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Answers are due for Tuesday November 19th, 3PM.

Exercise 1 Galois groups over Q (100 pts)

Prove that the following polynomials have no repeated root in C, and determine
their Galois group over Q. Warning: Some polynomials may be reducible!

1. (10 pts) F1(x) = x3 − 4x + 6,

2. (10 pts) F2(x) = x3 − 7x + 6,

3. (10 pts) F3(x) = x3 − 21x− 28,

4. (10 pts) F4(x) = x3 − x2 + x− 1,

5. (60 pts) F5(x) = x5− 6x+ 3, using without proof the fact that this polynomial
has exactly 3 real roots.

Solution 1

1. Since disc(F1) = −4 · (−4)3− 27 · 62 = −716 is nonzero, F1(x) has no repeated
root, and since −716 < 0 is clearly not a square in Q, GalQ(F1) 6⊂ A3. Besides
F1(x) is Eisenstein at p = 2, so it is irreducible over Q, so its Galois group is
either S3 or A3. Conclusion:

GalQ(F1) = S3.

2. The possible rational roots of F2(x) are ±1,±2,±3,±6. Checking these, we
find that 1, 2, and −3 are roots of F2(x). Since F2(x) = (x− 1)(x− 2)(x + 3)
splits completely over Q,

GalQ(F2) = {Id}.

3. Since disc(F3) = −4 · (−21)3− 27 · (−28)2 = 15876 = 1262 is a nonzero square
in Q, F3(x) has no repeated root, and its Galois group is contained in A3.
Besides F3(x) is Eisenstein at p = 7, so it is irreducible over Q, so its Galois
group is either S3 or A3. Conclusion:

GalQ(F3) = A3 ' Z/3Z.
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4. The possible roots of F4(x) are ±1. Of these, we check that only +1 is a root.
Dividing F4(x) by (x− 1) reveals that F4(x) = (x− 1)(x2 + 1); in particular,
F4(x) has no repeated root. Since the factor x2 + 1 is clearly irreducible over
Q, we get

GalQ(F4) = Z/2Z

(generated by complex conjugation swapping i and −i).

5. Thanks to the formula

disc(xn + bx + c) = (−1)n(n−1)/2
(
(1− n)n−1bn + nncn−1

)
,

we compute that

disc(F5) = (−1)5·4/2
(
(−4)4 · (−6)5 + 55 · 34

)
= −1737531.

Since disc(F5) 6= 0, F5 has no repeated root, so it has 3 real roots and 2
complex-conjugate nonreal roots. We may also say that since disc(F5) < 0, F5

has an odd number of complex conjugate pairs of roots, which forces it to have
2 complex roots and 3 real roots, but this was not required by the question.
Finally, since disc(F5) < 0 is not a square in Q, GalQ(F5) 6⊂ A5, but this does
not help us identify GalQ(F5).

Mod 2, we have F5(x) ≡ x5 − 1, which has x = 1 s a root. Dividing by x− 1
shows that F5(x) ≡ (x − 1)G(x), where G(x) = x4 + x3 + x2 + x + 1. We
check that G(x) has no root in F2, so it has no linear factor. Besides, we
compute that gcd(G, x4− x) = 1 (we could see this directly: gcd(G, x4− x) =
gcd(G − (x4 − x), x4 − x) = gcd(x3 + x2 + 1, x4 − x) = 1 since x3 + x2 + 1,
having degree 3 and no root in F2, is irreducible, and thus has no factor of
degree 1 or 2), so G has no factor of degree 2 either (alternatively we know
that the only irreducible polynomial of degree 2 over F2 is x2 + x + 1, and
G 6= (x2 + x + 1)2 = x4 + x2 + 1). As a conclusion, G is irreducible, so the
complete factorisation of F5 mod 2 is

(x− 1)(x4 + x3 + x2 + x + 1),

which shows that GalQ(F5) contains a 4-cycle (which confirms that GalQ(F5) 6⊂
A5).

Besides, complex conjugation is an element of GalQ(F5) which fixes the 3 real
roots and swaps the 2 complex roots, so it is a 2-cycle.

Finally, F5 is irreducible over Q as it is Eisenstein at p = 3, so GalQ(F5) is a
transitive subgroup of S5.

Since any transitive subgroup of Sn containing an (n− 1)-cycle and a 2-cycle
must be the whole of Sn, we conclude that

GalQ(F5) = S5.
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