Faculty of Engineering, Mathematics and Science School of Mathematics

JS/SS Maths/TP/TJH

Michaelmas Term 2019

Galois theory

Nicolas Mascot

Instructions to Candidates:

This exam contains four exercises. However, you must only attempt three of them: exercise 1 (mandatory), and any two of exercises 2, 3, and 4.
Non-programmable calculators are permitted for this examination.

You may not start this examination until you are instructed to do so by the Invigilator.

Exercise 1 Bookwork (30 pts)

1. (10 pts) Let K be a field, and $P(x) \in K[x]$ be an irreducible polynomial. Give the definition of the stem field and of the splitting field of $P(x)$ over K. Give an example of K and $P(x)$ where the stem field and the splitting field are not the same.
2. (10 pts) State the Galois correspondence.
3. (10 pts) Let K be a field, let $F(x) \in K[x]$, and let G be the Galois group of $F(x)$ over K. Which property must G have for $F(x)$ to be solvable by radicals over K ? Explain what this property means in terms of subgroups of G. Give an example of a group G that satisfies this property, and of one that does not (no justification needed).

Solution 1

1. The stem field is the field generated over K by one root of $P(x)$, whereas the splitting field is the field generated over K by all the roots of $P(x)$. For instance, if $K=\mathbb{Q}$ and $P(x)=x^{3}-2$, then a stem field is $L=\mathbb{Q}(\sqrt[3]{2})$ (the fields obtained by choosing other roots of $P(x)$ are isomorphic to this one), whereas the splitting field is $N=$ $\mathbb{Q}\left(\sqrt[3]{2}, \zeta_{3} \sqrt[3]{2}, \zeta_{3}^{2} \sqrt[3]{2}\right)=L\left(\zeta_{3}\right)$, where $\zeta_{3}=e^{2 \pi i / 3}$. Since $L \subset \mathbb{R}$ whereas $\zeta_{3} \notin \mathbb{R}$, we have $\zeta_{3} \notin L$, so $N=L\left(\zeta_{3}\right) \supsetneq L$.
2. Let $K \subset L$ be a finite Galois extension of Galois $\operatorname{group} G=\operatorname{Gal}(L / K)$. Then the maps

$$
\begin{aligned}
\{\text { subgroups of } G\} & \longleftrightarrow\{\text { intermediate extensions } K \subseteq E \subseteq L\} \\
H & \longmapsto L^{H} \\
\operatorname{Gal}(L / E) & \longleftrightarrow E
\end{aligned}
$$

are bijections and are inverses of each other. Furthermore, the intermediate extension E is Galois over K iff. the corresponding subgroup H is normal in G.
3. (10 pts) $F(x)$ is solvable by radicals over K if and only if G is solvable, which means that there exists a composition series

$$
\{\operatorname{Id}\}=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft G_{n}=G
$$

Page 2 of 8

with G_{i+1} / G_{i} Abelian for all i. Another equivalent characterisation is that the iterated derived subgroup $D^{n}(G)$ is reduced to $\{\operatorname{Id}\}$ for n large enough. For example, $\mathbb{Z} / 2 \mathbb{Z}$ is solvable (since it is Abelian), whereas the symmetric group S_{5} is not solvable (since $D\left(A_{5}\right)=A_{5}$).

Exercise 2 Nested radicals (35 pts)

Let $\alpha=\sqrt{3+\sqrt{5}}$ and $\beta=\sqrt{3-\sqrt{5}}$, so that α and β are both roots of $F(x)=\left(x^{2}-3\right)^{2}-5$. Finally, let $L=\mathbb{Q}(\alpha)$.

1. (6 pts) Prove that $[L: \mathbb{Q}]=4$.
2. (7 pts) Prove that L is a Galois extension of \mathbb{Q}.

Hint: Compute $\alpha \beta$.
3. (6 pts) Prove that $\operatorname{Gal}(L / \mathbb{Q}) \simeq(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$.
4. (8 pts) Sketch a diagram showing all fields E such that $\mathbb{Q} \subseteq E \subseteq L$, and identifying these fields explicitly. Justify your answer.

Hint: Compute $(\alpha+\beta)^{2}$.
5. (8 pts) Prove that $F(x)$ is reducible $\bmod p$ for every prime number $p \in \mathbb{N}$.

Solution 2

(This exercise is similar to an example seen in class.)

