Galois theory - Exercise sheet 2

https://www.maths.tcd.ie/~mascotn/teaching/2019/MAU34101/index.html
Version: October 29, 2019

Answers are due for Tuesday October 29th, 3PM.

Exercise 1 Yes or no (35 pts)

Let $f(x)=x^{3}+x+1 \in \mathbb{Q}[x]$ (you may assume without proof that f is irreducible over $\mathbb{Q})$, and let $L=\mathbb{Q}[x] /(f)$.

1. (10 pts) Is L a separable extension of \mathbb{Q} ? Explain.
2. (20 pts) Is L a normal extension of \mathbb{Q} ? Explain.

Hint: What does the fact that $f: \mathbb{R} \longrightarrow \mathbb{R}$ is strictly increasing tell you about the complex roots of f ?
3. (5 pts) Is L a Galois extension of \mathbb{Q} ? Explain.

Solution 1

1. Yes, since all fields of characteristic 0 are perfect.
2. Since $f: \mathbb{R} \longrightarrow \mathbb{R}$ is strictly increasing, f has exactly one real root α (intermediate value theorem) and thus one complex-conjugate pair of roots $\beta, \bar{\beta}$. The images of L by its $[L: \mathbb{Q}]=3 \mathbb{Q}$-embeddings into \mathbb{C} are $\mathbb{Q}(\alpha) \subset \mathbb{R}, \mathbb{Q}(\beta) \not \subset \mathbb{R}$, and $\mathbb{Q}(\bar{\beta}) \not \subset \mathbb{R}$. Since some are $\subset \mathbb{R}$ but others are not, they do not all agree, so L is not normal over \mathbb{Q}.
3. No, since it is not normal over \mathbb{Q}.

Exercise 2 Square roots (65 pts)

Let $L=\mathbb{Q}(\sqrt{10}, \sqrt{42})$.
In this exercise, you may use without proof the fact that for all $a, b \in \mathbb{Q}^{\times}$,

$$
\begin{aligned}
\mathbb{Q}(\sqrt{a})=\mathbb{Q}(\sqrt{b}) & \Longleftrightarrow \sqrt{b} \in \mathbb{Q}(\sqrt{a}) \\
& \Longleftrightarrow a / b \text { is a square in } \mathbb{Q} \\
& \Longleftrightarrow \text { The numerator and denominator of a/b are squares. }
\end{aligned}
$$

1. (5 pts) Prove that L is a Galois extension of \mathbb{Q}.
2. (10 pts) Prove that $[L: \mathbb{Q}]=4$.
3. (15 pts) Describe all the elements of $\operatorname{Gal}(L / \mathbb{Q})$. What is $\operatorname{Gal}(L / \mathbb{Q})$ isomorphic to?
4. (20 pts) Sketch the diagram showing all intermediate extensions $\mathbb{Q} \subset E \subset L$, ordered by inclusion (you may re-use without proof the subgroup diagram of $\operatorname{Gal}(L / \mathbb{Q})$ seen in class). Explain clearly which field corresponds to which subgroup.
5. (15 pts) Does $\sqrt{15} \in L$? Use the previous question to answer.

Solution 2

1. L is the splitting field over \mathbb{Q} of $\left(x^{2}-10\right)\left(x^{2}-42\right) \in \mathbb{Q}[x]$ which is separable (not multiple root), so it is Galois over \mathbb{Q}.
2. Since 10 is not a square, $\mathbb{Q}(\sqrt{10}) \neq \mathbb{Q}$, so $[\mathbb{Q}(\sqrt{10}): \mathbb{Q}]=2$. In order to conclude that $[L: \mathbb{Q}]=4$, we need to prove that $[L: \mathbb{Q}(\sqrt{10})]$ is 2 and not 1, i.e. that $\sqrt{42} \notin \mathbb{Q}(\sqrt{10})$. This follows from the fact that $\frac{42}{10}=\frac{21}{5}$ is not a square in \mathbb{Q}.
3. We already know that $\# \operatorname{Gal}(L / \mathbb{Q})=[L: \mathbb{Q}]=4$ since L is Galois over \mathbb{Q}. Besides, an element $\sigma \in \operatorname{Gal}(L / \mathbb{Q})$ must take $\sqrt{10} \in L$ to a root of $x^{2}-10 \in \mathbb{Q}[x]$, i.e. to $\pm \sqrt{10}$; and similarly $\sigma(\sqrt{42})= \pm \sqrt{42}$. Since σ is completely determined by what it does to $\sqrt{10}$ and to $\sqrt{42}$, this leaves us with only 4 possibilities for σ. But since $\# \operatorname{Gal}(L / \mathbb{Q})=4$, all these possibilities must occur. Therefore, $\operatorname{Gal}(L / \mathbb{Q})$ is made up of

