# Galois theory — Exercise sheet 2

https://www.maths.tcd.ie/~mascotn/teaching/2019/MAU34101/index.html

Version: October 29, 2019

Answers are due for Tuesday October 29th, 3PM.

### **Exercise 1** Yes or no (35 pts)

Let  $f(x) = x^3 + x + 1 \in \mathbb{Q}[x]$  (you may assume without proof that f is irreducible over  $\mathbb{Q}$ ), and let  $L = \mathbb{Q}[x]/(f)$ .

- 1. (10 pts) Is L a separable extension of  $\mathbb{Q}$ ? Explain.
- 2. (20 pts) Is L a normal extension of Q? Explain.
  Hint: What does the fact that f : R → R is strictly increasing tell you about the complex roots of f?
- 3. (5 pts) Is L a Galois extension of  $\mathbb{Q}$ ? Explain.

### Solution 1

- 1. Yes, since all fields of characteristic 0 are perfect.
- 2. Since  $f : \mathbb{R} \longrightarrow \mathbb{R}$  is strictly increasing, f has exactly one real root  $\alpha$  (intermediate value theorem) and thus one complex-conjugate pair of roots  $\beta$ ,  $\overline{\beta}$ . The images of L by its  $[L : \mathbb{Q}] = 3$   $\mathbb{Q}$ -embeddings into  $\mathbb{C}$  are  $\mathbb{Q}(\alpha) \subset \mathbb{R}$ ,  $\mathbb{Q}(\beta) \not\subset \mathbb{R}$ , and  $\mathbb{Q}(\overline{\beta}) \not\subset \mathbb{R}$ . Since some are  $\subset \mathbb{R}$  but others are not, they do not all agree, so L is not normal over  $\mathbb{Q}$ .
- 3. No, since it is not normal over  $\mathbb{Q}$ .

#### **Exercise 2** Square roots (65 pts)

Let  $L = \mathbb{Q}(\sqrt{10}, \sqrt{42}).$ 

In this exercise, you may use without proof the fact that for all  $a, b \in \mathbb{Q}^{\times}$ ,

$$\begin{aligned} \mathbb{Q}(\sqrt{a}) &= \mathbb{Q}(\sqrt{b}) \Longleftrightarrow \sqrt{b} \in \mathbb{Q}(\sqrt{a}) \\ &\iff a/b \text{ is a square in } \mathbb{Q} \\ &\iff The \text{ numerator and denominator of } a/b \text{ are squares}. \end{aligned}$$

- 1. (5 pts) Prove that L is a Galois extension of  $\mathbb{Q}$ .
- 2. (10 pts) Prove that  $[L:\mathbb{Q}] = 4$ .
- 3. (15 pts) Describe all the elements of  $\operatorname{Gal}(L/\mathbb{Q})$ . What is  $\operatorname{Gal}(L/\mathbb{Q})$  isomorphic to?
- 4. (20 pts) Sketch the diagram showing all intermediate extensions  $\mathbb{Q} \subset E \subset L$ , ordered by inclusion (you may re-use without proof the subgroup diagram of  $\operatorname{Gal}(L/\mathbb{Q})$  seen in class). Explain clearly which field corresponds to which subgroup.
- 5. (15 pts) Does  $\sqrt{15} \in L$ ? Use the previous question to answer.