1. We have $\mathbb{Q} \subset \mathbb{Q}(\sqrt{5}) \subset L$, and clearly $[\mathbb{Q}(\sqrt{5}): \mathbb{Q}]=2$. We thus need to prove that $[L: \mathbb{Q}(\sqrt{5})]=2$, i.e. that $3+\sqrt{5}$ is not a square in $\mathbb{Q}(\sqrt{5})$. And indeed, if it were the case, then there would exist $a, b \in \mathbb{Q}$ such that $3+\sqrt{5}=(a+b \sqrt{5})^{2}=$ $a^{2}+5 b^{2}+2 a b \sqrt{5}$, whence $a^{2}+5 b^{2}=3$ and $2 a b=1$ since $(1, \sqrt{5})$ is a \mathbb{Q}-basis of $\mathbb{Q}(\sqrt{5})$. Replacing b with $1 / 2 a$ yields $a^{4}-3 a^{2}+5 / 4=0$, whence $a^{2}=\frac{3 \pm \sqrt{4}}{2}$ whence $a^{2}=1 / 2$ or $5 / 2$, absurd since $a \in \mathbb{Q}$.

Page 3 of 8
(c) TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2019
2. We find that $\alpha \beta=2$, whence $\beta=2 / \alpha \in L$. Therefore, the roots $\pm \alpha, \pm \beta$ of $F(x)$ all lie in L, so L is the splitting field of $F(x)$ over \mathbb{Q}, and is therefore normal over \mathbb{Q}. It is also separable over \mathbb{Q} since we are in characteristic 0 .
3. The elements $\sigma \in \operatorname{Gal}(L / \mathbb{Q})$ are determined by what they do to the generator α. Besides $\sigma(\alpha)$ must be one of the 4 roots of $F(x)$. Since $\# \operatorname{Gal}(L / \mathbb{Q})=[L: \mathbb{Q}]=4$ by the previous questions, the 4 elements of $\operatorname{Gal}(L / \mathbb{Q})$ are $\operatorname{Id}, \sigma_{1}: \alpha \mapsto-\alpha, \sigma_{2}$: $\alpha \mapsto \beta=2 / \alpha$, and $\sigma_{3}: \alpha \mapsto-\beta=-2 / \alpha$. Since all of these are involutions (e.g. $\left.\sigma_{3}^{2}(\alpha)=\sigma_{3}(-2 / \alpha)=-2 / \sigma_{3}(\alpha)=\alpha\right)$, we have $\operatorname{Gal}(L / \mathbb{Q}) \simeq(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$.
4. We have seen in class that the subgroup diagram of $\operatorname{Gal}(L / \mathbb{Q})$ is

Clearly, the subfield corresponding to $\{\operatorname{Id}\}$ is L, and that corresponding to $\operatorname{Gal}(L / \mathbb{Q})$ is \mathbb{Q}. Let us denote the 3 other ones by $E_{i}=L^{\left\{\mathrm{Id}, \sigma_{i}\right\}}(i=1,2,3)$, so that the elements of E_{i} are the fixed points of σ_{i}; besides we know that $\left[E_{i}: \mathbb{Q}\right]=[\operatorname{Gal}(L / \mathbb{Q})$: $\left.\left\{\operatorname{Id}, \sigma_{i}\right\}\right]=2$.

Since $\sigma_{1}(\alpha)=-\alpha, \alpha^{2}=3+\sqrt{5}$ is fixed by σ_{1}, so $E_{1}=\mathbb{Q}\left(\alpha^{2}\right)=\mathbb{Q}(\sqrt{5})$.
Since $\sigma_{2}(\alpha)=\beta, \alpha+\beta$ is fixed by σ_{2}; besides $(\alpha+\beta)^{2}=\alpha^{2}+\beta^{2}+2 \alpha \beta=6+4=10$, so E_{2} contains $\alpha+\beta=\sqrt{10}$. Since $\left[E_{2}: \mathbb{Q}\right]=2$, we deduce that $E_{2}=\mathbb{Q}(\sqrt{10})$.

Since $\sigma_{3}(\alpha)=-\beta, \alpha-\beta$ is fixed by σ_{3}; besides $(\alpha-\beta)^{2}=\alpha^{2}+\beta^{2}-2 \alpha \beta=6-4=2$, so E_{3} contains $\alpha-\beta=\sqrt{2}$. Since $\left[E_{3}: \mathbb{Q}\right]=2$, we deduce that $E_{3}=\mathbb{Q}(\sqrt{2})$.

In conclusion, the subfield diagram is

5. Two cases: If p divides $\operatorname{disc} f$, then $f \bmod p$ ha a repeated factor and is thus reducible. If now p does not divide $\operatorname{disc} f$, then the factorisation pattern of $f \bmod p$ represents the cycle decomposition of an element of $\operatorname{Gal}(L / \mathbb{Q})$ acting on the roots of f. If this element is Id, then f splits completely $\bmod p$. Else, this element is one of the σ_{i}, which act as product of two disjoint transpositions, so $f \bmod p$ has two irreducible factors of degree 2. Either way, $f \bmod p$ is always reducible (even though f is irreducible over \mathbb{Z} !).

