Introduction to number theory Exercise sheet 2

https://www.maths.tcd.ie/~mascotn/teaching/2020/MAU22301/index.html
Version: October 14, 2020

Answers are due for Monday October 26th, 2PM.
The use of electronic calculators and computer algebra software is allowed.

Exercise 1 Euler

Compute $\phi(2020)$.

Exercise $2 A$ really large number

What is the remainder of $22^{7^{2020}}$ when divided by 17 ?
Just to be clear: $a^{b^{c}}$ means $a^{\left(b^{c}\right)}$, as opposed to $\left(a^{b}\right)^{c}=a^{b c}$.
These were the only mandatory exercises, that you must submit before the deadline. The following exercises are not mandatory; they are not worth any points, and you do not have to submit them. However, I highly recommend that you try to solve them for practice, and you are welcome to email me if you have questions about them. The solutions will be made available with the solution to the mandatory exercises.

Exercise 3 An inverse

1. Use the Euclidean algorithm to determine if 47 is invertible mod 111, and to find its inverse if it is.
2. Solve the equation $47 x \equiv 5 \bmod 111$ in $\mathbb{Z} / 111 \mathbb{Z}$.

Exercise 4 More inverses

1. Fix $n \in \mathbb{N}$, let $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$be invertible, and let $y \in \mathbb{Z} / n \mathbb{Z}$ be the inverse of x. Prove that $x^{2},-x$, and y are also invertible, and find their inverses.
2. Find all the elements of $(\mathbb{Z} / 15 \mathbb{Z})^{\times}$, and give the inverse of each of them. What is $\phi(15) ?$
Hint: Use the previous question to save your effort!

Exercise $5 A$ system of congruences

Find an integer $x \in \mathbb{Z}$ such that $x \equiv 12 \bmod 7$ and $x \equiv 7 \bmod 12$.

Exercise 6 Primes mod 6

1. Let p be a prime number which is neither 2 nor 3 . Prove that either $p \equiv$ $1 \bmod 6$ or $p \equiv-1 \bmod 6$.
2. Prove that there are infinitely many primes p such that $p \equiv-1 \bmod 6$.

Hint: Suppose on the contrary that there are finitely many, say p_{1}, \cdots, p_{k}. Let $N=6 p_{1} \cdots p_{k}-1$, and consider a prime divisor of N.
3. Why does the same proof fail to show that there are infinitely may primes p such that $p \equiv 1 \bmod 6$?
4. Dirichlet's theorem on primes in arithmetic progressions, which is way beyond the scope of this course, states that for all coprime positive integers a and b, there are infinitely many primes p such that $p \equiv a \bmod b$; in particular, there are in fact infinitely many primes p such that $p \equiv 1 \bmod 6$. Why, in the statement of this theorem, is it necessary to assume that a and b are coprime?

Exercise 7 Inverse Euler

The goal of this exercise is to find all integers $n \in \mathbb{N}$ such that $\phi(n)=4$.

1. Prove that if $p \in \mathbb{N}$ is a prime and $v \in \mathbb{N}$ is such that $p^{v} \mid n$, then $(p-1) p^{v-1} \mid$ $\phi(n)$.
Hint: When p is prime, what is $\phi\left(p^{v}\right)$?
2. Using the previous question, prove that if $\phi(n)=4$, then n cannot be divisible by a prime $p \geq 7$. Also prove that $3^{2}, 5^{2} \nmid n$.
3. Find all n such that $\phi(n)=4$.

Hint: Think in terms of the factorisation of n. You should find that there are four such n - but you are required to prove this as part of this question!

Exercise 8 More inverse Eulers

This exercise is a bit more difficult, but still doable. The questions are independent from each other.

1. Using the fact that $2018=2 \times 1009$ and that 1009 is prime, prove that there is no $n \in \mathbb{N}$ such that $\phi(n)=2018$.
Hint: Suppose 1009 is a factor of $\phi(n)$. Where can this factor come from?
2. Prove that for all $m \in \mathbb{N}$, there are at most finitely many $n \in \mathbb{N}$ such that $\phi(n)=m$.
Hint: Try to bound the prime factors of n in terms of m.
3. Prove that $\phi(n)$ is even for all $n \geq 3$.

Hint: Start with the case when n is a prime power.

Exercise 9 Divisibility criteria

Let $n \in \mathbb{N}$.

