

**Coláiste na Tríonóide, Baile Átha Cliath Trinity College Dublin** Ollscoil Átha Cliath | The University of Dublin

# Faculty of Engineering, Mathematics and Science

# School of Mathematics

JS/SS Maths/TP/TJH

Michaelmas Term 2019

Galois theory

Nicolas Mascot

## Instructions to Candidates:

This exam contains **four** exercises. However, you must only attempt **three** of them: exercise 1 (**mandatory**), and **any two** of exercises 2, 3, and 4. Non-programmable calculators are permitted for this examination.

You may not start this examination until you are instructed to do so by the Invigilator.

### **Exercise 1** Bookwork (30 pts)

- 1. (10 pts) Let K be a field, and  $P(x) \in K[x]$  be an irreducible polynomial. Give the definition of the stem field and of the splitting field of P(x) over K. Give an example of K and P(x) where the stem field and the splitting field are not the same.
- 2. (10 pts) State the Galois correspondence.
- 3. (10 pts) Let K be a field, let F(x) ∈ K[x], and let G be the Galois group of F(x) over K. Which property must G have for F(x) to be solvable by radicals over K? Explain what this property means in terms of subgroups of G. Give an example of a group G that satisfies this property, and of one that does not (no justification needed).

## Solution 1

- The stem field is the field generated over K by one root of P(x), whereas the splitting field is the field generated over K by all the roots of P(x). For instance, if K = Q and P(x) = x<sup>3</sup> 2, then a stem field is L = Q(<sup>3</sup>√2) (the fields obtained by choosing other roots of P(x) are isomorphic to this one), whereas the splitting field is N = Q(<sup>3</sup>√2, ζ<sub>3</sub><sup>3</sup>√2, ζ<sub>3</sub><sup>2</sup>√2) = L(ζ<sub>3</sub>), where ζ<sub>3</sub> = e<sup>2πi/3</sup>. Since L ⊂ ℝ whereas ζ<sub>3</sub> ∉ ℝ, we have ζ<sub>3</sub> ∉ L, so N = L(ζ<sub>3</sub>) ⊋ L.
- 2. Let  $K \subset L$  be a finite Galois extension of Galois group  $G = \operatorname{Gal}(L/K)$ . Then the maps

$$\{ \text{subgroups of } G \} \longleftrightarrow \{ \text{intermediate extensions } K \subseteq E \subseteq L \}$$
$$H \longmapsto L^{H}$$
$$\text{Gal}(L/E) \longleftrightarrow E$$

are bijections and are inverses of each other. Furthermore, the intermediate extension E is Galois over K iff. the corresponding subgroup H is normal in G.

3. (10 pts) F(x) is solvable by radicals over K if and only if G is solvable, which means that there exists a composition series

$${\mathrm{Id}} = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$$

with  $G_{i+1}/G_i$  Abelian for all *i*. Another equivalent characterisation is that the iterated derived subgroup  $D^n(G)$  is reduced to {Id} for *n* large enough. For example,  $\mathbb{Z}/2\mathbb{Z}$  is solvable (since it is Abelian), whereas the symmetric group  $S_5$  is not solvable (since  $D(A_5) = A_5$ ).

**Exercise 2** Nested radicals (35 pts)

Let  $\alpha = \sqrt{3 + \sqrt{5}}$  and  $\beta = \sqrt{3 - \sqrt{5}}$ , so that  $\alpha$  and  $\beta$  are both roots of  $F(x) = (x^2 - 3)^2 - 5$ . Finally, let  $L = \mathbb{Q}(\alpha)$ .

- 1. (6 pts) Prove that  $[L : \mathbb{Q}] = 4$ .
- 2. (7 pts) Prove that L is a Galois extension of  $\mathbb{Q}$ . Hint: Compute  $\alpha\beta$ .
- 3. (6 pts) Prove that  $\operatorname{Gal}(L/\mathbb{Q}) \simeq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ .
- 4. (8 pts) Sketch a diagram showing all fields E such that  $\mathbb{Q} \subseteq E \subseteq L$ , and identifying these fields explicitly. Justify your answer.

*Hint:* Compute  $(\alpha + \beta)^2$ .

5. (8 pts) Prove that F(x) is reducible mod p for every prime number  $p \in \mathbb{N}$ .

## Solution 2

(This exercise is similar to an example seen in class.)

