Galois theory - Exercise sheet 3

https://www.maths.tcd.ie/~mascotn/teaching/2019/MAU34101/index.html
Version: November 12, 2019

Answers are due for Tueday November 12th, 3PM.

Exercise 1 The fifth cyclotomic field (100 pts)

In this exercise, we consider the primitive 5 th root $\zeta=e^{2 \pi i / 5}$, and we set $L=\mathbb{Q}(\zeta)$. We know that L is Galois over \mathbb{Q}, so we define $G=\operatorname{Gal}(L / \mathbb{Q})$. We also let

$$
\begin{gathered}
c=\frac{\zeta+\zeta^{-1}}{2}=\cos (2 \pi / 5)=0.309 \cdots \\
C=\mathbb{Q}(c)
\end{gathered}
$$

and finally

$$
c^{\prime}=\frac{\zeta^{2}+\zeta^{-2}}{2}=\cos (4 \pi / 5)=-0.809 \cdots
$$

1. (8 pts) Write down explicitly the minimal polynomial of ζ over \mathbb{Q}, and express its complex roots in terms of ζ.
2. $(3 \mathrm{pts})$ Deduce that $\zeta+\zeta^{2}+\zeta^{3}+\zeta^{4}=-1$.
3. (12 pts) Prove that G is a cyclic group. What is its order? Find an explicit generator of G.
4. (15 pts) Deduce that $c \notin \mathbb{Q}$.
5. (5 pts) Make the list of all subgroups of G.
6. (12 pts) Draw a diagram showing all the fields E such that $\mathbb{Q} \subset E \subset L$, ordered by inclusion.
7. (20 pts) What are the conjugates of c over \mathbb{Q} ? Determine explicitly the minimal polynomial of c over \mathbb{Q} (exact computations only, computations with the approximate value of c are forbidden).
8. (5 pts) Deduce that

$$
c=\frac{-1+\sqrt{5}}{4} .
$$

9. (20 pts) What are the conjugates of ζ over C (as opposed to over $\mathbb{Q})$? Deduce that

$$
\zeta=\frac{-1+\sqrt{5}+i \sqrt{10+2 \sqrt{5}}}{4}
$$

Solution 1

1. The minimal polynomial of ζ over \mathbb{Q} is the 5 th cyclotomic polynomial

$$
\Phi_{5}(x)=\frac{x^{5}-1}{\Phi_{1}(x)}=\frac{x^{5}-1}{x-1}=x^{4}+x^{3}+x^{2}+x+1 .
$$

Its complex roots are the primitive 5 -th roots of 1 , namely

$$
\left\{\zeta^{k} \mid k \in(\mathbb{Z} / 5 \mathbb{Z})^{\times}\right\}=\left\{\zeta, \zeta^{2}, \zeta^{3}, \zeta^{4}\right\} .
$$

2. This follows from the fact that ζ is a root of $\Phi_{5}(x)$. Alternatively,

$$
1+\zeta+\zeta^{2}+\zeta^{3}+\zeta^{4}=\sum \text { Roots of } x^{5}-1=- \text { Coeff. of } x^{4}=0
$$

3. We know that G can be identified to $(\mathbb{Z} / 5 \mathbb{Z})^{\times}$, and is thus an Abelian group of order 5. To prove that it is cyclic, we can either notice that $g=2 \in G$ is a generator since

$$
2 \neq 1, \quad 2^{2}=4 \neq 1, \quad 2^{3}=3 \neq 1, \quad 2^{4}=1,
$$

or say that since 5 is prime, $\mathbb{Z} / 5 \mathbb{Z}$ is a finite field, so its multiplicative group is cyclic (but then we still need to find a generator).
4. The element $2 \in G$ acts on L by $\zeta \mapsto \zeta^{2}$, and thus takes $c=\frac{\zeta+\zeta^{-1}}{2}$ to $\frac{\zeta^{2}+\zeta^{-2}}{2}=c^{\prime}$. Since $c^{\prime} \neq c$ (clear from their numerical values), we have $c \notin L^{G}$; but $L^{G}=\mathbb{Q}$ since L is Galois over \mathbb{Q}.
5. Since $G \simeq \mathbb{Z} / 4 \mathbb{Z}$ is cyclic of order 4 , its only nontrivial subgroup is $2 \mathbb{Z} / 4 \mathbb{Z} \simeq$ $\mathbb{Z} / 2 \mathbb{Z}$, and is generated by $g^{2}=4=-1$. Our list is thus

