MAU34101-1

Coláiste na Tríonóide, Baile Átha Cliath Trinity College Dublin Ollscoil Átha Cliath | The University of Dublin

Faculty of Engineering, Mathematics and Science

School of Mathematics

JS/SS Maths/TP/TJH

Semester 1, 2019

MAU34101 Galois theory

Wednesday December 11 RDS Simmonscourt 17:00 – 19:00

Dr. Nicolas Mascot

Instructions to Candidates:

This exam paper contains **four** questions. You **must** attempt **three** of them: question 1, and **exactly two** of questions 2, 3, and 4. Should you attempt all questions (not recommended), you will **only** get the marks for question 1 and the best two others. Non-programmable calculators are permitted for this examination.

You may not start this examination until you are instructed to do so by the Invigilator.

Question 1 Bookwork (30 pts)

- 1. (10 pts) Let K be a field, and $P(x) \in K[x]$ be an irreducible polynomial. Give the definition of the stem field and of the splitting field of P(x) over K. Give an example of K and P(x) where the stem field and the splitting field are not the same.
- 2. (10 pts) State the Galois correspondence.
- 3. (10 pts) Let K be a field, let F(x) ∈ K[x], and let G be the Galois group of F(x) over K. Which property must G have for F(x) to be solvable by radicals over K? Explain what this property means in terms of subgroups of G. Give an example of a group G that satisfies this property, and of one that does not (no justification needed).

Question 2 Nested radicals (35 pts)

Let $\alpha = \sqrt{3 + \sqrt{5}}$ and $\beta = \sqrt{3 - \sqrt{5}}$, so that α and β are both roots of $F(x) = (x^2 - 3)^2 - 5$. Finally, let $L = \mathbb{Q}(\alpha)$.

- 1. (6 pts) Prove that $[L : \mathbb{Q}] = 4$.
- (7 pts) Prove that L is a Galois extension of Q.
 Hint: Compute αβ.
- 3. (6 pts) Prove that $\operatorname{Gal}(L/\mathbb{Q}) \simeq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$.
- 4. (8 pts) Sketch a diagram showing all fields E such that $\mathbb{Q} \subseteq E \subseteq L$, and identifying these fields explicitly. Justify your answer.

Hint: Compute $(\alpha + \beta)^2$.

5. (8 pts) Prove that F(x) is reducible mod p for every prime number $p \in \mathbb{N}$.

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2019

Question 3 A polynomial with Galois group A_4 (35 pts)

Let $F(x) = x^4 - 2x^3 + 2x^2 + 2 \in \mathbb{Q}[x]$. We denote the roots of F(x) in \mathbb{C} by α_1 , α_2 , α_3 , and α_4 .

In this exercise, you may use without proof the following facts:

- The discriminant of f is $\Delta_f = 3136 = 2^6 \cdot 7^2$.
- The transitive subgroups of the symmetric group S_4 are
 - S_4 itself,
 - the alternate group A_4 ,
 - the dihedral group D_8 of symmetries of the square,
 - the Klein group $V_4 = \{ \mathrm{Id}, (12)(34), (13)(24), (14)(23) \} \simeq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}),$
 - and the cyclic group $\mathbb{Z}/4\mathbb{Z}$.
- 1. (2 pts) Show that F(x) is irreducible over \mathbb{Q} .
- 2. (7 *pts*) Show that F(x) factors mod 3 as a linear factor times an irreducible factor of degree 3.
- 3. (8 pts) Show that the Galois group of F(x) is A_4 .
- 4. (9 pts) Prove that $\mathbb{Q}(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \mathbb{Q}(\alpha_1, \alpha_2)$.
- 5. (9 pts) Determine the degrees of the irreducible factors of F(x) over $\mathbb{Q}(\alpha_1)$.

Question 4 Abelian Galois group (35 pts)

Let K be a field, $P(x) \in K[x]$ irreducible and separable, $L \supset K$ the splitting field of P(x) over K, and $\alpha \in L$ a root of P(x).

- 1. (5 pts) Explain why L is a Galois extension of K.
- 2. (30 pts) We now suppose that the group Gal(L/K) is Abelian. Prove that $K(\alpha) = L$. Hint: What does the fact that Gal(L/K) is Abelian imply about its subgroups?

Page 3 of 3

© TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 2019