Faculty of Engineering, Mathematics and Science School of Mathematics

JS/SS Maths/TP/TJH
Semester 1, 2019
MAU34101 Galois theory

Wednesday December 11 RDS Simmonscourt 17:00-19:00

Dr. Nicolas Mascot

Instructions to Candidates:

This exam paper contains four questions. You must attempt three of them:
question 1 , and exactly two of questions 2,3 , and 4.
Should you attempt all questions (not recommended), you will only get the marks for question 1 and the best two others.
Non-programmable calculators are permitted for this examination.

You may not start this examination until you are instructed to do so by the Invigilator.

Question 1 Bookwork (30 pts)

1. (10 pts) Let K be a field, and $P(x) \in K[x]$ be an irreducible polynomial. Give the definition of the stem field and of the splitting field of $P(x)$ over K. Give an example of K and $P(x)$ where the stem field and the splitting field are not the same.
2. (10 pts) State the Galois correspondence.
3. (10 pts) Let K be a field, let $F(x) \in K[x]$, and let G be the Galois group of $F(x)$ over K. Which property must G have for $F(x)$ to be solvable by radicals over K ? Explain what this property means in terms of subgroups of G. Give an example of a group G that satisfies this property, and of one that does not (no justification needed).

Question 2 Nested radicals (35 pts)
Let $\alpha=\sqrt{3+\sqrt{5}}$ and $\beta=\sqrt{3-\sqrt{5}}$, so that α and β are both roots of $F(x)=\left(x^{2}-3\right)^{2}-5$. Finally, let $L=\mathbb{Q}(\alpha)$.

1. (6 pts) Prove that $[L: \mathbb{Q}]=4$.
2. (7 pts) Prove that L is a Galois extension of \mathbb{Q}.

Hint: Compute $\alpha \beta$.
3. (6 pts) Prove that $\operatorname{Gal}(L / \mathbb{Q}) \simeq(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$.
4. (8 pts) Sketch a diagram showing all fields E such that $\mathbb{Q} \subseteq E \subseteq L$, and identifying these fields explicitly. Justify your answer.

Hint: Compute $(\alpha+\beta)^{2}$.
5. (8 pts) Prove that $F(x)$ is reducible $\bmod p$ for every prime number $p \in \mathbb{N}$.

Question 3 A polynomial with Galois group A_{4} (35 pts)
Let $F(x)=x^{4}-2 x^{3}+2 x^{2}+2 \in \mathbb{Q}[x]$. We denote the roots of $F(x)$ in \mathbb{C} by $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4}.

In this exercise, you may use without proof the following facts:

- The discriminant of f is $\Delta_{f}=3136=2^{6} \cdot 7^{2}$.
- The transitive subgroups of the symmetric group S_{4} are
- S_{4} itself,
- the alternate group A_{4},
- the dihedral group D_{8} of symmetries of the square,
- the Klein group $V_{4}=\{\operatorname{Id},(12)(34),(13)(24),(14)(23)\} \simeq(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$,
- and the cyclic group $\mathbb{Z} / 4 \mathbb{Z}$.

1. (2 pts) Show that $F(x)$ is irreducible over \mathbb{Q}.
2. (7 pts) Show that $F(x)$ factors mod 3 as a linear factor times an irreducible factor of degree 3.
3. (8 pts) Show that the Galois group of $F(x)$ is A_{4}.
4. (9 pts) Prove that $\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}\right)$.
5. (9 pts) Determine the degrees of the irreducible factors of $F(x)$ over $\mathbb{Q}\left(\alpha_{1}\right)$.

Question 4 Abelian Galois group (35 pts)

Let K be a field, $P(x) \in K[x]$ irreducible and separable, $L \supset K$ the splitting field of $P(x)$ over K, and $\alpha \in L$ a root of $P(x)$.

1. (5 pts) Explain why L is a Galois extension of K.
2. (30 pts) We now suppose that the group $\operatorname{Gal}(L / K)$ is Abelian. Prove that $K(\alpha)=L$. Hint: What does the fact that $\operatorname{Gal}(L / K)$ is Abelian imply about its subgroups?

Page 3 of 3
(c) TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2019