Exercise 3 A polynomial with Galois group A_{4} (35 pts)
Let $F(x)=x^{4}-2 x^{3}+2 x^{2}+2 \in \mathbb{Q}[x]$. We denote the roots of $F(x)$ in \mathbb{C} by $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4}.

In this exercise, you may use without proof the following facts:

- The discriminant of f is $\Delta_{f}=3136=2^{6} \cdot 7^{2}$.
- The transitive subgroups of the symmetric group S_{4} are
- S_{4} itself,
- the alternate group A_{4},
- the dihedral group D_{8} of symmetries of the square,
- the Klein group $V_{4}=\{\operatorname{Id},(12)(34),(13)(24),(14)(23)\} \simeq(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$,
- and the cyclic group $\mathbb{Z} / 4 \mathbb{Z}$.

1. (2 pts) Show that $F(x)$ is irreducible over \mathbb{Q}.
2. (7 pts) Show that $F(x)$ factors mod 3 as a linear factor times an irreducible factor of degree 3.
3. (8 pts) Show that the Galois group of $F(x)$ is A_{4}.
4. (9 pts) Prove that $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$.
5. (9 pts) Determine the degrees of the irreducible factors of $F(x)$ over $\mathbb{Q}\left(\alpha_{1}\right)$.

Solution 3

1. This follows from the fact that f is Eisenstein at 2.
2. First of all, f has a root $\bmod 3$, namely $x=1 \bmod 3$. In particular, $F(x) /(x-1) \in$ $\mathbb{F}_{3}[x]$; we compute that actually $F(x) \equiv(x-1)\left(x^{3}-x^{2}+x+1\right) \bmod 3$. Besides $g(x)=$ $x^{3}-x^{2}+x+1$ has no roots in \mathbb{F}_{3}, so it is irreducible since it has degree 3.
3. Let $G=\operatorname{Gal}_{\mathbb{Q}}(f)$. Then G is a subgroup of S_{4}. By the first question, G is transitive, so it is one of the groups on the list given at the beginning of the exercise. By the previous question, G contains a 3 -cycle; this eliminates all possibilities except S_{4} and A_{4}. Finally, since Δ_{f} is a square in \mathbb{Q}, G is contained in A_{4}.
4. Let $L=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ and $E=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$. We know that L is Galois over \mathbb{Q}, with Galois group A_{4}. The subgroup H corresponding to E is the subgroup of A_{4} consisting of permutations that leave both α_{1} and α_{2} fixed. In S_{4}, the only such permutations are Id and (34), but $(34) \notin S_{4}$, so $H=\{\operatorname{Id}\}$. Therefore $E=L$.
5. Let $L=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ above, and $E^{\prime}=\mathbb{Q}\left(\alpha_{1}\right)$. Clearly, we have the (possibly incomplete) factorisation $F(x)=\left(x-\alpha_{1}\right) h(x)$ over E^{\prime}, where $h(x)=\left(x-\alpha_{2}\right)(x-$ $\left.\alpha_{3}\right)\left(x-\alpha_{4}\right)=F(x) /\left(x-\alpha_{1}\right) \in E^{\prime}[x]$. The subgroup H^{\prime} corresponding to E^{\prime} is the stabiliser of α_{1}. In particular, it contains the 3-cycle $\sigma=(234)$. Since $\sigma \in H^{\prime}=$ $\operatorname{Gal}\left(L / E^{\prime}\right)$ permutes the roots of $h(x)$ transitively, $h(x)$ is irreducible over E^{\prime}. We thus have two irreducible factors, one of degree 1 and one of degree 3 .

Exercise 4 Abelian Galois group (35 pts)

Let K be a field, $P(x) \in K[x]$ irreducible and separable, $L \supset K$ the splitting field of $P(x)$ over K, and $\alpha \in L$ a root of $P(x)$.

1. (5 pts) Explain why L is a Galois extension of K.
2. (30 pts) We now suppose that the group $\operatorname{Gal}(L / K)$ is Abelian. Prove that $K(\alpha)=L$. Hint: What does the fact that $\operatorname{Gal}(L / K)$ is Abelian imply about its subgroups?

Solution 4

1. The extension $K \subset L$ is normal since it is a splitting field, and separable since $P(x)$ is separable.
2. Let $H=\operatorname{Gal}(L / K(\alpha))$. It is a subgroup of $\operatorname{Gal}(L / K)$, and actually a normal subgroup since $\operatorname{Gal}(L / K)$ is Abelian. Therefore, $K(\alpha)$ is Galois over K. In particular, it is normal

Page 7 of 8
over K. Since the irreducible polynomial $P(x) \in K[x]$ has one root in $K(\alpha)$, it actually has all of it roots in $K(\alpha)$; thus $K(\alpha)$ is the splitting field of $P(x)$ over K, i.e. L.

