i ∈ I, we also have xi ∈ I.

1. Let n ∈ Z. Prove that nZ = {nx, x ∈ Z} is an ideal of Z.

2. For which m,n ∈ Z do we have mZ = nZ?

3. Let I ⊂ Z be an ideal. Prove that whenever i ∈ I and j ∈ J , we also have
−i ∈ I, i− j ∈ I, and 0 ∈ I.

4. Let I ⊂ Z be an ideal. Prove that there exists n ∈ Z such that I = nZ.

Hint: If I 6= {0}, let n be the smallest positive element of I, and consider the
Euclidean division of the elements of i by n.

5. Prove that if I and J are ideals of Z, then

I + J = {i+ j | i ∈ I, j ∈ J}

is also an ideal of Z.

Hint: i+ j + i′ + j′ = i+ i′ + j + j′.

6. Let now a, b ∈ Z. By the previous question, aZ+ bZ is an ideal, so it is of the
form cZ for some c ∈ Z. Express c in terms of a and b.

Hint: If you are lost, write an English sentence describing the set aZ + bZ.
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7. Prove that if I and J are ideals of Z, then so is their intersection I ∩ J .

8. Let now a, b ∈ Z. By the previous question, aZ∩ bZ is an ideal, so it is of the
form cZ for some c ∈ Z. Express c in terms of a and b.

Solution 13

1. We have to check that nZ has the 3 properties required to be an ideal.

• We have 0 = 0n ∈ nZ, so nZ is not empty.

• Let i, j ∈ nZ. By definition of nZ, we have i = nx, j = ny for some
integers x, y ∈ Z. Then i+ j = nx+ny = n(x+ y) ∈ nZ since x+ y ∈ Z.

• Finally, let x ∈ Z and i ∈ Z. Again we have i = ny for some y ∈ Z; then
xn = xny = n(xy) ∈ nZ since xy ∈ Z.

2. By definition n = n1 ∈ nZ. So if mZ = nZ, we have m ∈ mZ = nZ, so m = nx
for some x ∈ Z. Similarly, n = my for some y ∈ Z. Thus m = nx = myx,
so m(1 − xy) = 0. If m = 0, then mZ = 0Z = {0x, x ∈ Z} = {0} 3 n so
n = 0 as well. If m 6= 0, then xy = 1; as x, y ∈ Z, this forces x = y = ±1,
whence n = ±m; conversely it is clear that if m = ±n, then mZ = nZ. So in
conclusion, mZ = nZ iff. m = ±n.

3. As i ∈ I, we have (−1)i ∈ I since −1 ∈ Z; similarly −j ∈ I. Thus i − j =
i+ (−j) ∈ I. Finally, since I 6= ∅, we can find i ∈, and then 0 = i− i ∈ I.

4. If I = {0}, we have I = 0Z. Suppose now that I 6= {0}. Since I 6= ∅, we
can find a nonzero i ∈ I. As −i ∈ I as well by the previous question, we can
suppose that i > 0. Thus

{i ∈ I | i > 0}

is a non-empty subset of N, so it has a smallest element. Call this element n.
Then n ∈ I, so nx ∈ I for all x ∈ Z since I is an ideal; thus nZ ⊆ I.

We now prove that actually I = nZ. Let i ∈ I. As n 6= 0, we may consider
the Euclidean division of i by n: i = nq + r, where q, r ∈ Z, 0 6 r < n. Then
nq ∈ I since n ∈ I, so r = i − nq ∈ I as well. But since 0 6 r < n,and since
n = min{i ∈ I |i > 0}, we necessarily have r = 0; thus i = nq + 0 = nq ∈ nZ.
Since i was arbitrary, this proves that I ⊆ nZ, whence finally I = nZ.

5. We have to check that I + J has the 3 properties required to be an ideal.

• Since I and J are ideals, they are not empty, so we can find i ∈ I and
j ∈ J . Then i+ j ∈ I + J , so I + J is not empty.

• Let x, y ∈ I + J . By definition of I + J , we can write x = i + j and
y = i′ + j′, with i, i′ ∈ I and j, j′ ∈ J . Then x + y = i + j + i′ + j′ =
(i + i′) + (j + j′) ∈ I + J since i + i′ ∈ I (because I is an ideal) and
j + j′ ∈ J (because J is an ideal).

• Finally, let x ∈ I + J and y ∈ Z. Again, we have x = i + j with i ∈ I
and j ∈ J , and then yx = yi + yj ∈ I + J since yi ∈ I (because I is an
ideal) and yj ∈ J (because J is an ideal).
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6. aZ is the set of numbers of the form ax (x ∈ Z), and bZ is the set of numbers
of the form by (y ∈ Z), so aZ + bZ is the set of numbers of the form ax+ by,
and Bézout tells us that these numbers are exactly the multiples of gcd(a, b).
So we have

aZ + bZ = gcd(a, b)Z,

and this identity is exactly (the strong version of) Bézout’s theorem.

7. We have to check that I ∩ J has the 3 properties required to be an ideal.

• Since I and J are ideals, they contain 0 by question 3., so 0 ∈ I ∩ J ,
which is thus nonempty.

• Let i, j ∈ I ∩ J . Then i, j ∈ I, so i + j ∈ I as I in an ideal; similarly,
i, j ∈ J , so i+ j ∈ J . Thus i+ j ∈ I ∩ J .

• Finally, let i ∈ I ∩ J and x ∈ Z. Then i ∈ I so xi ∈ I as I is an ideal;
similarly i ∈ J so xi ∈ J because J i an ideal. Thus xi ∈ I ∩ J .

8. aZ is the set of multiples of a, and bZ is the set of multiples of b, so aZ∩ bZ is
the set of common multiples of a and b. We have seen in class that these are
precisely the multiples of lcm(a, b), so

aZ ∩ bZ = lcm(a, b)Z.
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