1. We have  $\mathbb{Q} \subset \mathbb{Q}(\sqrt{5}) \subset L$ , and clearly  $[\mathbb{Q}(\sqrt{5}) : \mathbb{Q}] = 2$ . We thus need to prove that  $[L : \mathbb{Q}(\sqrt{5})] = 2$ , i.e. that  $3 + \sqrt{5}$  is not a square in  $\mathbb{Q}(\sqrt{5})$ . And indeed, if it were the case, then there would exist  $a, b \in \mathbb{Q}$  such that  $3 + \sqrt{5} = (a + b\sqrt{5})^2 = a^2 + 5b^2 + 2ab\sqrt{5}$ , whence  $a^2 + 5b^2 = 3$  and 2ab = 1 since  $(1, \sqrt{5})$  is a  $\mathbb{Q}$ -basis of  $\mathbb{Q}(\sqrt{5})$ . Replacing b with 1/2a yields  $a^4 - 3a^2 + 5/4 = 0$ , whence  $a^2 = \frac{3\pm\sqrt{4}}{2}$  whence  $a^2 = 1/2$  or 5/2, absurd since  $a \in \mathbb{Q}$ .

- We find that αβ = 2, whence β = 2/α ∈ L. Therefore, the roots ±α, ±β of F(x) all lie in L, so L is the splitting field of F(x) over Q, and is therefore normal over Q. It is also separable over Q since we are in characteristic 0.
- 3. The elements σ ∈ Gal(L/Q) are determined by what they do to the generator α. Besides σ(α) must be one of the 4 roots of F(x). Since #Gal(L/Q) = [L:Q] = 4 by the previous questions, the 4 elements of Gal(L/Q) are Id, σ<sub>1</sub> : α ↦ -α, σ<sub>2</sub> : α ↦ β = 2/α, and σ<sub>3</sub> : α ↦ -β = -2/α. Since all of these are involutions (e.g. σ<sub>3</sub><sup>2</sup>(α) = σ<sub>3</sub>(-2/α) = -2/σ<sub>3</sub>(α) = α), we have Gal(L/Q) ≃ (Z/2Z) × (Z/2Z).
- 4. We have seen in class that the subgroup diagram of  $\operatorname{Gal}(L/\mathbb{Q})$  is



Clearly, the subfield corresponding to {Id} is L, and that corresponding to  $\operatorname{Gal}(L/\mathbb{Q})$  is  $\mathbb{Q}$ . Let us denote the 3 other ones by  $E_i = L^{\{\operatorname{Id},\sigma_i\}}$  (i = 1, 2, 3), so that the elements of  $E_i$  are the fixed points of  $\sigma_i$ ; besides we know that  $[E_i : \mathbb{Q}] = [\operatorname{Gal}(L/\mathbb{Q}) : \{\operatorname{Id},\sigma_i\}] = 2$ .

Since  $\sigma_1(\alpha) = -\alpha$ ,  $\alpha^2 = 3 + \sqrt{5}$  is fixed by  $\sigma_1$ , so  $E_1 = \mathbb{Q}(\alpha^2) = \mathbb{Q}(\sqrt{5})$ .

Since  $\sigma_2(\alpha) = \beta$ ,  $\alpha + \beta$  is fixed by  $\sigma_2$ ; besides  $(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta = 6 + 4 = 10$ , so  $E_2$  contains  $\alpha + \beta = \sqrt{10}$ . Since  $[E_2 : \mathbb{Q}] = 2$ , we deduce that  $E_2 = \mathbb{Q}(\sqrt{10})$ .

Since  $\sigma_3(\alpha) = -\beta$ ,  $\alpha - \beta$  is fixed by  $\sigma_3$ ; besides  $(\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha\beta = 6 - 4 = 2$ , so  $E_3$  contains  $\alpha - \beta = \sqrt{2}$ . Since  $[E_3 : \mathbb{Q}] = 2$ , we deduce that  $E_3 = \mathbb{Q}(\sqrt{2})$ .

Page 4 of 8

In conclusion, the subfield diagram is



5. Two cases: If p divides disc f, then f mod p ha a repeated factor and is thus reducible. If now p does not divide disc f, then the factorisation pattern of f mod p represents the cycle decomposition of an element of Gal(L/Q) acting on the roots of f. If this element is Id, then f splits completely mod p. Else, this element is one of the σ<sub>i</sub>, which act as product of two disjoint transpositions, so f mod p has two irreducible factors of degree 2. Either way, f mod p is always reducible (even though f is irreducible over Z!).

## **Exercise 3** A polynomial with Galois group $A_4$ (35 pts)

Let  $F(x) = x^4 - 2x^3 + 2x^2 + 2 \in \mathbb{Q}[x]$ . We denote the roots of F(x) in  $\mathbb{C}$  by  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ , and  $\alpha_4$ .