6. We already know that under the Galois correspondence, $\{1\}$ corresponds to L, and G to \mathbb{Q}. It remains to identify L^{H}.
We know that $\left[L^{H}: \mathbb{Q}\right]=[G: H]=2$; besides $-1 \in H$ acts by $\zeta \mapsto \zeta^{-1}$ (i.e. is the complex conjugation) and therefore fixes c, so that $c \in L^{H}$, whence

$$
C=\mathbb{Q}(c) \subseteq L^{H} .
$$

Since $c \notin \mathbb{Q}$, we have $C \supsetneq \mathbb{Q}$ and so $[C: \mathbb{Q}] \geqslant 2$, so finally

$$
L^{H}=C .
$$

Our diagram is thus

7. The conjugates of c over \mathbb{Q} are the $\sigma(c)$ for $\sigma \in \operatorname{Gal}(L / \mathbb{Q})$ (and also for $\sigma \in \operatorname{Gal}(C / \mathbb{Q}))$, i.e.

- c itself for $\sigma=1$,
- $\frac{\zeta^{2}+\zeta^{-2}}{2}=c^{\prime}$ for $\sigma=2$,
- $\frac{\zeta^{-2}+\zeta^{2}}{2}=c^{\prime}$ for $\sigma=3=-2$,
- and $\frac{\zeta^{-1}+\zeta}{2}=c$ for $\sigma=4=-1$,
so finally, just c itself and c^{\prime}. (We can get the same conclusion faster by taking σ in the smaller quotient $\operatorname{Gal}(C / \mathbb{Q})=G / H=(\mathbb{Z} / 5 \mathbb{Z})^{\times} / \pm 1$ of $\operatorname{Gal}(L / \mathbb{Q})$, if we are not afraid to work with this quotient). The minimal polynomial of c over \mathbb{Q} is thus

$$
\begin{aligned}
\prod_{\beta \text { conjugate to } c}(x-\beta) & =(x-c)\left(x-c^{\prime}\right) \\
& =x^{2}-\left(c+c^{\prime}\right) x+c c^{\prime} \\
& =x^{2}-\frac{\zeta+\zeta^{-1}+\zeta^{2}+\zeta^{-2}}{2} x+\frac{\left(\zeta+\zeta^{-1}\right)\left(\zeta^{2}+\zeta^{-2}\right)}{4} \\
& =x^{2}-\frac{\zeta+\zeta^{4}+\zeta^{2}+\zeta^{3}}{2} x+\frac{\zeta^{3}+\zeta^{4}+\zeta+\zeta^{2}}{4} \\
& =x^{2}+\frac{1}{2} x-\frac{1}{4} .
\end{aligned}
$$

8. By solving $x^{2}+\frac{1}{2} x-\frac{1}{4}=0$, we find that $\Delta=5 / 4$, whence

$$
c, c^{\prime}=\frac{-1 \pm \sqrt{5}}{4}
$$

Since $c>c^{\prime}$, we deduce that $c=\frac{-1+\sqrt{5}}{4}$ (and also that $c^{\prime}=\frac{-1-\sqrt{5}}{4}$).
9. The conjugates of ζ over C are the $\sigma(\zeta)$ for $\sigma \in \operatorname{Gal}(L / C)=H=\{ \pm 1\}$, hence $\zeta^{ \pm 1}$. Similarly to the previous question, the minimal polynomial of ζ over C is
$\prod_{\substack{\beta \text { conjugate } \\ \text { to onver } C}}(x-\beta)=(x-\zeta)\left(x-\zeta^{-1}\right)=x^{2}-\left(\zeta+\zeta^{-1}\right) x+\zeta \zeta^{-1}=x^{2}-2 c x+1 \in C[x]$,
whose roots are

$$
\frac{2 c \pm \sqrt{4 c^{2}-4}}{2}=c \pm \sqrt{c^{2}-1}=\frac{-1+\sqrt{5} \pm i \sqrt{10+2 \sqrt{5}}}{4}
$$

using $c=\frac{-1+\sqrt{5}}{4}$. Since ζ (as opposed to ζ^{-1}) is the root with positive imaginary part (draw a regular pentagon; alternatively $\operatorname{Im} \zeta=\sin (2 \pi / 5)>0$ as $2 \pi / 5<\pi$), we conclude that

$$
\zeta=\frac{-1+\sqrt{5}+i \sqrt{10+2 \sqrt{5}}}{4}
$$