- Id,
- $\sigma: \sqrt{10} \mapsto-\sqrt{10}, \sqrt{42} \mapsto \sqrt{42}$,
- $\tau: \sqrt{10} \mapsto \sqrt{10}, \sqrt{42} \mapsto-\sqrt{42}$,
- $\sigma \tau: \sqrt{10} \mapsto-\sqrt{10}, \sqrt{42} \mapsto-\sqrt{42}$.

We see that $\sigma \tau=\tau \sigma$, and that $\sigma^{2}=\tau^{2}=(\sigma \tau)^{2}=\mathrm{Id}$. Therefore

$$
\begin{array}{clc}
(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z}) & \longrightarrow & \operatorname{Gal}(L / \mathbb{Q}) \\
(a, b) & \longmapsto & \sigma^{a} \tau^{b}
\end{array}
$$

is a group isomorphism.
4. We know from class that since $\operatorname{Gal}(L / \mathbb{Q}) \simeq(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$, its subgroup diagram is

Let us now find the corresponding fields.

- Clearly, $L^{\{\mathrm{Id}\}}=L$.
- We also have $L^{\operatorname{Gal}(L / \mathbb{Q})}=\mathbb{Q}$ since L is Galois over \mathbb{Q}.
- We know that $L^{\{\mathrm{Id}, \sigma\}}$ is an extension of \mathbb{Q} of degree $[\operatorname{Gal}(L / \mathbb{Q}):\{\operatorname{Id}, \sigma\}]=$ 2. It is the subfield of L formed of the elements fixed by σ, so it contains $\sqrt{42}$ and thus $\mathbb{Q}(\sqrt{42})$. Since the latter is already an extension of \mathbb{Q} of degree 2 , it must agree with $L^{\{\mathrm{Id}, \sigma\}}$.
- Similarly, $L^{\{\mathrm{Id}, \tau\}}$ is an extension of degree 2 of \mathbb{Q}, which contains $\sqrt{10}$ as it is fixed by τ, so $L^{\{\mathrm{Id}, \tau\}}=\mathbb{Q}(\sqrt{10})$.
- Finally, $L^{\{\mathrm{Id}, \sigma \tau\}}$ is an extension of degree 2 of \mathbb{Q}, but it contains neither $\sqrt{10}$ nor $\sqrt{42}$ since they are not fixed by $\sigma \tau$. However, $\sqrt{10} \sqrt{42}=\sqrt{420}$ is fixed by $\sigma \tau$ since

$$
\sigma \tau(\sqrt{10} \sqrt{42})=(-\sqrt{10})(-\sqrt{42})
$$

so $L^{\{\mathrm{Id}, \sigma \tau\}}=\mathbb{Q}(\sqrt{420})=\mathbb{Q}(\sqrt{105})$.
The field diagram is thus

5. No. Indeed, if $\sqrt{15} \in L$, then $\mathbb{Q}(\sqrt{15})$ is an intermediate field, but that contradicts the previous question since $\mathbb{Q}(\sqrt{15})$ is neither of $\mathbb{Q}(\sqrt{10}), \mathbb{Q}(\sqrt{42})$, $\mathbb{Q}(\sqrt{105})$ as neither $\frac{15}{10}=\frac{3}{2}, \frac{15}{42}=\frac{5}{14}, \frac{15}{105}=\frac{1}{7}$ are squares in \mathbb{Q}.