In this exercise, you may use without proof the following facts:

- The discriminant of f is  $\Delta_f = 3136 = 2^6 \cdot 7^2$ .
- The transitive subgroups of the symmetric group  $S_4$  are
  - $S_4$  itself,
  - the alternate group  $A_4$ ,
  - the dihedral group  $D_8$  of symmetries of the square,
  - the Klein group  $V_4 = \{ \mathrm{Id}, (12)(34), (13)(24), (14)(23) \} \simeq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}),$
  - and the cyclic group  $\mathbb{Z}/4\mathbb{Z}$ .
- 1. (2 pts) Show that F(x) is irreducible over  $\mathbb{Q}$ .
- 2. (7 *pts*) Show that F(x) factors mod 3 as a linear factor times an irreducible factor of degree 3.
- 3. (8 pts) Show that the Galois group of F(x) is  $A_4$ .
- 4. (9 pts) Prove that  $\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \mathbb{Q}(\alpha_1, \alpha_2)$ .
- 5. (9 pts) Determine the degrees of the irreducible factors of F(x) over  $\mathbb{Q}(\alpha_1)$ .

## Solution 3

- 1. This follows from the fact that f is Eisenstein at 2.
- 2. First of all, f has a root mod 3, namely  $x = 1 \mod 3$ . In particular,  $F(x)/(x-1) \in \mathbb{F}_3[x]$ ; we compute that actually  $F(x) \equiv (x-1)(x^3-x^2+x+1) \mod 3$ . Besides  $g(x) = x^3 x^2 + x + 1$  has no roots in  $\mathbb{F}_3$ , so it is irreducible since it has degree 3.

### Page 6 of 8

- Let G = Gal<sub>Q</sub>(f). Then G is a subgroup of S<sub>4</sub>. By the first question, G is transitive, so it is one of the groups on the list given at the beginning of the exercise. By the previous question, G contains a 3-cycle; this eliminates all possibilities except S<sub>4</sub> and A<sub>4</sub>. Finally, since Δ<sub>f</sub> is a square in Q, G is contained in A<sub>4</sub>.
- 4. Let L = Q(α<sub>1</sub>, α<sub>2</sub>, α<sub>3</sub>, α<sub>4</sub>) and E = Q(α<sub>1</sub>, α<sub>2</sub>). We know that L is Galois over Q, with Galois group A<sub>4</sub>. The subgroup H corresponding to E is the subgroup of A<sub>4</sub> consisting of permutations that leave both α<sub>1</sub> and α<sub>2</sub> fixed. In S<sub>4</sub>, the only such permutations are Id and (34), but (34) ∉ S<sub>4</sub>, so H = {Id}. Therefore E = L.
- 5. Let  $L = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$  above, and  $E' = \mathbb{Q}(\alpha_1)$ . Clearly, we have the (possibly incomplete) factorisation  $F(x) = (x \alpha_1)h(x)$  over E', where  $h(x) = (x \alpha_2)(x \alpha_3)(x \alpha_4) = F(x)/(x \alpha_1) \in E'[x]$ . The subgroup H' corresponding to E' is the stabiliser of  $\alpha_1$ . In particular, it contains the 3-cycle  $\sigma = (234)$ . Since  $\sigma \in H' = \operatorname{Gal}(L/E')$  permutes the roots of h(x) transitively, h(x) is irreducible over E'. We thus have two irreducible factors, one of degree 1 and one of degree 3.

## **Exercise 4** Abelian Galois group (35 pts)

Let K be a field,  $P(x) \in K[x]$  irreducible and separable,  $L \supset K$  the splitting field of P(x)over K, and  $\alpha \in L$  a root of P(x).

- 1. (5 pts) Explain why L is a Galois extension of K.
- 2. (30 pts) We now suppose that the group Gal(L/K) is Abelian. Prove that  $K(\alpha) = L$ . Hint: What does the fact that Gal(L/K) is Abelian imply about its subgroups?

## Solution 4

- The extension K ⊂ L is normal since it is a splitting field, and separable since P(x) is separable.
- 2. Let  $H = \text{Gal}(L/K(\alpha))$ . It is a subgroup of Gal(L/K), and actually a *normal* subgroup since Gal(L/K) is Abelian. Therefore,  $K(\alpha)$  is Galois over K. In particular, it is normal Page 7 of 8

### MAU34101

over K. Since the irreducible polynomial  $P(x) \in K[x]$  has one root in  $K(\alpha)$ , it actually has all of it roots in  $K(\alpha)$ ; thus  $K(\alpha)$  is the splitting field of P(x) over K, i.e. L.