# Galois theory - Exercise sheet 4 

https://www.maths.tcd.ie/~mascotn/teaching/2019/MAU34101/index.html
Version: November 18, 2019

Answers are due for Tuesday November 19th, 3PM.

## Exercise 1 Galois groups over $\mathbb{Q}$ (100 pts)

Prove that the following polynomials have no repeated root in $\mathbb{C}$, and determine their Galois group over $\mathbb{Q}$. Warning: Some polynomials may be reducible!

1. (10 pts) $F_{1}(x)=x^{3}-4 x+6$,
2. (10 pts) $F_{2}(x)=x^{3}-7 x+6$,
3. $(10 \mathrm{pts}) F_{3}(x)=x^{3}-21 x-28$,
4. (10 pts) $F_{4}(x)=x^{3}-x^{2}+x-1$,
5. (60 pts) $F_{5}(x)=x^{5}-6 x+3$, using without proof the fact that this polynomial has exactly 3 real roots.

## Solution 1

1. Since $\operatorname{disc}\left(F_{1}\right)=-4 \cdot(-4)^{3}-27 \cdot 6^{2}=-716$ is nonzero, $F_{1}(x)$ has no repeated root, and since $-716<0$ is clearly not a square in $\mathbb{Q}, \operatorname{Gal}_{\mathbb{Q}}\left(F_{1}\right) \not \subset A_{3}$. Besides $F_{1}(x)$ is Eisenstein at $p=2$, so it is irreducible over $\mathbb{Q}$, so its Galois group is either $S_{3}$ or $A_{3}$. Conclusion:

$$
\operatorname{Gal}_{\mathbb{Q}}\left(F_{1}\right)=S_{3} .
$$

2. The possible rational roots of $F_{2}(x)$ are $\pm 1, \pm 2, \pm 3, \pm 6$. Checking these, we find that 1,2 , and -3 are roots of $F_{2}(x)$. Since $F_{2}(x)=(x-1)(x-2)(x+3)$ splits completely over $\mathbb{Q}$,

$$
\operatorname{Gal}_{\mathbb{Q}}\left(F_{2}\right)=\{\operatorname{Id}\} .
$$

3. Since $\operatorname{disc}\left(F_{3}\right)=-4 \cdot(-21)^{3}-27 \cdot(-28)^{2}=15876=126^{2}$ is a nonzero square in $\mathbb{Q}, F_{3}(x)$ has no repeated root, and its Galois group is contained in $A_{3}$. Besides $F_{3}(x)$ is Eisenstein at $p=7$, so it is irreducible over $\mathbb{Q}$, so its Galois group is either $S_{3}$ or $A_{3}$. Conclusion:

$$
\operatorname{Gal}_{\mathbb{Q}}\left(F_{3}\right)=A_{3} \simeq \mathbb{Z} / 3 \mathbb{Z}
$$

4. The possible roots of $F_{4}(x)$ are $\pm 1$. Of these, we check that only +1 is a root. Dividing $F_{4}(x)$ by $(x-1)$ reveals that $F_{4}(x)=(x-1)\left(x^{2}+1\right)$; in particular, $F_{4}(x)$ has no repeated root. Since the factor $x^{2}+1$ is clearly irreducible over $\mathbb{Q}$, we get

$$
\operatorname{Gal}_{\mathbb{Q}}\left(F_{4}\right)=\mathbb{Z} / 2 \mathbb{Z}
$$

(generated by complex conjugation swapping $i$ and $-i$ ).
5. Thanks to the formula

$$
\operatorname{disc}\left(x^{n}+b x+c\right)=(-1)^{n(n-1) / 2}\left((1-n)^{n-1} b^{n}+n^{n} c^{n-1}\right)
$$

we compute that

$$
\operatorname{disc}\left(F_{5}\right)=(-1)^{5 \cdot 4 / 2}\left((-4)^{4} \cdot(-6)^{5}+5^{5} \cdot 3^{4}\right)=-1737531
$$

Since $\operatorname{disc}\left(F_{5}\right) \neq 0, F_{5}$ has no repeated root, so it has 3 real roots and 2 complex-conjugate nonreal roots. We may also say that since $\operatorname{disc}\left(F_{5}\right)<0, F_{5}$ has an odd number of complex conjugate pairs of roots, which forces it to have 2 complex roots and 3 real roots, but this was not required by the question. Finally, since $\operatorname{disc}\left(F_{5}\right)<0$ is not a square in $\mathbb{Q}, \operatorname{Gal}_{\mathbb{Q}}\left(F_{5}\right) \not \subset A_{5}$, but this does not help us identify $\operatorname{Gal}_{\mathbb{Q}}\left(F_{5}\right)$.
Mod 2, we have $F_{5}(x) \equiv x^{5}-1$, which has $x=1 \mathrm{~s}$ a root. Dividing by $x-1$ shows that $F_{5}(x) \equiv(x-1) G(x)$, where $G(x)=x^{4}+x^{3}+x^{2}+x+1$. We check that $G(x)$ has no root in $\mathbb{F}_{2}$, so it has no linear factor. Besides, we compute that $\operatorname{gcd}\left(G, x^{4}-x\right)=1$ (we could see this directly: $\operatorname{gcd}\left(G, x^{4}-x\right)=$ $\operatorname{gcd}\left(G-\left(x^{4}-x\right), x^{4}-x\right)=\operatorname{gcd}\left(x^{3}+x^{2}+1, x^{4}-x\right)=1$ since $x^{3}+x^{2}+1$, having degree 3 and no root in $\mathbb{F}_{2}$, is irreducible, and thus has no factor of degree 1 or 2 ), so $G$ has no factor of degree 2 either (alternatively we know that the only irreducible polynomial of degree 2 over $\mathbb{F}_{2}$ is $x^{2}+x+1$, and $\left.G \neq\left(x^{2}+x+1\right)^{2}=x^{4}+x^{2}+1\right)$. As a conclusion, $G$ is irreducible, so the complete factorisation of $F_{5} \bmod 2$ is

$$
(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)
$$

which shows that $\operatorname{Gal}_{\mathbb{Q}}\left(F_{5}\right)$ contains a 4 -cycle (which confirms that $\mathrm{Gal}_{\mathbb{Q}}\left(F_{5}\right) \not \subset$ $A_{5}$ ).
Besides, complex conjugation is an element of $\operatorname{Gal}_{\mathbb{Q}}\left(F_{5}\right)$ which fixes the 3 real roots and swaps the 2 complex roots, so it is a 2 -cycle.
Finally, $F_{5}$ is irreducible over $\mathbb{Q}$ as it is Eisenstein at $p=3$, so $\operatorname{Gal}_{\mathbb{Q}}\left(F_{5}\right)$ is a transitive subgroup of $S_{5}$.
Since any transitive subgroup of $S_{n}$ containing an $(n-1)$-cycle and a 2-cycle must be the whole of $S_{n}$, we conclude that

$$
\operatorname{Gal}_{\mathbb{Q}}\left(F_{5}\right)=S_{5} .
$$