## Solution 2

- 1. L is the splitting field over  $\mathbb{Q}$  of  $(x^2 10)(x^2 42) \in \mathbb{Q}[x]$  which is separable (not multiple root), so it is Galois over  $\mathbb{Q}$ .
- 2. Since 10 is not a square,  $\mathbb{Q}(\sqrt{10}) \neq \mathbb{Q}$ , so  $[\mathbb{Q}(\sqrt{10}) : \mathbb{Q}] = 2$ . In order to conclude that  $[L : \mathbb{Q}] = 4$ , we need to prove that  $[L : \mathbb{Q}(\sqrt{10})]$  is 2 and not 1, i.e. that  $\sqrt{42} \notin \mathbb{Q}(\sqrt{10})$ . This follows from the fact that  $\frac{42}{10} = \frac{21}{5}$  is not a square in  $\mathbb{Q}$ .
- 3. We already know that  $\# \operatorname{Gal}(L/\mathbb{Q}) = [L : \mathbb{Q}] = 4$  since L is Galois over  $\mathbb{Q}$ . Besides, an element  $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$  must take  $\sqrt{10} \in L$  to a root of  $x^2 10 \in \mathbb{Q}[x]$ , i.e. to  $\pm \sqrt{10}$ ; and similarly  $\sigma(\sqrt{42}) = \pm \sqrt{42}$ . Since  $\sigma$  is completely determined by what it does to  $\sqrt{10}$  and to  $\sqrt{42}$ , this leaves us with only 4 possibilities for  $\sigma$ . But since  $\# \operatorname{Gal}(L/\mathbb{Q}) = 4$ , all these possibilities must occur. Therefore,  $\operatorname{Gal}(L/\mathbb{Q})$  is made up of
  - Id,
  - $\sigma: \sqrt{10} \mapsto -\sqrt{10}, \ \sqrt{42} \mapsto \sqrt{42}$
  - $\tau: \sqrt{10} \mapsto \sqrt{10}, \ \sqrt{42} \mapsto -\sqrt{42},$
  - $\sigma\tau:\sqrt{10}\mapsto-\sqrt{10},\ \sqrt{42}\mapsto-\sqrt{42}$

We see that  $\sigma \tau = \tau \sigma$ , and that  $\sigma^2 = \tau^2 = (\sigma \tau)^2 = \text{Id.}$  Therefore

$$\begin{array}{ccc} (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) & \longrightarrow & \operatorname{Gal}(L/\mathbb{Q}) \\ (a,b) & \longmapsto & \sigma^a \tau^b \end{array}$$

is a group isomorphism.

4. We know from class that since  $\operatorname{Gal}(L/\mathbb{Q}) \simeq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ , its subgroup diagram is



Let us now find the corresponding fields.

- Clearly,  $L^{\{\mathrm{Id}\}} = L$ .
- We also have  $L^{\operatorname{Gal}(L/\mathbb{Q})} = \mathbb{Q}$  since L is Galois over  $\mathbb{Q}$ .
- We know that L<sup>{Id,σ}</sup> is an extension of Q of degree [Gal(L/Q) : {Id, σ}] = 2. It is the subfield of L formed of the elements fixed by σ, so it contains √42 and thus Q(√42). Since the latter is already an extension of Q of degree 2, it must agree with L<sup>{Id,σ}</sup>.
- Similarly,  $L^{\{\mathrm{Id},\tau\}}$  is an extension of degree 2 of  $\mathbb{Q}$ , which contains  $\sqrt{10}$  as it is fixed by  $\tau$ , so  $L^{\{\mathrm{Id},\tau\}} = \mathbb{Q}(\sqrt{10})$ .
- Finally,  $L^{\{\mathrm{Id},\sigma\tau\}}$  is an extension of degree 2 of  $\mathbb{Q}$ , but it contains neither  $\sqrt{10}$  nor  $\sqrt{42}$  since they are not fixed by  $\sigma\tau$ . However,  $\sqrt{10}\sqrt{42} = \sqrt{420}$  is fixed by  $\sigma\tau$  since

$$\sigma\tau(\sqrt{10}\sqrt{42}) = (-\sqrt{10})(-\sqrt{42}),$$

so  $L^{\{\mathrm{Id},\sigma\tau\}} = \mathbb{Q}(\sqrt{420}) = \mathbb{Q}(\sqrt{105}).$ 

The field diagram is thus



5. No. Indeed, if  $\sqrt{15} \in L$ , then  $\mathbb{Q}(\sqrt{15})$  is an intermediate field, but that contradicts the previous question since  $\mathbb{Q}(\sqrt{15})$  is neither of  $\mathbb{Q}(\sqrt{10})$ ,  $\mathbb{Q}(\sqrt{42})$ ,  $\mathbb{Q}(\sqrt{105})$  as neither  $\frac{15}{10} = \frac{3}{2}$ ,  $\frac{15}{42} = \frac{5}{14}$ ,  $\frac{15}{105} = \frac{1}{7}$  are squares in  $\mathbb{Q}$ .