1. Prove that n is congruent $\bmod 9$ to the sum of its digits. In other words, if $n_{0}, n_{1}, n_{2}, \cdots$ are the digits of n from right to left, so that

$$
n=n_{0}+10 n_{1}+100 n_{2}+\cdots=\sum_{i} n_{i} 10^{i}
$$

then $n \equiv n_{0}+n_{1}+n_{2}+\cdots \bmod 9$.
2. Prove that $9 \mid n$ iff. 9 divides the sum of digits of n.
3. Find a similar criterion to test whether $11 \mid n$.

Exercise 10 A huge number!

In this exercise, you may use the fist question of the previous exercise: every integer is congruent mod 9 to the sum of its digits.

Let $A=4444^{4444}$, let B be the sum of the digits of A, let C be the sum of the digits of B, and finally let D be the sum of the digits of C.

1. Compute $D \bmod 9$.
2. Prove that $D \leq 14$.

Hint: Start with the upper bound $A<10000^{5000}=10^{20000}$.
3. What is the exact value of $D($ as opposed to just mod 9$)$?

[^0]
Exercise 11 Primitive roots mod 43

1．Suppose you choose an element of $(\mathbb{Z} / 43 \mathbb{Z})^{\times}$at random．What is the prob－ ability that this element is a primitive root？In other words，what is the proportion of elements of $(\mathbb{Z} / 43 \mathbb{Z})^{\times}$that are primitive roots？

2．Find a primitive root $g \in(\mathbb{Z} / 43 \mathbb{Z})^{\times}$．
3．What is the multiplicative order of g^{2020} ，where g is the primitive root found in the previous question？

4．Prove that every primitive root in $(\mathbb{Z} / 43 \mathbb{Z})^{\times}$is a power of g ．
5．For which $m \in \mathbb{Z}$ is g^{m} a primitive root？

Exercise 12 More primitive roots
1．Find a primitive root for $\mathbb{Z} / 7 \mathbb{Z}$ ．Justify your answer in detail．
2．Same question for $\mathbb{Z} / 11 \mathbb{Z}$ ．
3．Same question for $\mathbb{Z} / 23 \mathbb{Z}$ ．

Exercise 13 A multiplicative sequence

The goal of this exercise is to understand the behavior of the sequence $t_{n}=2^{n}$ in $\mathbb{Z} / 40 \mathbb{Z}$ ．

1．Why cannot we say that t_{n} is periodic mod 40 ＂as usual＂？
2．Find a formula for the values of $t_{n} \bmod 5$ in terms of n ．You answer should have the form＂if n is like this，then $t_{n}=$ this；if n is like that，then $t_{n}=$ that； if ．．．＂．

3．Find a formula for the values of $t_{n} \bmod 8$ in terms of n ．
Hint：Compute t_{n} for $n \leq 4$＂by hand＂．
4．Deduce a formula for $t_{n} \bmod 40$ ．What is the period？What is the length of the＂tail＂？
Hint：中国余数定理．

Exercise 14 A divisibility relation

Prove that $2^{3 n+5}+3^{n+1}$ is divisible by 5 for all $n \in \mathbb{N}$ ．
Hint：Multiplicative orders．

Exercise 15 Possible orders

1. Let $n \in \mathbb{N}$. Explain why the additive order of any $x \in \mathbb{Z} / n \mathbb{Z}$ is a divisor of n, and prove that for any $d \mid n$, there exists an $x \in \mathbb{Z} / n \mathbb{Z}$ of order d.
2. Let $p \in \mathbb{N}$ be a prime. Explain why the multiplicative order of any $x \in$ $(\mathbb{Z} / p \mathbb{Z})^{\times}$is a divisor of $p-1$, and prove that for any $d \mid(p-1)$, there exists an $x \in(\mathbb{Z} / p \mathbb{Z})^{\times}$of multiplicative order d.
3. Let $n \in \mathbb{N}$. Is it true that for any $d \mid \phi(n)$, there exists an $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$of multiplicative order d ?
4. Suppose that $n \in \mathbb{N}$, and that there exists an $x \in(\mathbb{Z} / n \mathbb{Z})^{\times}$of multiplicative order $n-1$. Prove that n must be prime.

[^0]: ${ }^{1}$ This means either finitely many or none.

